

Searches for gravitational-wave transients

Éric Chassande-Mottin

CNRS, AstroParticule et Cosmologie, Paris France

Outline

Sources of GW transients What and why? Sensitivity estimates Data analysis methods for searching GW transients How? **Wavelets** Data quality Multi-detector coherent analysis Significance and background estimation Selected results from "all-sky searches" Conclusions

Outline

Sources of GW transients What and why? Sensitivity estimates Data analysis methods for searching GW transients How? **Wavelets** Data quality Multi-detector coherent analysis Significance and background estimation Selected results from "all-sky searches" Conclusions

Sources of gravitational waves

We will be interested in unmodelled GW transients in this presentation

Sources of GW transients

- Catastrophic astrophysical events the "violent Universe"
- Efficient production of GWs
 - ✓ Large masses and densities → compact objects, neutron star NS or black hole BH
 - ✓ Relativistic bulk motion → collapse or merger
 - Some degree of asymmetry
- Binary mergers
- Supernova core collapse
 - numerical simulations. no comprehensive view of the collapse.
- ... and others (e.g. star quakes, cosmic strings, etc)

Science from GW transients

- Gravitational wave physics
 - Existence and property (e.g., speed, polarization)
- Physics of compact objects
 - Equation of state of dense matter
- Relativistic dynamics
 - Gravitation in strong field regime, v/c ~ 1
- New insights on high-energy astrophysics
 - Gamma-ray bursts
 - Soft-gamma repeaters

Characterization of GW transients (1)

Unmodelled bursts

- Short duration (<1 s), no precise waveform, few cycles
- RMS amplitude

$$h_{rss}^2 = \int dt \; h_+^2(t) + h_\times^2(t)$$

• Signal-to-noise ratio

$$h = F_{+}h_{+} + F_{\times}h_{\times}$$
$$\rho^{2} = \int df \,\frac{|H(f)|^{2}}{S(f)}$$

• Monochromatic GW signal

GW polarization determines the remaining O(1) factor

wavelet: f=200.0 Hz, Q=50

Sutton, arXiv:1304.0210

Characterization of GW transients (2)

Unmodelled bursts

- Short duration (<1 s), no precise waveform, few cycles
- GW radiated energy

$$E_{GW} = \frac{1}{16\pi} \frac{c^3}{G} D_L^2 \iint d\Omega dt \, \dot{h}_+^2 + \dot{h}_\times^2$$

• Monochromatic GW signal

$$E_{GW} \approx 2\pi^2 \frac{c^3}{G} D_L^2 f_0^2 S(f_0) \rho^2$$

Energy units

1 erg (CGS units) = 10^{-7} J (KMS units) M_{sun} c² = 1.8 x 10^{47} J = 1.8 x 10^{54} erg

$$D_L = 10 \text{ Mpc} \quad \rho = 10$$

$$f_0 = 200 \text{ Hz}$$

$$S(f_0) \approx 4 \times 10^{-23} \text{Hz}^{-1/2}$$

$$E_{GW} \approx 5 \times 10^{45} \text{J}$$

$$\sim 5 \times 10^{52} \text{erg}$$

$$\sim 2 \times 10^{-2} M_{\odot} c^2$$

Sutton, arXiv:1304.0210

Sensitivity estimate for GW transients

At $D_L = 10$ Mpc, minimum detectable GW energy for SNR=10 is $E_{GW} = 10^{-2} M_{sun} c^2$ for initial detectors

Sensitivity estimate for GW transients

Assuming E_{GW} =10⁻² M_{sun} c² emitted in the bucket

- Horizon ~ 10 Mpc, initial detectors
- Horizon ~ 100 Mpc, advanced detectors O(1) to O(10) BNS events/year

Typical event rates SN = 10,000 /galaxy/Myr BNS=1 - 100 - 1000/galaxy/Myr

Achieved sensitivity and data takings

Searches for GW transients: basic ideas

Time series analysis rare transients with low signal to noise ratio

Expected signal is known (inspiralling binaries) Matched filtering

Expected signal is **unknown** Excess in time-frequency maps (wavelets)

GW burst search pipeline

Data conditioning (noise whitening)	Trigger generation	Coherent analysis Background rejection	Post- processing
Time-frequency analysis	Single detector analysis	Coherent analysis Source direction reconstruction	Multiple detector analysis
Select triggers		Background estimation	
Clustering		Detection statistic & event significance	

Event trigger generation

• Time-frequency multiresolution analysis from wavelet basis

$$\psi_{t,f,Q}(t+\tau) = A \exp\left(-\frac{(2\pi f\tau)^2}{Q^2}\right) \exp(2\pi i f\tau)$$
$$T_{t,f,Q} = \langle x, \psi_{t,f,Q} \rangle$$

- Select significant wavelet coefficients
- Form time-frequency cluster \varOmega
- Likelihood statistics Gaussian noise

$$\mathcal{L}(h) = \frac{P(\{T\}_{\Omega}|h)}{P(\{T\}_{\Omega}|0)}$$
$$\log \mathcal{L}(h) = \sum_{\Omega} T_{t,f,Q}^2 - (T_{t,f,Q} - h_{t,f,Q})^2$$
$$\underset{\Omega}{\text{maximized over } h} \log \mathcal{L}_{max} = \sum_{\Omega} T_{t,f,Q}^2$$

Dealing with real-world data

- Non-stationary and non-Gaussian
 - ✓ zoo of instrumental glitches → background has heavy tails
- Data quality is a key issue
 - Veto known artifacts
 - Cross-correlation with >100 auxiliary channels
 - Trade-off: maximize "efficiency" (fraction of glitches that get vetoed) and minimize "dead time" (volume of vetoed data)
 - 70 DQ flags, efficiency 90% for loud glitches

Worldwide network of GW detectors

- Response of detector network
 - Detectors receive the same wave...
 - ... but the wave couples differently

 $s(t) = F_{+}h_{+}(t-\tau) + F_{\times}h_{\times}(t-\tau)$

- Search for GW transients in multidetector data
 - Sensitivity improvement
 - ✓ Source direction reconstruction by "triangulation" → point telescopes
 - Background rejection
 - Background estimation

Multiple detectors (1) **Coherent detection**

Detection with multiple detectors

- \rightarrow Norm of projection onto GW plane
- Projector: compensate time/phase ~ shift + add
- Degeneracies
 - \checkmark F_{\perp} and F_{\perp} can be parallel or one of the vectors can vanish \rightarrow regulator

Multiple detectors (2) Source direction reconstruction

For a given source direction/orientation

- Likelihood skymaps
 - ✓ Source direction is unknown a priori
 → solve inverse problem for all sky positions
- Angular resolution
 - Triangulation (timing-based reconstruction) provides leading order estimate
 - Timing uncertainty $\sigma_t \approx$ in the bucket, ~ 0.1 ms

$$\frac{1}{2\pi\rho\sigma_f}$$

- Diffraction limit estimate
 1/100 time of flight ~ 4 degrees
 tens of square degrees
- Better resolution for burst at higher frequencies

Multiple detectors (3) Background rejection

$$E_{null} = P^{jk} x_j x_k^*$$

Incoherent null energy

$$I_{null} = P^{kk} |x_k|^2$$

- Glitch rejection
 - GW are coherent as opposed to glitches
- Null or noise space
 - Projector P onto null space: combining so that GW cancelled in the sum
- "Coherent veto"
 - Veto events with large null space component

For GW: on and offdiagonal terms cancel

 $E_{null} \ll I_{null}$

For glitches: no cancellation

 $E_{null} \approx I_{null}$

Multiple detectors (4) Background estimation

- Due to instrument complexity, comprehensive noise modelling is out of reach
- Background estimation is also a key issue: "time-slide" analysis
 - Exploit availability of multiple detectors
 - Apply non-physical (> 1 s) time-shifts to data stream and repeat analysis
 - \rightarrow Reference background distribution of noise-only events
 - Compare distribution of non time-shifted ("zero-lag") events to reference to get confidence (probability of occurrence)
 - Limitation of the number of time-slides (1 s 1 day)

Selection of results

- Latest "all-sky" burst search
 - S5-VSR1 & S6-VSR 2/3: 2 yrs observation total
 - Transients (< 1s) in 64 Hz– 5 kHz
 - Search with coherent WaveBurst
 - No GW candidate event
 - Upper-limits on the rate of bursts estimated using generic waveforms

Range $\sim \sqrt{E_{GW}}$

detectable GW energy at a given distance

10 kpc: E_{GW} = 3 x 10⁻⁸ M_{sun} c² (comparable to CC SN) 15 Mpc: E_{GW} = 10⁻¹ M_{sun} c² (comparable to black-hole binary merger)

Many synergies with high-energy astrophysics

electromagnetic

neutrino

