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Introduction
GRBs: flashes of MeV gamma rays that last 1-100 s

•Main properties of GRBs and their afterglow

•The fireball model: internal and external shock

•Possible progenitor models

High Energy ν from GRBs

• Neutrinos from internal shocks, coincident with GRBs

•Neutrinos from the external shock, delayed.

•Neutrinos from different progenitors models

Gravitational waves from short GRBs



Gamma-ray Bursts as particle accelerators

M on ~1 Solar Mass BH

Relativistic Outflow

e- acceleration in 
Collisionless shocks

e- Synchrotron      MeV γ’s
   Lγ~1052erg/s

Γ~300

[Meszaros, ARA&A 02; 
Waxman, Lecture Notes in Physics 598 (2003).]
]

UHE p Acceleration



Leading  models for Progenitors of long GRBs
[Mezaros 2001]

Ultimate en. Source of the FB: gravitational en. release  associated
with temporary mass accretion onto a black-hole !!

••Core collapse of a massive star: Core collapse of a massive star: CollapsarCollapsar
[Woosley 1993, Paczynski 1998]

••Formation of a BH from a NS left by a SN: Formation of a BH from a NS left by a SN: SupranovaSupranova
[Vietri &Stella 1998, Inoue, Guetta & Pacini 2001]

+ Pulsar Wind Bubble full
of photons
[Guetta&Granot, Granot&Guetta PRL 2003]



HE ν from GRBs
In the FB dissipation region: protons accelerated to ~ 1020eV

photo-meson interaction of HE p with the FB photonsphoto-meson interaction of HE p with the FB photons
Internal shocks ν:  ~ 100 TeV, coincident with GRBs

[Waxman & Bahcall ‘97,’99,Guetta Spada & Waxman 2001]

External shock ν:  ~ Early afterglow ν ~ 1000 PeV,delayed

In the collapsar: Emission of ~ TeV ν from p,γ interactions
occurring inside collapsar while the jet is burrowing its way
out of the star [Meszaros & Waxman 2001,Schneider Guetta & Ferrara 2002]

In the Supranova: Emission of ~ 1015-1017eV  ν from the
interaction of GRB p, with the PWB photons

[Guetta & Granot PRL 2003]



Why neutrino is a “nice” particle

•Is neutral → trajectory not affected by magnetic
fields (information on cosmic rays that are affected).

•Is stable → can reach us from cosmic distances (not
like neutrons)

•Only weak interactions → can give us informations on
regions opaque to photons.

•Escape from deep within the sources Study the physics
responsible for powering



•But: Weak interaction  Big detectors 10’s of kilo-tons

Basic process: νµ +N → µ+X

The signals are upward µ

•Study basic ν properties
     Flavor change(“oscillations”)
      ν masses
      Interaction with Gravity



Detection

λµ > 1 km    for   εµ > 0.3 TeV

1km3 feasible for transparent   medium

N

νµ

µ

Cerenkov γ’s

γ detector

High energy ν may be observed by
detecting the Cerenkov light emitted
by HE muons produced by ν
interactions below a detector
on the surface of the Earth.



The detectors of high energy ν

Important quantity is the muon-neutrino detection probability:
Pνµ ~Rµ/λ µν
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•Detectable ν flux at km3 detectors:
                   Amanda, Antares, Nestor, IceCube, Nemo

α=1  Eν <100 TeV
α=½  Eν >100 TeV

N=(Φν /εν)Pνµ AT

Probability that a ν produce a µ in a detector
HE muon range to the neutrino mean free path



The main mechanism: photomeson interaction

Int. Shocks εγ∼MeV,Γ∼200: εp≥  1016 eV εν≥ 1014 eV
Ext. shock εγ∼keV,Γ∼200: εp≥ 1019 eV εν≥ 1017 eV

Burst to burst fluctuations look at each burst
detected by BATSE [Guetta, Hooper, Halzen et al. 2003]
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In each collision  εν≈ 0.05 εp

Δt is the comoving shell expansion time and 
tπ the proton photo-pionenergy loss time 



Internal shocks ν: “effective” fπ ~20%  [Guetta Spada Waxman 2001]

For a typical burst at z~1, E ~ 1053erg

External shock ν: “effective” fπ ~0.01 [Waxman & Bahcall 2000]

ν Fluence ε2
νΦν ~ 10-3(fπ /0.2)(εν/1014 eV)α

GeV/cm2

α=0  Eν > Eν
b

α=1  Eν < Eν
b

ν Fluence ε2
νΦν ~ 10-4.5(fπ /0.01)(εν/1017 eV)α GeV/cm2

α=½  Eν > Eν
b

α=1  Eν < Eν
b

Detection probability ~ 0.01 per burst in km-cube
neutrino telescope Ten events per yr correlated in

time and direction with GRBs!

0.06 events per yr in a km-cube detector
delayed  ~10s after the GRB



Collapsar GRB ν’s
Γ~300

Γ~3Tr~3keV
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[Meszaros & Waxman 01; Granot & Guetta 03;
Schneider, Guetta & Ferrara 2002]
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•
(103 GRBs/yr)

•  Both “Chocked” and “successful” jets



Supranova
Massive star collapses in a NS of ∼3Mo which loses its
rotational energy before collapsing to a BH triggering a
GRB. During this time,tsd, an ambient rich of photons is
formed.

p p
p

p
γ γ

γ
γγ Δ→π+ + n

µ + + νµ → e + + νµ  +νµ + νe

optical εν~ 1017 eV

Flux coincident with GRB and the rates depend on tsd for
tsd ~0.07 yr, ~7 events per year BUT 1 event in 10 year for
tsd ~0.4 yr coincident with GRB.

[Guetta & Granot PRL 2003]



Implications

Help to resolve open questions in astrophysics:
••  Baryonic component of the Jet: Composition of the jet is an
open issue e+e- or pe- plasma? Still not clear

••  GRBs progenitors

••  Jµ ~ 10/ km2 yr , εν ~ 100 TeV from internal shocks

••  Jµ ~ 5/ km2 yr , εν ~ 100 PeV from  ext. shock + wind

••  Jµ ~ 100/ km2 yr , εν ~ 1 TeV jet+envelope in collapsars

•Jµ ~ 7/ km2 yr , εν ~ 100 PeV from supranova.



Test sources of Ultra-high energy Cosmic
rays

• The highest energy particles observed:
     1020 eV
     (most likely) Extra-Galactic
     (most likely) Protons

Are GRBs the most powerful accelerators?

•Detection of HE ν is a test of the acceleration
mechanism and UHECR origin.



Neutrino properties

Test of ν oscillation
νµ ↔ ντ  :  τ appearance

νµνe
νµ

mixing

GRB

ντ
νe
νµ

Looking for upgoing τ

High energy neutrinos allow τ production.

Astrophysics Particle physics
ν

Test the weak equivalence principle: ν  and γ should suffer 
the same time delay in gravitational potential
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compared to models for GZK and GRB neutrinos .

Summarizing picture



Results from IceCube: No signal!!!

• Fireball model challanged by Icecube?
• No! Maybe fπ is smaller (Hummer et al. 2012) If effects

of particle physics are taken into account

• GeV emission from Fermi may be due to pion
cascade, the ν flux related to GeV flux.
Constrain on hadronic emission models



GRB as Accelerator
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Jet
Stellar envelopeStellar envelope Choked  GRBGRB

Successful  GRBGRB

Collapsar

p γ

In both cases the jet produces a  burst of Tev ν while
propagating in the stellar envelope (Meszaros & Waxman 2001)

kev

• The TeV fluence from an individual collapse with E � 1053erg at z � 1
implies 0.1 events per collapse/burst in a km-cube detector

•If precursor of GRB, the signal is well above the atmospheric one, 100
events expected per yr in a km-cube detector

•AMANDA may provide limits on the rate of the dark collapses
(Schneider, Guetta & Ferrara 2002)
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