
Chapter 6

The Curvature Tensor

We are now in a position to introduce the curvature tensor. We will do it in two different
ways.

6.1 a) A Formal Approach

Let us start writing the transformation rule for affine connections

Γλ
µν =

∂xλ

∂xτ ′

∂xρ′

∂xµ

∂xσ′

∂xν
Γτ ′

ρ′σ′ +
∂xλ

∂xτ ′

∂2xτ ′

∂xµ∂xν
. (6.1)

As we already noticed (Chapter V sec. 5) if the last term on the right-hand side would be
zero Γλ

µν would transform as a tensor. Let us isolate the ‘bad term’, by multiplying eq.
(6.1) by ∂xτ ′

∂xλ :
∂2xτ ′

∂xµ∂xν
=

∂xτ ′

∂xλ
Γλ

µν −
∂xρ′

∂xµ

∂xσ′

∂xν
Γτ ′

ρ′σ′. (6.2)

We now differentiate this equation with respect to xk

∂3xτ ′

∂xk∂xµ∂xν
=

∂2xτ ′

∂xk∂xλ
Γλ

µν +
∂xτ ′

∂xλ

(

∂

∂xk
Γλ

µν

)

(6.3)

− ∂2xρ′

∂xk∂xµ

∂xσ′

∂xν
Γτ ′

ρ′σ′ −
∂xρ′

∂xµ

∂2xσ′

∂xk∂xν
Γτ ′

ρ′σ′ −
∂xρ′

∂xµ

∂xσ′

∂xν

(

∂

∂xk
Γτ ′

ρ′σ′

)

.

We now use eq. (6.2):

∂3xτ ′

∂xk∂xµ∂xν
= (6.4)

+Γλ
µν

[

∂xτ ′

∂xα
Γα

kλ −
∂xi′

∂xk

∂xj′

∂xλ
Γτ ′

i′j′

]

+
∂xτ ′

∂xλ

[

∂

∂xk
Γλ

µµ

]

−∂xσ′

∂xν
Γτ ′

ρ′σ′

[

∂xρ′

∂xα
Γα

kµ − ∂xi′

∂xk

∂xj′

∂xµ
Γρ′

i′j′

]
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−∂xρ′

∂xµ
Γτ ′

ρ′σ′

[

∂xσ′

∂xα
Γα

kν −
∂xi′

∂xk

∂xj′

∂xν
Γσ′

i′j′

]

−∂xρ′

∂xµ

∂xσ′

∂xν

(

∂

∂xk
Γτ ′

ρ′σ′

)

.

Let us rewrite the last term as

∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xk

(

∂

∂xη′
Γτ ′

ρ′σ′

)

. (6.5)

(The reason is that the indices of Γ have a prime, thus the derivatives must be computed
with respect to the {xα′}). We now rewrite eq. (6.5) in the following way

∂3xτ ′

∂xk∂xµ∂xν
= (6.6)

[

∂xτ ′

∂xλ

(

∂

∂xk
Γλ

µν

)

+

(

∂xτ ′

∂xα
Γα

kλΓ
λ

µν

)]

−
[

∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xk

(

∂

∂xη′
Γτ ′

ρ′σ′

)

− ∂xσ′

∂xν

∂xi′

∂xk

∂xj′

∂xµ
Γτ ′

ρ′σ′Γ
ρ′

i′j′

]

−
[

∂xρ′

∂xµ

∂xi′

∂xk

∂xj′

∂xν
Γτ ′

ρ′σ′Γ
σ′

i′j′

]

−
[

∂xσ′

∂xν
Γτ ′

ρ′σ′
∂xρ′

∂xα
Γα

kµ +
∂xρ′

∂xµ
Γτ ′

ρ′σ′
∂xσ′

∂xα
Γα

kν +
∂xi′

∂xk

∂xj′

∂xλ
Γλ

µµΓτ ′
i′j′

]

.

We now relabel the indices in the following way

∂xτ ′

∂xα
Γα

kλΓ
λ

µν → ∂xτ ′

∂xλ
Γλ

kηΓ
η
µν (6.7)

∂xσ′

∂xν

∂xi′

∂xk

∂xj′

∂xµ
Γτ ′

ρ′σ′Γ
ρ′

i′j′ →
∂xσ′

∂xν

∂xη′

∂xk

∂xρ′

∂xµ
Γτ ′

λ′σ′Γ
λ′

η′ρ′

∂xρ′

∂xµ

∂xi′

∂xk

∂xj′

∂xν
Γτ ′

ρ′σ′Γ
σ′

i′j′ →
∂xρ′

∂xµ

∂xη′

∂xk

∂xσ′

∂xν
Γτ ′

ρ′λ′Γ
λ′

η′σ′

∂xσ′

∂xν
Γτ ′

ρ′σ′
∂xρ′

∂xα
Γα

kµ → ∂xρ′

∂xν
Γτ ′

σ′ρ′
∂xσ′

∂xλ
Γλ

kµ

∂xρ′

∂xµ
Γτ ′

ρ′σ′
∂xσ′

∂xα
Γα

kν → ∂xρ′

∂xµ
Γτ ′

ρ′σ′
∂xσ′

∂xλ
Γλ

kν

∂xi′

∂xk

∂xj′

∂xλ
Γλ

µµΓτ ′
i′j′ →

∂xρ′

∂xk

∂xσ′

∂xλ
Γλ

µµΓτ ′
ρ′σ′

With these changes the terms can be collected in the following way

∂3xτ ′

∂xk∂xµ∂xν
=

∂xτ ′

∂xλ

[(

∂

∂xk
Γλ

µν

)

+ Γλ
kηΓ

η
µν

]

(6.8)

−∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xk

[(

∂

∂xη′
Γτ ′

ρ′σ′

)

− Γτ ′
λ′σ′Γ

λ′
η′ρ′ − Γτ ′

ρ′λ′Γ
λ′

η′σ′

]

−∂xσ′

∂xλ
Γτ ′

ρ′σ′

[

Γλ
kµ

∂xρ′

∂xν
+ Γλ

kν
∂xρ′

∂xµ
+ Γλ

µν
∂xρ′

∂xk

]

.
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We now subtract from this expression the same expression with k and ν interchanged

∂3xτ ′

∂xk∂xµ∂xν
− ∂3xτ ′

∂xν∂xµ∂xk
= 0 = (6.9)

∂xτ ′

∂xλ

[(

∂

∂xk
Γλ

µν

)

+ Γλ
kηΓ

η
µν

]

−∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xk

[(

∂

∂xη′
Γτ ′

ρ′σ′

)

− Γτ ′
λ′σ′Γ

λ′
η′ρ′ − Γτ ′

ρ′λ′Γ
λ′

η′σ′

]

−∂xσ′

∂xλ
Γτ ′

ρ′σ′

[

Γλ
kµ

∂xρ′

∂xν
+ Γλ

kν
∂xρ′

∂xµ
+ Γλ

µν
∂xρ′

∂xk

]

−

∂xτ ′

∂xλ

[(

∂

∂xν
Γλ

µk

)

+ Γλ
νηΓ

η
µk

]

+
∂xρ′

∂xµ

∂xσ′

∂xk

∂xη′

∂xν

[(

∂

∂xη′
Γτ ′

ρ′σ′

)

− Γτ ′
λ′σ′Γ

λ′
η′ρ′ − Γτ ′

ρ′λ′Γ
λ′

η′σ′

]

+
∂xσ′

∂xλ
Γτ ′

ρ′σ′

[

Γλ
νµ

∂xρ′

∂xk
+ Γλ

νk
∂xρ′

∂xµ
+ Γλ

µk
∂xρ′

∂xν

]

collecting all terms we find

∂xτ ′

∂xλ

[

∂

∂xk
Γλ

µν −
∂

∂xν
Γλ

µk + Γλ
kηΓ

η
µν − Γλ

νηΓ
η
µk

]

(6.10)

−∂xρ′

∂xµ

∂xσ′

∂xν

∂xη′

∂xk

[

∂

∂xη′
Γτ ′

ρ′σ′ −
∂

∂xσ′
Γτ ′

ρ′η′ + Γτ ′
λ′η′Γ

λ′
σ′ρ′ − Γτ ′

λ′σ′Γ
λ′

η′ρ′

]

= 0.

If we now define the following 1

Rλ
µνk = −

[

∂

∂xk
Γλ

µν −
∂

∂xν
Γλ

µk + Γλ
kηΓ

η
µν − Γλ

νηΓ
η
µk

]

, (6.11)

we can write eq. (6.10) as the transformation law for the tensor

Rσ′
α′β′γ′ =

∂xσ′

∂xλ

∂xµ

∂xα′

∂xν

∂xβ′

∂xk

∂xγ′
Rλ

µνk. (6.12)

The tensor (6.11) is The Curvature Tensor, also called The Riemann Tensor, and it
can be shown that it is the only tensor that can be constructed by using the metric, its first
and second derivatives, and which is linear in the second derivatives.

This way of defining the Riemann tensor is the “old-fashioned way”: it is based on the
transformation properties of the affine connections. The idea underlying this derivation is
that the information about the curvature of the space must be contained in the second
derivative of the metric, and therefore in the first derivative of the Γα

µν . But since we
want to find a tensor out of them, we must eliminate in eq. (6.1) the part which does not
transform as a tensor, and we do this in eq. (6.9).

1The - sign does not agree with the definition given in Weinberg, but it does agree with the definition
given in many other textbooks. As we shall see in the next section it is irrelevant. What is important is to
write the Einstein equations with the right signs!
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6.2 b) The curvature tensor and the curvature of the

spacetime

We shall now rederive the curvature tensor in a different way that explicitely shows why
it espresses the curvature of a spacetime. This derivation, due to Levi Civita, will use the
notion of parallel transport of a vector along a closed loop.

Consider a closed loop whose four sides are the coordinates lines x1 = a, x1 = a + δa,
x2 = b, x2 = b + δb

x   = b
(2)(2)(2)

x(1) = a

e(2)

e (1)

x(1) = a + δ a

+ δ  x   = b
(2)(2)(2)

bB

D

A

C

Take a generic vector ~V and parallely transport ~V along AB, i.e. consider ∇~e(1)
~V = 0.

From eq. (5.56) it follows that
eµ
(1)V

α
;µ = 0. (6.13)

Since ~e(1) has only e1
(1) 6= 0 then

∂V α

∂x1
+ Γα

β1V
β = 0. (6.14)

This equation can be integrated along the line AB:

δV α
AB = −

∫ B

A(x2=b)
Γα

β1V
βdx1. (6.15)

In a similar way, if we go from B to C along the line x1 = a + δa

∂V α

∂x2
= −Γα

β2V
β → δV α

BC = −
∫ C

B(x1=a+δa)
Γα

β2V
βdx2. (6.16)

From C to D

∂V α

∂x1
= −Γα

β1V
β → δV α

CD = −
∫ D

C(x2=b+δb)
Γα

β1V
βdx1, (6.17)

and from D back to A

∂V α

∂x2
= −Γα

β2V
β → δV α

DA = −
∫ A

D(x1=a)
Γα

β2V
βdx2. (6.18)
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The change in ~V due to this parallel transport will be a vector ~δV whose components can
be found by adding eqs. (6.15)-(6.18):

δV α = −
∫ A

D(x1=a)
Γα

β2V
βdx2 (6.19)

−
∫ C

B(x1=a+δa)
Γα

β2V
βdx2 −

∫ D

C(x2=b+δb)
Γα

β1V
βdx1

−
∫ B

A(x2=b)
Γα

β1V
βdx1.

If the spacetime is flat V α do not change when the vector is paralleley transported, i.e.
δV α = 0. But in curved spacetime δV α will in general be different from zero.

If we consider an infinitesimal loop, i.e. δa and δb tend to zero, we can take an
expansion of eq. (6.19) to first order in δa and δb:

δV α ' −
∫ A

D(x1=a)
Γα

β2V
βdx2 − (6.20)

[

∫ C

B(x1=a)
Γα

β2V
βdx2 +

∂

∂x1

(

∫ C

B
Γα

β2V
βdx2

)

δa

]

−
[

∫ D

C(x2=b)
Γα

β1V
βdx1 +

∂

∂x2

(

∫ D

C
Γα

β1V
βdx1

)

δb

]

−
∫ B

A(x2=b)
Γα

β1V
βdx1,

Since

A = (a, b), C = (a + δa, b + δb), B = (a + δa, b), and D = (a, b + δb), (6.21)

the previous equation becomes

δV α ' +
∫ b+δb

b
Γα

β2V
βdx2 (6.22)

−
∫ b+δb

b
Γα

β2V
βdx2 −

[

∫ b+δb

b

∂

∂x1

(

Γα
β2V

β
)

dx2

]

δa

+
∫ a+δa

a
Γα

β1V
βdx1 +

[

∫ a+δa

a

∂

∂x2

(

Γα
β1V

β
)

dx1

]

δb

−
∫ a+δa

a
Γα

β1V
βdx1,

i.e.

δV α ' −δa
∫ b+δb

b

∂

∂x1

(

Γα
β2V

β
)

dx2 (6.23)

+δb
∫ a+δa

a

∂

∂x2

(

Γα
β1V

β
)

dx1 ' δaδb

[

− ∂

∂x1

(

Γα
β2V

β
)

+
∂

∂x2

(

Γα
β1V

β
)

]

.
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Eq. (6.23) can be further developed by using eq. (6.14)

∂V k

∂x1
= −Γk

β1V
β,

∂V k

∂x2
= −Γk

β2V
β ; (6.24)

it becomes

δV α = δaδb

[

∂Γα
β1

∂x2
V β + Γα

k1
∂V k

∂x2
− ∂Γα

β2

∂x1
V β − Γα

k2
∂V k

∂x1

]

(6.25)

= δaδb

[

∂Γα
β1

∂x2
− ∂Γα

β2

∂x1
− Γα

k1Γ
k
β2 + Γα

k2Γ
k
β1

]

V β.

Note that:

• δa and δb are the non vanishing components of the displacement vectors ~δx(1) and ~δx(2)

along the direction of the basis vectors ~e(1) and ~e(2), i.e.

δxµ
(1) = (0, δa, 0, 0) = δa δµ

1 , (6.26)

δxµ
(2) = (0, 0, δb, 0) = δb δµ

2 .

Thus, we can write eq. (6.25) as follows

δV α = δxν
(1) δxµ

(2)

[

∂Γα
βν

∂xµ
− ∂Γα

βµ

∂xν
− Γα

kνΓ
k
βµ + Γα

kµΓ
k
βν

]

V β . (6.27)

• The term in square brackets is the curvature tensor which we have already defined in
eq. (6.11):

Rα
βµν = Γα

βν,µ − Γα
βµ,ν − Γα

kνΓ
k
βµ + Γα

kµΓ
k
βν . (6.28)

Note that it is antisymmetric in ν and µ; indeed, it must be because, if we interchange
~δx(1) and ~δx(2), δV α changes sign, because we would go around the loop in the opposite
direction. This shows that the sign of (6.28) can be chosen arbitrarily, and this is the
reason why the definitions of the Riemann tensor given in textbooks may differ for a
sign.

We have already shown that the object given in eq. (6.28) is a tensor, by looking at the way
it transforms under a coordinate transformation (eq. 6.12). However, we want to see if it
also agrees with the definition of tensors given in chapter 4. Let us contract eq. (6.27) with
Vα.

δV αVα = δxν
(1) δxµ

(2)

[

∂Γα
βν

∂xµ
− ∂Γα

βµ

∂xν
− Γα

kνΓ
k
βµ + Γα

kµΓ
k
βν

]

V βVα. (6.29)

The result of this contraction is, of course, a number. On the right-hand side there are the
components of 3 vectors i.e.: δxν

(1), δxµ
(2) and V β; moreover there are the components of the

one-form Vα. The four geometrical objects (three vectors and one one-form) are contracted
with the quantity within brackets, and the result is a number. In addition, we note that
(6.29) is linear in V β, Vα, δxν

(1) δxµ
(2). For instance, if we consider a displacement δxν

(1a)+δxν
(1b)

along ~e(1) it is immediate to see that

δV αVα = δxν
(1a)δx

µ
(2) [...] V βVα + δxν

(1b)δx
µ
(2) [...] V βVα , (6.30)
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and similarly for the other quantities. If we consider a generic

(

1
3

)

tensor, T α
βγδ , since

by definition it is a linear function of one one-form and three vectors, when supplied with
these arguments (for example the one-form Ṽ , and the three vectors ~V , ~δx(1) and ~δx(2) it
will produce the following number

T (Ṽ , ~V , ~δx(1), ~δx(2)) = T α
βρδVαV βδxρ

(1) δxδ
(2) . (6.31)

Eq. (6.31) has the same structure of eq. (6.29). Therefore we are entitled to define the
components of the Riemann tensor as in eq. (6.28).

It should now be clear why the Riemann tensor deserves its name of Curvature Tensor:
it tells us how does a vector change when it is parallely transported along a loop, due to the
curvature of the spacetime. If the spacetime is flat

δV α = 0 along any closed loop → Rα
βγδ = 0, (6.32)

in any reference frame. Indeed, if a tensor vanishes in a given frame, then it vanishes in
any other frame.

The components of the Riemann tensor assume a very nice form when computed in a
locally inertial frame:

Rα
βµν =

1

2
gασ [gσν,βµ − gσµ,βν + gβµ,σν − gβν,σµ] , (6.33)

or lowering the index α

Rαβµν = gαλR
λ

βµν =
1

2
[gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ] . (6.34)

It should be stressed that
1) The Riemann tensor is linear in the second derivatives of gµν , and non linear in the

first derivatives.
2) In a locally inertial frame the Γα

νσ vanish and therefore the non-linear part of the
Riemann tensor vanishes as well.

6.3 Symmetries

From eq. (6.34) it is easy to verify that

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ , (6.35)

Rαβµν + Rανβµ + Rαµνβ = 0. (6.36)

Since Rαβµν is a tensor, these symmetry properties are valid in any reference frame. The
symmetries of the Riemann tensor reduce the number of independent components to 20.
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6.4 The Riemann tensor gives the commutator of co-

variant derivatives

Let us consider the second covariant derivatives of a vector field ~V

∇α∇βV µ = ∇α(V µ
;β) = (V µ

;β),α + Γµ
σαV σ

;β − Γσ
βαV µ

;σ. (6.37)

In a locally inertial frame Γµ
σα = 0, and eq. (6.37) becomes

∇α∇βV µ = (V µ
;β),α = V µ

,β,α + Γµ
νβ,αV ν. (6.38)

By interchanging α and β

∇β∇αV µ = (V µ
;α),β = V µ

,α,β + Γµ
να,βV ν. (6.39)

The commutator of the covariant derivatives then is

[∇α,∇β]V µ = ∇α∇βV µ −∇β∇αV µ = (Γµ
νβ,α − Γµ

να,β) V ν . (6.40)

Since in a locally inertial frame

Rλ
µνk = Γλ

µk,ν − Γλ
µν,k (6.41)

(equivalent to eq. 6.33), eq. (6.40) becomes

[∇α,∇β] V µ = Rµ
ναβV ν. (6.42)

This is a tensor equation and since it is valid in a given reference frame, it will be valid
in any frame. Eq. (6.42) implies that in curved spacetime covariant derivatives do not
commute and therefore the order in which they appear is important.

6.5 The Bianchi identities

Let us differentiate eq. (6.34) with respect to xλ (and rememeber that it is valid in a locally
inertial frame)

Rαβµν,λ =
1

2
[gαν,βµλ − gαµ,βνλ + gβµ,ανλ − gβν,αµλ] . (6.43)

By using the fact that gαβ is symmetric and eq. (6.43) one can show that

Rαβµν,λ + Rαβλµ,ν + Rαβνλ,µ = 0. (6.44)

Since it is valid in a locally inertial frame and it is a tensor equation, it will be valid in any
frame:

Rαβµν;λ + Rαβλµ;ν + Rαβνλ;µ = 0, (6.45)

where we have replaced the ordinary derivative with the covariant derivative. These are the
Bianchi identities that, as we shall see, play an important role in the development
of the theory.


