High energy neutrinos and gravitational waves from Gamma-Ray Bursts Dafne Guetta

Rome Observatory-INAF

Introduction

GRBs: flashes of MeV gamma rays that last 1-100 s

- •Main properties of GRBs and their afterglow
- •The fireball model: internal and external shock
- Possible progenitor models

High Energy v from GRBs

- Neutrinos from internal shocks, coincident with GRBs
- •Neutrinos from the external shock, delayed.
- •Neutrinos from different progenitors models

Gravitational waves from short GRBs

[Meszaros, ARA&A 02; Waxman, Lecture Notes in Physics 598 (2003).]

Leading models for Progenitors of long GRBs

[Mezaros 2001]

•Core collapse of a massive star: *Collapsar*

[Woosley 1993, Paczynski 1998]

•Formation of a BH from a NS left by a SN: Supranova

[Guetta&Granot, Granot&Guetta PRL 2003]

Ultimate en. Source of the FB: gravitational en. release associated with temporary mass accretion onto a black-hole !!

HE v from GRBs

In the FB dissipation region: protons accelerated to ~ 10²⁰eV photo-meson interaction of HE p with the FB photons Internal shocks v: ~ 100 TeV, coincident with GRBs [Waxman & Bahcall '97, '99,Guetta Spada & Waxman 2001] External shock v: ~ Early afterglow v ~ 1000 PeV, delayed

In the collapsar: Emission of ~ TeV v from p, γ interactions occurring inside collapsar while the jet is burrowing its way out of the star [Meszaros & Waxman 2001,Schneider Guetta & Ferrara 2002]

In the Supranova: Emission of ~ 10^{15} - 10^{17} eV $\,v$ from the interaction of GRB p, with the PWB photons

[Guetta & Granot PRL 2003]

Why neutrino is a "nice" particle

••

•Is neutral \rightarrow trajectory not affected by magnetic fields (information on cosmic rays that are affected).

•Is stable \rightarrow can reach us from cosmic distances (not like neutrons)

•Only weak interactions \rightarrow can give us informations on regions opaque to photons.

•Escape from deep within the sources Study the physics responsible for powering

Study basic v properties
 Flavor change("oscillations")
 v masses
 Interaction with Gravity

But: Weak interaction Big detectors 10's of kilo-tons

Basic process: $v_{\mu} + N \rightarrow \mu + X$ The signals are upward μ

1km³ feasible for transparent medium

The detectors of high energy v

Important quantity is the muon-neutrino detection probability: $P_{\nu\mu} \sim R_{\mu}/\lambda_{\mu\nu}$ Probability that a ν produce a μ in a detector HE muon range to the neutrino mean free path

$$P_{\nu\mu} \sim 10^{-4} \left(\frac{E_{\nu}}{100 TeV}\right)^{\alpha} \begin{cases} \alpha = 1 \text{ Ev} < 100 \text{ TeV} \\ \alpha = \frac{1}{2} \text{ Ev} > 100 \text{ TeV} \end{cases}$$

N=($Φ_v / ε_v$)P_{νμ} AT

 Detectable v flux at km³ detectors: Amanda, Antares, Nestor, IceCube, Nemo

The main mechanism: photomeson interaction

$$\gamma + p \rightarrow n + \pi^{+}; \quad \pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow e^{+} + \nu_{e} + \nu_{\mu} + \overline{\nu_{\mu}}$$

 $(\varepsilon_{p} / \Gamma)(\varepsilon_{\gamma} / \Gamma) \geq 0.3 \, \text{GeV}^{2}$

In each collision $\varepsilon_v \approx 0.05 \varepsilon_p$

Fireball

Int. Shocks ε_{γ} ~MeV, Γ ~200: Ext. shock $\varepsilon_v \sim \text{keV}, \Gamma \sim 200$:

 $\begin{aligned} \varepsilon_{p} &\geq 10^{16} \, eV \implies \varepsilon_{v} \geq 10^{14} \, eV \\ \varepsilon_{p} &\geq 10^{19} \, eV \implies \varepsilon_{v} \geq 10^{17} \, eV \end{aligned}$

proton en. lost to pion production: $f_{\pi} \sim \Delta t / t_{\pi} \sim L / (\epsilon_{\gamma} \Gamma^4 t_{v}) \sim \begin{bmatrix} 0.2 & I.S. \\ 0.01 & E.S. \end{bmatrix}$

 t_{π} the proton photo-pionenergy loss time

 Δt is the comoving shell expansion time and

Burst to burst fluctuations look at each burst detected by BATSE [Guetta, Hooper, Halzen et al. 2003]

For a typical burst at $z \sim 1$, E $\sim 10^{53}$ erg

Internal shocks v: "effective" $f_{\pi} \sim 20\%$ [Guetta Spada Waxman 2001]

 $\Rightarrow \text{ v Fluence } \epsilon^2_{\nu} \Phi_{\nu} \sim 10^{-3} (f_{\pi}/0.2) (\epsilon_{\nu}/10^{14} \text{ eV})^{\alpha} \qquad \begin{cases} \alpha = 0 \ E_{\nu} > E_{\nu}^{b} \\ \alpha = 1 \ E_{\nu} < E_{\nu}^{b} \end{cases}$

Detection probability ~ 0.01 per burst in km-cube neutrino telescope Ten events per yr correlated in time and direction with GRBs!

External shock v: "effective" $f_{\pi} \sim 0.01$ [Waxman & Bahcall 2000] $\Rightarrow v$ Fluence $\epsilon^2_{\nu} \Phi_{\nu} \sim 10^{-4.5} (f_{\pi}/0.01) (\epsilon_{\nu}/10^{17} \text{ eV})^{\alpha} \text{ GeV/cm}^2 \begin{cases} \alpha = \frac{1}{2} E_{\nu} > E_{\nu}^{b} \\ \alpha = 1 E_{\nu} < E_{\nu}^{b} \end{cases}$

0.06 events per yr in a km-cube detector delayed ~10s after the GRB

[Meszaros & Waxman 01; Granot & Guetta 03; Schneider, Guetta & Ferrara 2002]

$$\varepsilon_{v} \ge 10^{12.5} \text{ eV}$$

$$N_{v \to \mu} \approx 0.2 / \text{ km}^{2}/\text{Collapse} \quad (10^{3} \text{ GRBs/yr})$$

• Both "Chocked" and "successful" jets

Supranova

Massive star collapses in a NS of $\sim 3M_{o}$ which loses its rotational energy before collapsing to a BH triggering a GRB. During this time, t_{sd} , an ambient rich of photons is formed.

Flux coincident with GRB and the rates depend on t_{sd} for $t_{sd} \sim 0.07$ yr, ~ 7 events per year BUT 1 event in 10 year for $t_{sd} \sim 0.4$ yr coincident with GRB.

[Guetta & Granot PRL 2003]

Implications

- J_{μ} ~ 10/ km^2 yr , $\epsilon_{\rm v}$ ~ 100 TeV from internal shocks
- J_{μ} ~ 5/ km^2 yr , $\epsilon_{\rm v}$ ~ 100 PeV from $\,$ ext. shock + wind
- J_{μ} ~ 100/ km^2 yr , $\epsilon_{\rm v}$ ~ 1 TeV jet+envelope in collapsars
- $\boldsymbol{\cdot} J_{\mu}$ ~ 7/ km² yr , $\boldsymbol{\epsilon}_{\nu}$ ~ 100 PeV from supranova.

Help to resolve open questions in astrophysics:

• Baryonic component of the Jet: Composition of the jet is an open issue eter or per plasma? Still not clear

• GRBs progenitors

Test sources of Ultra-high energy Cosmic rays

 The highest energy particles observed: 10²⁰ eV (most likely) Extra-Galactic (most likely) Protons

Are GRBs the most powerful accelerators?

•Detection of HE ν is a test of the acceleration mechanism and UHECR origin.

Test the weak equivalence principle: ν and γ should suffer the same time delay in gravitational potential

Summarizing picture

Published constraints on neutrino fluxes (solid with markers) and projected sensitivities (broken lines), compared to models for GZK and GRB neutrinos.

Results from IceCube: No signal!!!

- Fireball model challanged by Icecube?
- No! Maybe f_{π} is smaller (Hummer et al. 2012) If effects of particle physics are taken into account
- GeV emission from Fermi may be due to pion cascade, the v flux related to GeV flux.
 Constrain on hadronic emission models

GRB as Accelerator

[Hillas, ARA&A (1984); Waxman astro-ph/0310079]

In both cases the jet produces a burst of Tev v while propagating in the stellar envelope (Meszaros & Waxman 2001)

• The TeV fluence from an individual collapse with E $@10^{53}$ erg at z @1 implies 0.1 events per collapse/burst in a km-cube detector

•If precursor of GRB, the signal is well above the atmospheric one, 100 events expected per yr in a km-cube detector

•AMANDA may provide limits on the rate of the dark collapses (Schneider, Guetta & Ferrara 2002)

PennState 12/04/04