SCRITTO 25-6-2008

ATTENZIONE

- Chi, nell'anno accademico 2007-2008, ha superato il primo esonero svolgerà solo la seconda parte del compito.
- Chi, nell'anno accademico 2007-2008, ha superato il secondo esonero svolgerà solo la prima parte.
- Chi non ha fatto gli esoneri svolgerà entrambe le parti.
- Chi fa solo una parte del compito, relativa all'esonero mancante o andato male, deve dichiararlo SUBITO, al momento del controllo dei documenti, e scriverlo sul frontespizio del compito.
- Chi fa solo una parte del compito deve uscire dopo due ore, pena l'annullamento.
- Il compito annulla gli esoneri precedenti.
- Gli esoneri ottenuti nell'anno accademico 2007-2008 valgono solo fino a settembre 2008.

SCRITTO 25-6-2008 - Compito A

Sia dato uno spazio-tempo descritto, nel riferimento M di coordinate $\{x^{\mu}\}=(t,r,\theta,\phi)$, dalla metrica

$$ds^2 = -\left(1 + \frac{Q^2}{r^2}\right)dt^2 + \frac{dr^2}{1 + \frac{Q^2}{r^2}} + r^2d\theta^2 + r^2\sin^2\theta d\phi^2,$$

dove Q è un parametro reale costante.

I simboli di Christoffel non nulli sono:

$$\Gamma_{tt}^{\ r} \neq 0$$
 $\Gamma_{tr}^{\ t} \neq 0$ $\Gamma_{rr}^{\ r} = \frac{Q^2}{r(r^2 + Q^2)}$
$$\Gamma_{r\theta}^{\ \phi} \neq 0$$
 $\Gamma_{r\theta}^{\ \theta} \neq 0$ $\Gamma_{\theta\theta}^{\ r} = -\frac{r^2 + Q^2}{r}$

$$\Gamma_{\theta\phi}^{\ \phi} = \cot\theta \quad \Gamma_{\phi\phi}^{\ r} = - \tfrac{(r^2 + Q^2)\sin^2\theta}{r} \quad \Gamma_{\phi\phi}^{\ \theta} = -\sin\theta\cos\theta \ .$$

I Parte

- 1. Calcolare $\Gamma_{r\theta}^{\ \theta} \in \Gamma_{tt}^{\ r}$.
- 2. Dato il tensore $\left(\begin{array}{c} 0 \\ 2 \end{array}\right)T,$ di componenti nel riferimento M

$$T_{\mu\nu} = \begin{pmatrix} r & 2r & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & r & t^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

calcolare le componenti del tensore $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, ad esso associato, $T^{\mu}_{\ \nu}.$

- 3. Calcolare $T_{\theta\theta;t}$; $T_{\theta\phi;\phi}$.
- 4. Sia dato il riferimento M', di coordinate $\{x^{\alpha\prime}\}=(u,v,\theta',\phi')$, definito dalla trasformazione di coordinate $x^{\alpha\prime}=x^{\alpha\prime}(x^{\mu})$

$$\begin{array}{rcl} u & = & t - r \\ v & = & t + r \\ \theta' & = & \theta \\ \phi' & = & \phi \end{array}$$

Calcolare le componenti del tensore $\begin{pmatrix} 0 \\ 2 \end{pmatrix}$ T nel riferimento M'.

1. Sia Sia dato il cammino \mathcal{C} dal punto $P=(0,1,\pi/3,0)$ al punto $Q=(0,1,\pi/2,0)$, definito da

$$t \equiv 0$$
, $r \equiv 1$, $\frac{\pi}{3} \le \theta \le \frac{\pi}{2}$, $\phi \equiv 0$.

Sia dato il vettore $V^{\mu}=(0,0,0,2/\sqrt{3})$ in P. Calcolare le componenti del vettore \vec{V} , trasportato parallelamente lungo il cammino \mathcal{C} , nel punto Q.

2. Domanda teorica 1.

Dato il generico tensore energia-impulso $T^{\alpha\beta}$ spiegare perché l'equazione $T^{\alpha\beta}_{,\beta}=0$, valida in spaziotempo piatto, è una legge di conservazione, mentre $T^{\alpha\beta}_{;\beta}=0$, valida in spaziotempo curvo, non lo è.

3. Domanda teorica 2.

Discutere la natura delle ipersuperfici in Relatività Generale e, data la metrica di Schwarzschild

$$ds^{2} = -\left(1 - \frac{2m}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{2m}{r}\right)} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2},$$

spiegare perché la superficie r=2m è un orizzonte degli eventi.

SCRITTO 25-6-2008

ATTENZIONE

- Chi, nell'anno accademico 2007-2008, ha superato il primo esonero svolgerà solo la seconda parte del compito.
- Chi, nell'anno accademico 2007-2008, ha superato il secondo esonero svolgerà solo la prima parte.
- Chi non ha fatto gli esoneri svolgerà entrambe le parti.
- Chi fa solo una parte del compito, relativa all'esonero mancante o andato male, deve dichiararlo SUBITO, al momento del controllo dei documenti, e scriverlo sul frontespizio del compito.
- Chi fa solo una parte del compito deve uscire dopo due ore, pena l'annullamento.
- Il compito annulla gli esoneri precedenti.
- Gli esoneri ottenuti nell'anno accademico 2007-2008 valgono solo fino a settembre 2008.

SCRITTO 25-6-2008 - Compito B

Sia dato uno spazio-tempo descritto, nel riferimento M di coordinate $\{x^{\mu}\}=(t,r,\theta,\phi)$, dalla metrica

$$ds^{2} = -\left(1 + \frac{Q^{2}}{r^{2}}\right)dt^{2} + \frac{dr^{2}}{1 + \frac{Q^{2}}{r^{2}}} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta d\phi^{2},$$

dove Q è un parametro reale costante.

I simboli di Christoffel non nulli sono:

$$\Gamma_{tt}^{\ r} \neq 0$$
 $\Gamma_{tr}^{\ t} \neq 0$ $\Gamma_{rr}^{\ r} = \frac{Q^2}{r(r^2 + Q^2)}$ $\Gamma_{r\phi}^{\ \phi} \neq 0$ $\Gamma_{r\theta}^{\ \theta} \neq 0$ $\Gamma_{\theta\theta}^{\ r} = -\frac{r^2 + Q^2}{r}$

$$\Gamma_{\theta\phi}^{\ \phi} = \cot\theta \quad \Gamma_{\phi\phi}^{\ r} = -\frac{(r^2 + Q^2)\sin^2\theta}{r} \quad \Gamma_{\phi\phi}^{\ \theta} = -\sin\theta\cos\theta.$$

I Parte

- 1. Calcolare $\Gamma_{r\phi}^{\ \phi}$ e $\Gamma_{tr}^{\ t}$.
- 2. Dato il tensore $\left(\begin{array}{c} 0 \\ 2 \end{array}\right)T,$ di componenti nel riferimento M

$$T_{\mu\nu} = \left(\begin{array}{cccc} 2r & 0 & 0 & 0 \\ -r & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & 0 & t^2 \end{array}\right),$$

calcolare le componenti del tensore $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, ad esso associato, $T_{\mu}{}^{\nu}.$

- 3. Calcolare $T_{\phi\phi;t}$; $T_{\theta\phi;\phi}$.
- 4. Sia dato il riferimento M', di coordinate $\{x^{\alpha\prime}\}=(u,v,\theta',\phi')$, definito dalla trasformazione di coordinate $x^{\alpha\prime}=x^{\alpha\prime}(x^{\mu})$

$$u = t + r$$

$$v = t - r$$

$$\theta' = \theta$$

$$\phi' = \phi$$

Calcolare le componenti del tensore $\left(\begin{array}{c} 0 \\ 2 \end{array}\right)$ T nel riferimento M'.

1. Sia dato il cammino $\mathcal C$ dal punto $P=(0,2,\pi/6,0)$ al punto $Q=(0,2,\pi/2,0),$ definito da

$$t \equiv 0$$
, $r \equiv 2$, $\frac{\pi}{6} \le \theta \le \frac{\pi}{2}$, $\phi \equiv 0$.

Sia dato il vettore $V^{\mu}=(0,0,0,2)$ in P. Calcolare le componenti del vettore \vec{V} , trasportato parallelamente lungo il cammino \mathcal{C} , nel punto Q.

2. Domanda teorica 1.

Ricavare le equazioni di Einstein sapendo che, nel limite newtoniano, le equazioni delle geodetiche mostrano che

$$g_{00} = -(1 + 2\frac{\Phi}{c^2}),$$

dove Φ è il potenziale newtoniano soluzione dell'equazione di Laplace

$$\nabla^2 \Phi = 4\pi G \rho.$$

3. Domanda teorica 2.

Mostrare che se lo spaziotempo ammette un campo di vettori di Killing, si possono scegliere le coordinate in modo da sfruttare le simmetrie ad essi associate.

Soluzione compito A

I Parte

La metrica è

$$g_{\mu\nu} = \operatorname{diag}\left(-\left(1 + \frac{Q^2}{r^2}\right), \left(1 + \frac{Q^2}{r^2}\right)^{-1}, r^2, r^2 \sin^2\theta\right)$$

e la metrica inversa è

$$g^{\mu\nu} = \operatorname{diag}\left(-\left(1 + \frac{Q^2}{r^2}\right)^{-1}, 1 + \frac{Q^2}{r^2}, \frac{1}{r^2}, \frac{1}{r^2 \sin^2 \theta}\right).$$

1.

$$\begin{split} \Gamma^{\theta}_{r\theta} &=& \frac{1}{2}g^{\theta\alpha}(g_{r\alpha,\theta}+g_{\alpha\theta,r}-g_{r\theta,\alpha}) = \frac{1}{2}g^{\theta\theta}g_{\theta\theta,r} = \frac{1}{r} \\ \Gamma^{r}_{tt} &=& \frac{1}{2}g^{r\alpha}(2g_{t\alpha,t}-g_{tt,\alpha}) = -\frac{1}{2}g^{rr}g_{tt,r} = -\frac{Q^{2}(r^{2}+Q^{2})}{r^{5}} \,. \end{split}$$

2

$$\begin{split} T^{\mu}_{\ \nu} &= g^{\mu\alpha}T_{\alpha\nu} \\ &= \begin{pmatrix} -\left(1 + \frac{Q^2}{r^2}\right)^{-1} & 0 & 0 & 0 \\ 0 & 1 + \frac{Q^2}{r^2} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & \frac{1}{r^2\sin^2\theta} \end{pmatrix} \begin{pmatrix} r & 2r & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & r & t^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} -r\left(1 + \frac{Q^2}{r^2}\right)^{-1} & -2r\left(1 + \frac{Q^2}{r^2}\right)^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & \frac{1}{r} & \frac{t^2}{r^2} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}. \end{split}$$

3.

$$T_{\theta\theta;t} = T_{\theta\theta,t} - 2\Gamma_{\theta t}^{\alpha} T_{\theta\alpha} = T_{\theta\theta,t} = 2t$$

$$T_{\theta\phi;\phi} = T_{\theta\phi,\phi} - \Gamma_{\theta\phi}^{\alpha} T_{\alpha\phi} - \Gamma_{\phi\phi}^{\alpha} T_{\theta\alpha} =$$

$$= -\Gamma_{\phi\phi}^{\theta} T_{\theta\theta} - \Gamma_{\phi\phi}^{r} T_{\theta r} = t^{2} \sin \theta \cos \theta + (r^{2} + Q^{2}) \sin^{2} \theta$$

4. Definiamo la matrice

$$\Lambda = \left(\Lambda^{\alpha\prime}_{\ \mu}\right) = \left(\frac{\partial x^{\alpha\prime}}{\partial x^{\mu}}\right) = \left(\begin{array}{cccc} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

La sua inversa è

$$\Lambda^{-1} = (\Lambda^{\mu}_{\alpha\prime}) = \begin{pmatrix} \frac{\partial x^{\mu}}{\partial x^{\alpha\prime}} \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Le componenti di T nel frame M' sono

$$T_{\alpha\prime\beta\prime} = \Lambda^{\mu}_{\ \alpha\prime} T_{\mu\nu} \Lambda^{\nu}_{\ \beta\prime}.$$

In forma matriciale,

$$T' = (T_{\alpha\prime\beta\prime}) = \Lambda^{-1}tT\Lambda^{-1}$$

$$= \begin{pmatrix} 1/2 & -1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} r & 2r & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & r & t^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Lambda^{-1}$$

$$= \begin{pmatrix} r/2 & r & 0 & 0 \\ r/2 & r & 0 & 0 \\ 0 & r & t^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ -1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} -r/4 & 3r/4 & 0 & 0 \\ -r/4 & 3r/4 & 0 & 0 \\ -r/2 & r/2 & t^2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -(v-u)/8 & 3(v-u)/8 & 0 & 0 \\ -(v-u)/4 & (v-u)/4 & (v+u)^2/4 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

II Parte

Il cammino è una linea coordinata θ ; l'equazione del trasporto parallelo si riduce quindi, in una parametrizzazione opportuna, a $V^{\mu}_{\;;\theta}=0$, ovvero

$$\begin{split} \boldsymbol{V}_{,\theta}^t &= -\Gamma_{\theta\alpha}^t \boldsymbol{V}^\alpha = 0 \\ \boldsymbol{V}_{,\theta}^r &= -\Gamma_{\theta\alpha}^r \boldsymbol{V}^\alpha = -\Gamma_{\theta\theta}^r \boldsymbol{V}^\theta \\ \boldsymbol{V}_{,\theta}^\theta &= -\Gamma_{\theta\alpha}^\theta \boldsymbol{V}^\alpha = -\Gamma_{\theta\tau}^\theta \boldsymbol{V}^r \\ \boldsymbol{V}_{,\theta}^\phi &= -\Gamma_{\theta\alpha}^\phi \boldsymbol{V}^\alpha = -\Gamma_{\theta\phi}^\phi \boldsymbol{V}^\phi \,. \end{split}$$

L'equazione per V^t ha come soluzione V^t costante, ed essendo $V^t = 0$ in P, si ha $V^t(\theta) \equiv 0$. Le componenti r, θ si trovano risolvendo il problema di Cauchy

$$V_{,\theta}^{r} = -\Gamma_{\theta\theta}^{r} V^{\theta}$$

$$V_{,\theta}^{\theta} = -\Gamma_{\theta\tau}^{\theta} V^{r}$$

$$V^{r}(\pi/3) = 0$$

$$V^{\theta}(\pi/3) = 0$$

che ha come unica soluzione $V^r(\theta)=V^\theta(\theta)\equiv 0$. La componente ϕ si trova risolvendo il problema di Cauchy

$$\begin{array}{rcl} V^{\phi}_{,\theta} & = & -\Gamma^{\phi}_{\theta\phi}V^{\phi} = -\cot\theta V^{\phi} \\ V^{\phi}\left(\frac{\pi}{3}\right) & = & \frac{2}{\sqrt{3}} \end{array}$$

che si risolve per separazione di variabili:

$$\int_{\frac{2}{\sqrt{3}}}^{V^{\phi}(\pi/2)} \frac{dV^{\phi}}{V^{\phi}} = -\int_{\pi/3}^{\pi/2} \cot \theta d\theta = -\int_{\pi/3}^{\pi/2} \frac{\cos \theta}{\sin \theta} d\theta = -\int_{\sqrt{3}/2}^{1} \frac{d\alpha}{\alpha} = \int_{1}^{\sqrt{3}/2} \frac{d\alpha}{\alpha}$$

dove abbiamo definito $\alpha = \sin \theta$. Integrando,

$$\ln\left[V^{\phi}\left(\frac{\pi}{2}\right) \times \frac{\sqrt{3}}{2}\right] = \ln\frac{\sqrt{3}}{2}$$

ed esponenziando

$$V^{\phi}\left(\frac{\pi}{2}\right) = 1.$$

Quindi in Q

$$V^{\mu} = (0, 0, 0, 1)$$
.

Soluzione compito B

I Parte

La metrica è

$$g_{\mu\nu} = \text{diag}\left(-\left(1 + \frac{Q^2}{r^2}\right), \left(1 + \frac{Q^2}{r^2}\right)^{-1}, r^2, r^2 \sin^2\theta\right)$$

e la metrica inversa è

$$g^{\mu\nu} = \operatorname{diag}\left(-\left(1 + \frac{Q^2}{r^2}\right)^{-1}, 1 + \frac{Q^2}{r^2}, \frac{1}{r^2}, \frac{1}{r^2 \sin^2 \theta}\right).$$

1.

$$\begin{split} \Gamma^{\phi}_{r\phi} &= & \frac{1}{2} g^{\phi\alpha} (g_{r\alpha,\phi} + g_{\alpha\phi,r} - g_{r\phi,\alpha}) = \frac{1}{2} g^{\phi\phi} g_{\phi\phi,r} = \frac{1}{r} \\ \Gamma^{t}_{tr} &= & \frac{1}{2} g^{t\alpha} (g_{\alpha r,t} + g_{t\alpha,r} - g_{tr,\alpha}) = \frac{1}{2} g^{tt} g_{tt,r} = -\frac{Q^2}{r(r^2 + Q^2)} \,. \end{split}$$

2.

$$T_{\mu}^{\ \nu} = T_{\mu\alpha}g^{\alpha\nu}$$

$$= \begin{pmatrix} 2r & 0 & 0 & 0 \\ -r & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & 0 & t^2 \end{pmatrix} \begin{pmatrix} -\left(1 + \frac{Q^2}{r^2}\right)^{-1} & 0 & 0 & 0 \\ 0 & 1 + \frac{Q^2}{r^2} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & 0 & \frac{1}{r^2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} -2r\left(1 + \frac{Q^2}{r^2}\right)^{-1} & 0 & 0 & 0 \\ r\left(1 + \frac{Q^2}{r^2}\right)^{-1} & 0 & 0 & 0 \\ 0 & r\left(1 + \frac{Q^2}{r^2}\right) & 0 & 0 \\ 0 & 0 & 0 & \frac{t^2}{r^2 + 2r^2} \end{pmatrix}.$$

3.

$$\begin{split} T_{\phi\phi;t} &= T_{\phi\phi,t} - 2\Gamma^{\alpha}_{\phi t}T_{\phi\alpha} = T_{\phi\phi,t} = 2t \\ T_{\theta\phi;\phi} &= T_{\theta\phi,\phi} - \Gamma^{\alpha}_{\theta\phi}T_{\alpha\phi} - \Gamma^{\alpha}_{\phi\phi}T_{\theta\alpha} = \\ &= -\Gamma^{\phi}_{\theta\phi}T_{\phi\phi} - \Gamma^{r}_{\phi\phi}T_{\theta r} = -\cot\theta t^2 + (r^2 + Q^2)\sin^2\theta \,. \end{split}$$

4. Definiamo la matrice

$$\Lambda = \left(\Lambda^{\alpha\prime}_{\ \mu}\right) = \left(\frac{\partial x^{\alpha\prime}}{\partial x^{\mu}}\right) = \left(\begin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

La sua inversa è

$$\Lambda^{-1} = (\Lambda^{\mu}_{\alpha\prime}) = \begin{pmatrix} \frac{\partial x^{\mu}}{\partial x^{\alpha\prime}} \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 & 0 & 0\\ 1/2 & -1/2 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Le componenti di T nel frame M' sono

$$T_{\alpha\prime\beta\prime} = \Lambda^{\mu}_{\ \alpha\prime} T_{\mu\nu} \Lambda^{\nu}_{\ \beta\prime}$$
.

In forma matriciale,

$$T' = (T_{\alpha\beta}) = \Lambda^{-1} T \Lambda^{-1}$$

$$= \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2r & 0 & 0 & 0 \\ -r & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & 0 & t^2 \end{pmatrix} \Lambda^{-1}$$

$$= \begin{pmatrix} r/2 & 0 & 0 & 0 \\ 3r/2 & 0 & 0 & 0 \\ 0 & r & 0 & 0 \\ 0 & 0 & 0 & t^2 \end{pmatrix} \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & -1/2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} r/4 & r/4 & 0 & 0 \\ 3r/4 & 3r/4 & 0 & 0 \\ r/2 & -r/2 & 0 & 0 \\ 0 & 0 & 0 & t^2 \end{pmatrix}$$

$$= \begin{pmatrix} (u-v)/8 & (u-v)/8 & 0 & 0 \\ 3(u-v)/8 & 3(u-v)/8 & 0 & 0 \\ (u-v)/4 & -(u-v)/4 & 0 & 0 \\ 0 & 0 & 0 & (u+v)^2/4 \end{pmatrix}.$$

II Parte

Il cammino è una linea coordinata θ ; l'equazione del trasporto parallelo si riduce quindi, in una parametrizzazione opportuna, a $V^{\mu}_{:\theta} = 0$, ovvero

$$\begin{split} \boldsymbol{V}_{,\theta}^t &= -\Gamma_{\theta\alpha}^t \boldsymbol{V}^\alpha = 0 \\ \boldsymbol{V}_{,\theta}^r &= -\Gamma_{\theta\alpha}^r \boldsymbol{V}^\alpha = -\Gamma_{\theta\theta}^r \boldsymbol{V}^\theta \\ \boldsymbol{V}_{,\theta}^\theta &= -\Gamma_{\theta\alpha}^\theta \boldsymbol{V}^\alpha = -\Gamma_{\theta\tau}^\theta \boldsymbol{V}^r \\ \boldsymbol{V}_{,\theta}^\phi &= -\Gamma_{\theta\alpha}^\phi \boldsymbol{V}^\alpha = -\Gamma_{\theta\phi}^\phi \boldsymbol{V}^\phi \,. \end{split}$$

L'equazione per V^t ha come soluzione V^t costante, ed essendo $V^t = 0$ in P, si ha $V^t(\theta) \equiv 0$. Le componenti r, θ si trovano risolvendo il problema di Cauchy

$$V_{,\theta}^{r} = -\Gamma_{\theta\theta}^{r} V^{\theta}$$

$$V_{,\theta}^{\theta} = -\Gamma_{\theta r}^{\theta} V^{r}$$

$$V^{r}(\pi/6) = 0$$

$$V^{\theta}(\pi/6) = 0$$

che ha come unica soluzione $V^r(\theta)=V^\theta(\theta)\equiv 0$. La componente ϕ si trova risolvendo il problema di Cauchy

$$\begin{array}{rcl} V^{\phi}_{,\theta} & = & -\Gamma^{\phi}_{\theta\phi}V^{\phi} = -\cot\theta V^{\phi} \\ V^{\phi}\left(\frac{\pi}{6}\right) & = & 2 \end{array}$$

che si risolve per separazione di variabili:

$$\int_{2}^{V^{\phi}(\pi/2)} \frac{dV^{\phi}}{V^{\phi}} = -\int_{\pi/6}^{\pi/2} \cot \theta d\theta = -\int_{\pi/6}^{\pi/2} \frac{\cos \theta}{\sin \theta} d\theta = -\int_{1/2}^{1} \frac{d\alpha}{\alpha} = \int_{1}^{1/2} \frac{d\alpha}{\alpha}$$

dove abbiamo definito $\alpha = \sin \theta$. Integrando,

$$\ln\left(V^{\phi}\left(\frac{\pi}{2}\right)\frac{1}{2}\right) = \ln\frac{1}{2}$$

ed esponenziando

$$V^{\phi}\left(\frac{\pi}{2}\right) = 1 \, .$$

Quindi in Q

$$V^{\mu} = (0, 0, 0, 1) \,.$$