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NSs are among the most promising sources of GWs
for ground based interferometers 

(Advanced Virgo/LIGO,  KAGRA, ET, etc.)

Three main emission processes:

  Compact binary coalescence

  Rotation of a non-axisymmetric NS
     (“mountains” or “wobble”)     

  Stellar oscillations
     (quasi-normal modes)

I will discuss the last two

All these processes carry the imprint of the NS EoS!
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Rotation of a non-axisymmetric NS 

NSs do rotate, with rotation frequencies which are of the order 
of hundreds of Hz: in the middle of the Virgo/LIGO bandwidth.

However, an axisymmetric source does not emit GWs.
Emission require an asymmetry,  like for instance:

  A tri-axial ellipsoid (“mountain”)

 A symmetry axis non coincidend with a rotation axis  (“wobble”)

The easiest way to compute the GW signal from a 
rotating NS is to use the quadrupole formula
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The quadrupole formula

Rotation of a non-axisymmetric NS 

A very simple and powerful formula, which allows to compute 
the GW emission from a compact source by finding 

an approximate solution of Einstein’s equation.

This approach can be applied if the following conditions are satistied:

1)   Weak gravitational field: gµν = ηµν + hµν |hµν | , |hµν,α| � 1

2) Small source: lengthscale ε

    (equivalent to slow motion                           )

ε � λGW =
2πc

ω

vtypical ∼ εω � c
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Rotation of a non-axisymmetric NS 

The quadrupole formula

If these hypotheses are satisfied, the GW in the TT-gauge is

hTT
µ0 = 0 (µ = 0, . . . , 3)

hTT
jk (t, r) =

2G

c4r
·
�
d2

dt2
QTT

jk (t− r

c
)

�
(j, k = 1, . . . , 3)

where

qij(T ) =
1

c2

�

V
T 00(t, xi)xixjd3x

Qij = qij −
1

3
δijqklη

kl

QTT
ij = PijklQkl

quadrupole moment

traceless quadrupole moment

TT quadrupole moment
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Rotation of a non-axisymmetric NS 

The quadrupole formula

The GW energy flux can only be defined as an average 
over several wavelengths:
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Rotation of a non-axisymmetric NS 

GWs from a rotating star:  
consider an non-rotating ellipsoid of constant density ρ 
�x1

a

�2
+

�x2

b

�2
+

�x3

c

�2
= 1 V =

4

3
πabc

Quadrupole moment (traceless):

Qij =

�

V
ρ

�
xixj − 1

3
r2δij

�
d3x = −

�
Iij −

1

3
δijTrI

�

where

Iij =

�

V
ρ(r2δij − xixj) =




I1 0 0
0 I2 0
0 0 I3



 inertia tensor

I1 =
1

5
M(b2 + c2) I2 =

1

5
M(c2 + a2) I3 =

1

5
M(a2 + b2)
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Rotation of a non-axisymmetric NS 

If the ellipsoid rotates with Ω around one of its principal axes, e.g. I3
define a co-rotating frame {x’i} and an inertial frame {xi}

xi = Rijx
� j Rij =




cosΩt sinΩt 0
− sinΩt cosΩt 0

0 0 1





I �ij =




I1 0 0
0 I2 0
0 0 I3



 Iij = (RI �RT )ij
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Qij = −
�
Iij −

1

3
δIijTrI

�

=
I2 − I1

2




cos 2Ωt sin 2Ωt 0
sin 2Ωt − cos 2Ωt 0

0 0 0



+ constant



Rotation of a non-axisymmetric NS 

Qij =
I2 − I1

2




cos 2Ωt sin 2Ωt 0
sin 2Ωt − cos 2Ωt 0

0 0 0



+ constant

Since I1 =
1

5
M(b2 + c2) I2 =

1

5
M(c2 + a2)

if a2=b2 (axisymmetry), no gravitational wave is emitted!

We need a≠b, which implies I1≠I2.
In practice, this breaking of axisymmetry, if present, is very small.
To parametrize the deviation from axisymmetry we define the 

oblateness ε

ε =
a− b

(a+ b)/2
=

I2 − I1
I3

+O(ε3)
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Rotation of a non-axisymmetric NS 

In terms of oblateness,

Qij =
� I3
2




cos 2Ωt sin 2Ωt 0
sin 2Ωt − cos 2Ωt 0

0 0 0



+ constant

hij = h0



P




− cos 2Ω
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c

�
0

0 0 0









replacing in the quadrupole formula we find

where h0 is the amplitude of the wave: 

h0 =
4G Ω2

c4r
I3 � =

16π2G

c4 r T 2
I3 (T rotation period)

Note that νGW = 2νrot (Ω = 2πνrot)
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Rotation of a non-axisymmetric NS 
Similar expressions for the GW wave amplitude h0 � 16π2GIε

c4rT 2

also arise in a “realistic” case (not ellipsoidal NS, ρ=ρ(r)).  
The (small) departure from axisymmetry is described by the 

quadrupole ellipticity ε=Q/I  (Q: mass quadrupole moment of the NS).
This feature is often called “mountain”. But how large ε can be?

  Detailed models of crustal strain suggest ε ≤ 2 10-6 (ubreak/0.01)
     where ubreak~0.01 is the crustal break strain.    (Haskell et al., ‘06) 
     Recent studies suggest ubreak ~0.1 (Hotowits, Kadau, ’06)

  In case of “exotic” matter, the maximal oblateness can be larger:  
• ε ≤ 6 10-4 (ubreak/0.01) for a strange quark star (Owen et al., ’05)

• ε ≤ 10-3 (ubreak/0.01) for a color superconducting 
                                      quark star (Haskell et al., ’07)
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Most model suggest ε ~10-6 , but some of them allow larger values.
Note that ε ~10-6 would mean a “mountain” as high as ~2cm!



Rotation of a non-axisymmetric NS 

  A different possibility: when the NS is born, a strong magnetic 
    field reaches a stationary configuration and deforms the star 
    before the crust is formed. Then, the deformation persists after 
    crust formation, and the crust breaking bound may be overcame.

   In this case we could have 
  

 (Haskell et al. ’08; Colaiuda et al., ’08; Ciolfi et al. ’09; Lander & Jones ’09)

ε ∼ 10−4

�
B

1016G

�2

  For a superconducting core ε ∼ 10−5

�
B

1016G

��
Hcrit

1015G

�

Summarizing, most models predict ε<10-6, but in some of them ε<10-4
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Similar expressions for the GW wave amplitude h0 � 16π2GIε

c4rT 2

also arise in a “realistic” case (not ellipsoidal NS, ρ=ρ(r)).  
The (small) departure from axisymmetry is described by the 

quadrupole ellipticity ε=Q/I  (Q: mass quadrupole moment of the NS).
This feature is often called “mountain”. But how large ε can be?



Rotation of a non-axisymmetric NS 

The wave amplitude h0 =
16π2G

c4 r T 2
I3 � can be normalized as

h0 = 4.21 · 10−24
�ms

T

�2 �Kpc

r

� �
I3

1038Kgm2

� � �

10−6

�

Energy flux:  replacing the expression for Qij into the flux formula,

LGW =
32G

5c5
Ω6ε2I2

Change in the rotational energy                               

is due to GW emission but also to other processes (e.g. EM emission)

Erot =
1

2
IΩ2

|Ėrot| = IΩ|Ω̇| ≥ LGW ⇒ 4π2Iνrot|ν̇rot| ≥
32G

5c5
(2πνrot)

6ε2I2

ε ≤ εsd ≡
�

5c5|ν̇|
512π4Gν5I

�1/2

=> h0 ≤ h0 sd =

�
5GI|ν̇|
2c3r2ν

�1/2
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CHAPTER 14. THE QUADRUPOLE FORMALISM 198

Table 14.1: Upper limits of the oblateness for an ensemble of observed pulsars, obtained
from spin-down

name νGW (Hz) εsd
Vela 22 1.8 · 10−3

Crab 60 7.5 · 10−4

Geminga 8.4 2.3 · 10−3

PSR B 1509-68 13.2 1.4 · 10−2

PSR B 1706-44 20 1.9 · 10−3

PSR B 1957+20 1242 1.6 · 10−9

PSR J 0437-4715 348 2.9 · 10−8

where

h0 =
4G Ω2

c4r
I3 ε =

16π2G

c4 r T 2
I3 ε , (14.88)

where T is the rotation period and the term in square brackets in eq. (14.87) depends on
the direction of the observer relative to the star axes. From eq. (14.87) we see that when
the triaxial star rotates around a principal axis gravitational waves are emitted at twice the
rotation frequency

νGW = 2νrot . (14.89)

For fastly rotating neutron stars, the order of magnitude of the rotation period and of the
moment of inertia is, respectively a few ms and ∼ 1038Kgm2. The expected oblateness
should be as small as ∼ 10−6 and for a galactic source the distance from Earth is of a few
kpc. Therefore, since

16π2G

c4
· (1ms)−2 · (1Kpc)−1 · (1038Kgm2) · (10−6) = 4.21 · 10−24 ,

the wave amplitude can be normalized as follows

h0 = 4.21 · 10−24
[
ms

T

]2 [Kpc

r

] [
I3

1038Kgm2

] [
ε

10−6

]
. (14.90)

This equation shows that the knowledge of ε is important to estimate the wave amplitude.
Astronomical observations allow to set an upper limit on this parameter by the following
procedure. It is known that the rotational period of observed pulsars increases with time, i.e.
pulsars slow down. This means that the system gradually loses its rotational energy, and this
is due to several processes. For instance, since a pulsar has a time varying magnetic dipole
moment it will radiate electomagnetic waves; moreover, as shown before, it may radiate
gravitational waves.

Knowing the rate at which the period increases, we can estimate the amount of rotational
energy which is lost in a given time interval; if we assume that the energy is entirely radiated

Rotation of a non-axisymmetric NS 

ε ≤ εsd ≡
�

5c5|ν̇|
512π4Gν5I

�1/2

Spin-down limit
(assuming I=1038kg m2)

Limits on oblateness:

Most promising sources: Crab (r=2kpc), Vela (r=300pc)

h0 ≤ h0 sd =

�
5GI|ν̇|
2c3r2ν

�1/2

Assuming GW only:      h0 sd
Crab=1.4 10-24     h0 sd

Vela=0.9 10-24   
More refined computation:  h0 sd

Crab=5.5 10-25     h0 sd
Vela=3.5 10-25

(taking into account EM emission)   

Limits on GW amplitude:
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Results from LIGO/Virgo: 
“Beating the spin-down limit on GW emission from the Crab/Vela pulsar”

(Abbot et al., Ap.J. 683, L45 ’08; Ap.J. 737, 93, ’11 )

Rotation of a non-axisymmetric NS 

No. 1, 2008 BEATING CRAB PULSAR SPIN-DOWN LIMIT L49

Fig. 1.—Single-template search upper limits from S5, for the uniform and
restricted prior ranges, and spin-down upper limit plotted as exclusion regions
in a moment of inertia–ellipticity plane. Areas to the right of the diagonal
lines are excluded. The dashed horizontal lines represent estimates of the
theoretical lower and upper bounds of acceptable moments of inertia at (1–3)
# 1038 kg m2. The shaded area represents the region that is newly excluded
with these results. [See the electronic edition of the Journal for a color version
of this figure.]

coupled to the electromagnetic (radio) emitting component on
a timescale of a few months or less has a quadrupole asymmetry

of no more than kg m2. This is about 534I ! I 9.0 # 10yy xx

times larger than the bound on obtained in the single-I ! Iyy xx

template search. If free precession is responsible for the fre-
quency splitting our results instead give an upper limit on the
product , where is the part of the quadrupole2DI sin v DI I ! Izz xx

moment tensor that participates in the precession and v the
wobble angle (Jones & Andersson 2002).
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An analogue (but different)  approach fore the Vela pulsar shows 
that the spin-down limit can be overcome (to a smaller amount) 

for this pulsar as well. 

Crab pulsar
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Rotation of a non-axisymmetric NS 

Other possibility:       a=b (I1=I2) but wobble angle θ<<1 between 
symmetry axis (I3) and rotation axis. 

This is the relevant process for  magnetic field-induced deformation!

R =




cosΩt − sinΩt −θ sinΩt
sinΩt cosΩt θ cosΩt
0 −θ 1



+O(θ2)In this case

 and quadrupole formula yields 

hTT
ij = h0



P




0 0 sinΩ

�
t− r

c

�

0 0 − cosΩ
�
t− r

c

�

sinΩ
�
t− r

c

�
− cosΩ

�
t− r

c

�
0









with h0 =
8π2G

c4 r T 2
(I1 − I3)νGW = νrot (Ω = 2πνrot) and θ

GWs are emitted for this process at small frequencies
(11 Hz for Vela, 30 Hz for Crab), at which detectors are less sensitive.

However, it is not clear whether θ is rapidly damped.
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Non-radial oscillations of NSs 
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When a neutron star (or a black hole) is perturbed 
by  an internal or an external event, 

it can be set into non-radial oscillations,
emitting GWs at the characteristic frequencies of its

quasi-normal modes (QNMs) : ω=2πυ+i/τ   
They are damped oscillations (=> complex frequency) due to GWs

Several kinds of processes can excite NS oscillations:

   glitches (see Ian’s lecture)

   gravitational collapse giving birth to the NS

   compact binary inspiral and coalescence (ringing phase)

   phase transition of the matter composing the star

   accretion from a companion star

   EM activity, as in magnetar giant flares (see Ian’s lecture)



Non-radial oscillations of NSs 
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Many sets of general relativistic equations have been derived in the years 
(Thorne & Campolattaro ’67;  Lindblom & Detweiler ’85; Chandrasekhar & Ferrari ’90).

We follow the notation of Lindblom & Detweiler (LD).
The perturbed spacetime metric is expanded 

in tensor spherical harmonics, in the frequency domain:

ds2 = −eν
�
1 + r�H�m

0 Y�meiωt
�
dt2 + eλ

�
1 + r�H�m

2 Y�meiωt
�
dr2 − 2iωr�+1H�m

1 Y�meiωtdtdr

+r2
�
1− r�K�mY�meiωt

�
(dϑ2 + sin2 θdϕ2)

2

quasi-stationary configurations, which are essentially the en-
tropy profile (which will appear to be the most important in
this respect) and the lepton composition.
The article is organized as follows. In Sec. II we review

the computation of the quasi-normal oscillation modes of a
PNS. In Sec. III we provide details regarding the calculation
of the EOS of hot nuclear matter, and the construction of ide-
alized PNS profiles during the stellar evolution. In Sec. IV we
present and interpret our numerical results, and draw conclu-
sions in Sec. V.

• dire della EOS e del fatto che sono circa 20 s dopo il
bounce.

• dire che trascuriamo la rotazione

• dire che calcoliamo i QNM

II. THE QUASI-NORMALMODES OF NEUTRON STARS

A. Equations of motion ???

In order to find frequencies and damping times of the quasi-
normal modes (QNMs), we solve the equations describing
non-radial perturbations of a (spherically symmetric) star in
general relativity, using the numerical approach described in
[8], which we briefly summarize.
The perturbed spacetime metric is expanded in tensor

spherical harmonics, as (we use geometrized units, assuming
c= G= 1)

ds2 =−e
(
1+ r!H!m

0 Y!mei t
)
dt2

+e
(
1+ r!H!m

2 Y!mei t
)
dr2

−2i r!+1H!m
1 Y!mei tdtdr

+r2
(
1− r!K!mY!mei t

)
(d 2+ sin2 d 2) , (1)

where is the frequency, Y!m( , ) are the scalar spheri-
cal harmonics, and H !m

i (r), K!m(r) describe the metric per-
turbations with polar parity, i.e., transforming as (−1) ! un-
der parity transformations. In this paper we do not consider
perturbations with axial parity, which transform as (−1) !+1.
The functions (r), (r) describe the spherically symmetric
stellar background, and are found by solving the Tolman-
Oppenheimer-Volkov equations. The four-velocity of the fluid
is

u! = u!0 + u! = (e− /2,0,0,0)+ i e− /2(0, r, , ) ,
(2)

where ! is the Lagrangian displacement of the fluid, and is
expanded in vector spherical harmonics as

r(t,r, , ) = e /2r!−1W !m(r)Y!m( , )ei t ,

(t,r, , ) =−r!V !m(r) Y!m( , )ei t ,

(t,r, , ) =−r!V !m(r) Y!m( , )ei t . (3)

The fluid is also characterized by its pressure and energy
density

p(r)+ p(t,r, , ) = p(r)+ r! p!m(r)Y!m( , )ei t ,

(r)+ (t,r, , ) = (r)+ r! !m(r)Y!m( , )ei t . (4)

We denote with the Eulerian perturbations, and with the
Lagrangian perturbations, so that for instance the Lagrangian
pressure perturbation is

p= p+ r
p
r
, (5)

p!m = p!m+
e− /2

r
W !m p

r
. (6)

Einstein’s equations, linearized in the perturbations, yield
a system of ordinary differential equations for the perturbed
functions. Different equivalent sets of equations have been
derived in the literature, using different gauge choices or dif-
ferent combinations of the relevant equations [9–12]. We use
the formulation of Lindblom and Detweiler [10, 11], con-
sisting of a system of four first-order differential equations
(hereafter, the LD equations) in the perturbation functions
{H!m

1 ,K!m,W !m,X !m}, where

X !m =−e /2 p!m , (7)

and algebraic relations give the perturbation functions
{H!m

0 ,H!m
2 ,V !m} in terms of the others. To close the system of

equations we also need the EOS, relating the energy density
and the pressure p; and this will be discussed in Section III.
Can/Should we be more explicit on the LD eqs. ?

B. Computation of the quasi-normal modes

A QNM is a solution of the LD equations, which is reg-
ular at the center and continuous on the surface, and which
behaves as a pure outgoing wave at infinity. Since in general
relativity a non-radial oscillation is associated to gravitational
wave emission, the frequencies of such solutions are necessar-
ily complex:

= +
i
GW

, (8)

where is the pulsation frequency, and GW is the damping
time of the mode due to gravitational wave emission. If the
mode is unstable, its imaginary part is negative and − GW is
the growth time of the instability.
The procedure to find the QNMs is then the following [8]:

(i) We choose a value of l and a (complex) value of (since
the background is spherical, the equations do not depend on
the index m); (ii) We integrate the LD equations, imposing
regular boundary conditions at the center and p = 0 at the
stellar surface; (iii) Imposing continuity at the stellar surface,
we obtain the metric perturbations outside the star; (iv) In vac-
uum, the perturbation equations reduce to a simple, second-
order differential equation (the Zerilli equation), which we in-
tegrate up to infinity; (v) We check if our solution satisfies
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The functions (r), (r) describe the spherically symmetric
stellar background, and are found by solving the Tolman-
Oppenheimer-Volkov equations. The four-velocity of the fluid
is

u! = u!0 + u! = (e− /2,0,0,0)+ i e− /2(0, r, , ) ,
(2)

where ! is the Lagrangian displacement of the fluid, and is
expanded in vector spherical harmonics as

r(t,r, , ) = e /2r!−1W !m(r)Y!m( , )ei t ,

(t,r, , ) =−r!V !m(r) Y!m( , )ei t ,

(t,r, , ) =−r!V !m(r) Y!m( , )ei t . (3)

The fluid is also characterized by its pressure and energy
density

p(r)+ p(t,r, , ) = p(r)+ r! p!m(r)Y!m( , )ei t ,

(r)+ (t,r, , ) = (r)+ r! !m(r)Y!m( , )ei t . (4)

We denote with the Eulerian perturbations, and with the
Lagrangian perturbations, so that for instance the Lagrangian
pressure perturbation is

p= p+ r
p
r
, (5)

p!m = p!m+
e− /2

r
W !m p

r
. (6)

Einstein’s equations, linearized in the perturbations, yield
a system of ordinary differential equations for the perturbed
functions. Different equivalent sets of equations have been
derived in the literature, using different gauge choices or dif-
ferent combinations of the relevant equations [9–12]. We use
the formulation of Lindblom and Detweiler [10, 11], con-
sisting of a system of four first-order differential equations
(hereafter, the LD equations) in the perturbation functions
{H!m

1 ,K!m,W !m,X !m}, where

X !m =−e /2 p!m , (7)

and algebraic relations give the perturbation functions
{H!m

0 ,H!m
2 ,V !m} in terms of the others. To close the system of

equations we also need the EOS, relating the energy density
and the pressure p; and this will be discussed in Section III.
Can/Should we be more explicit on the LD eqs. ?

B. Computation of the quasi-normal modes

A QNM is a solution of the LD equations, which is reg-
ular at the center and continuous on the surface, and which
behaves as a pure outgoing wave at infinity. Since in general
relativity a non-radial oscillation is associated to gravitational
wave emission, the frequencies of such solutions are necessar-
ily complex:

= +
i
GW

, (8)

where is the pulsation frequency, and GW is the damping
time of the mode due to gravitational wave emission. If the
mode is unstable, its imaginary part is negative and − GW is
the growth time of the instability.
The procedure to find the QNMs is then the following [8]:

(i) We choose a value of l and a (complex) value of (since
the background is spherical, the equations do not depend on
the index m); (ii) We integrate the LD equations, imposing
regular boundary conditions at the center and p = 0 at the
stellar surface; (iii) Imposing continuity at the stellar surface,
we obtain the metric perturbations outside the star; (iv) In vac-
uum, the perturbation equations reduce to a simple, second-
order differential equation (the Zerilli equation), which we in-
tegrate up to infinity; (v) We check if our solution satisfies

Einstein’s equations, linearized in the metric perturbations,
yield a 4th-order system of ODEs inside the star,

a single 2nd-order equation (the Zerilli equation) in vacuum.
They are solved assuming regularity at the center, continuity at the surface 

(together with Δp=0 as r=R), outgoing wave boundary conditions at infinity.
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 Solutions only exist for a discrete set of complex frequencies 
ω = 2πν + i/τ : 

the QNMs of the star.
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Inside the star:  Lindblom-Detweiler equations

Outside the star: Zerilli equation
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Detection of the GW emission from a NS in radial oscillations
will allow us to measure the frequencies and damping times of its QNMs

which would give us unvaluable information on the matter composing the star.

We probably know how it is organized matter in the crust of a NS,
maybe also in the outer core, but we do not know 
the behaviour of matter in the inner core of a NS

where it reaches supranuclear densities ρ ~ 1015 g/cm3 

which cannot be reproduced in the laboratory.
Hadron interactions play a crucial role [a simplified NS model based on based on
the Fermi pressure of neutrons alone, predicts Mmax=0.7Mo, while we observe M=1.4Mo]

Our lack of knowledge on the NS Equation of State (EoS)
(we do not even know the particle content in the core:

Hadrons? Hyperons? Meson condensates? 
Deconfined quark matter [i.e. Strange Stars as in Witten ’84]?) 

reflects our ignorance on the non-perturbative regime of QCD.

Even a simple information such as the value of the NS radius R (a “clean” 
observation of R in the EM spectrum is very difficult) would be important.
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Figure 3: Neutron star (NS) mass-radius diagram. The plot shows non-
rotating mass versus physical radius for several typical NS equations of state
(EOS)[25]. The horizontal bands show the observational constraint from our
J1614−2230 mass measurement of 1.97±0.04 M!, similar measurements for
two other millsecond pulsars[3, 26], and the range of observed masses for
double NS binaries[2]. Any EOS line that does not intersect the J1614−2230
band is ruled out by this measurement. In particular, most EOS curves in-
volving exotic matter, such as kaon condensates or hyperons, tend to predict
maximum NS masses well below 2.0 M!, and are therefore ruled out.

10

(Demorest et al.,  Nature ’10)

Nuclear physicists have proposed several possible EoS describing the matter
in the stellar core,  which differ in the assumptions (different particle content, 

nuclear many body vs. mean field) and in the computational techniques. 
Astrophysical observations are useful to constrain the EoS,  but only GW 

detection could give us a definite answer to these questions!
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A GW-detection from a NS pulsating in its QNMs could allow us: 
  to infer the value of the NS radius R, strongly constraining the EoS

      (N. Andersson & K. Kokkotas, ’98, O. Benhar et al. ’04, ’07) 
  to discriminate between different possible EoS
  to establish whether the emitting source is a NS or a quark star,
  if it is a quark star, to costrain the quark star EoS.

QNMs of NSs are functions of their mass and radius, irrespective of the EoS. 
If we measure (through GW detection) the frequencies and damping time

of the f- and p1- modes, we know M and R, useful to understand the NS EoS!

which the imaginary part of the frequency is much
smaller than the real part we use the algorithm developed
in [31,32]: the perturbed equations are integrated for
real values of the frequency from r ! 0 to radial infinity,
where the amplitude of the Zerilli function is computed;
the frequency of a QNM can be shown to correspond
to a local minimum of this function and the damping
time is given in terms of the width of the parabola
which fits the wave amplitude as a function of the fre-
quency near the minimum. We shall indicate this method
as the CF-algorithm.

For highly damped modes, when the imaginary part of
the frequency is comparable to (or greather than) the real
part, the CF-algorithm cannot be applied and we use the
continued fractions method [33], integrating the per-
turbed equations in the complex frequency domain.
With this method we find the frequencies of the axial
and polar w-modes. A clear account on continued frac-
tions can be found in [34]. However, it should be men-
tioned that this algorithm cannot be applied when
M=R " 0:25, and therefore the w-mode frequencies can-
not be computed for ultracompact stars.

The parameters of the stellar models coneesidered in
this study are shown in the Appendix.

A. Fits and Plots

As done in Ref. [2], the frequencies and damping times
of the various modes can be fitted by suitable functions of
the mass and of the radius of the NS. In computing the fit
parameters, we shall exclude the data referring to strange
stars, because there is a very large degree of arbitrariness
in the choice of the bag model parameters; conversely, the
EOS from which we derive the empirical relations fit at
least some (or many) experimental data on nuclear prop-
erties and nucleon-nucleon scattering and/or some obser-
vational data on NSs. However, in all figures we shall also
plot the data corresponding to strange stars for
comparison.

In Refs. [2,35] it was shown how the fits should be used
to set stringent constraints on the mass and radius of the
star provided the frequency and the damping times of
some of the modes are detected in a gravitational signal,
and we shall not repeat the analysis here. We shall rather
focus on a different aspect of the problem showing that, if
we know the mass of the star, the QNM frequencies can
be used to gain direct information on the EOS of nuclear
matter, and to this purpose we shall plot the mode fre-
quencies as a function of the stellar mass.

Let us consider the fundamental mode firstly.
Numerical simulations show that this is the mode which
is mostly excited in many astrophysical processes and
consequently the major contribution to gravitational-
wave emission should be expected at this frequency.
Moreover, as for the p-modes, its damping time is quite
long compared to that of the w-modes, therefore it should

appear in the spectrum of the gravitational signal as a
sharp peak and should be easily identifiable.

It is known from the Newtonian theory of stellar
perturbations that the f-mode frequency scales as the
square root of the average density; indeed, our numerical
results for the f-mode can be fitted by the following
expression

!f ! a# b

!!!!!!
M
R3

s
; a ! 0:79$ 0:09; b ! 33$ 2; (2)

where a is given in kHz and b in km% kHz. In this fit and
hereafter in all fits, frequencies will be expressed in kHz,
masses and radii in km, damping times in s and
c ! 3% 105 km=s.
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FIG. 2 (color online). The frequency of the fundamental
mode is plotted in the upper panel as a function of the square
root of the average density for the different EOS considered in
this paper. We also plot the fit given by Andersson and Kokkotas
(AK-fit) and our fit (New fit). The new fit is systematically
lower (about 100 Hz) than the old one. The damping time of the
fundamental mode is plotted in the lower panel as a function of
the compactness M=R. The AK-fit and our fit, plotted, respec-
tively, as a dashed and continuous line, do not show significant
differences.
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which the imaginary part of the frequency is much
smaller than the real part we use the algorithm developed
in [31,32]: the perturbed equations are integrated for
real values of the frequency from r ! 0 to radial infinity,
where the amplitude of the Zerilli function is computed;
the frequency of a QNM can be shown to correspond
to a local minimum of this function and the damping
time is given in terms of the width of the parabola
which fits the wave amplitude as a function of the fre-
quency near the minimum. We shall indicate this method
as the CF-algorithm.

For highly damped modes, when the imaginary part of
the frequency is comparable to (or greather than) the real
part, the CF-algorithm cannot be applied and we use the
continued fractions method [33], integrating the per-
turbed equations in the complex frequency domain.
With this method we find the frequencies of the axial
and polar w-modes. A clear account on continued frac-
tions can be found in [34]. However, it should be men-
tioned that this algorithm cannot be applied when
M=R " 0:25, and therefore the w-mode frequencies can-
not be computed for ultracompact stars.

The parameters of the stellar models coneesidered in
this study are shown in the Appendix.

A. Fits and Plots

As done in Ref. [2], the frequencies and damping times
of the various modes can be fitted by suitable functions of
the mass and of the radius of the NS. In computing the fit
parameters, we shall exclude the data referring to strange
stars, because there is a very large degree of arbitrariness
in the choice of the bag model parameters; conversely, the
EOS from which we derive the empirical relations fit at
least some (or many) experimental data on nuclear prop-
erties and nucleon-nucleon scattering and/or some obser-
vational data on NSs. However, in all figures we shall also
plot the data corresponding to strange stars for
comparison.

In Refs. [2,35] it was shown how the fits should be used
to set stringent constraints on the mass and radius of the
star provided the frequency and the damping times of
some of the modes are detected in a gravitational signal,
and we shall not repeat the analysis here. We shall rather
focus on a different aspect of the problem showing that, if
we know the mass of the star, the QNM frequencies can
be used to gain direct information on the EOS of nuclear
matter, and to this purpose we shall plot the mode fre-
quencies as a function of the stellar mass.

Let us consider the fundamental mode firstly.
Numerical simulations show that this is the mode which
is mostly excited in many astrophysical processes and
consequently the major contribution to gravitational-
wave emission should be expected at this frequency.
Moreover, as for the p-modes, its damping time is quite
long compared to that of the w-modes, therefore it should

appear in the spectrum of the gravitational signal as a
sharp peak and should be easily identifiable.

It is known from the Newtonian theory of stellar
perturbations that the f-mode frequency scales as the
square root of the average density; indeed, our numerical
results for the f-mode can be fitted by the following
expression

!f ! a# b
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M
R3

s
; a ! 0:79$ 0:09; b ! 33$ 2; (2)

where a is given in kHz and b in km% kHz. In this fit and
hereafter in all fits, frequencies will be expressed in kHz,
masses and radii in km, damping times in s and
c ! 3% 105 km=s.
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FIG. 2 (color online). The frequency of the fundamental
mode is plotted in the upper panel as a function of the square
root of the average density for the different EOS considered in
this paper. We also plot the fit given by Andersson and Kokkotas
(AK-fit) and our fit (New fit). The new fit is systematically
lower (about 100 Hz) than the old one. The damping time of the
fundamental mode is plotted in the lower panel as a function of
the compactness M=R. The AK-fit and our fit, plotted, respec-
tively, as a dashed and continuous line, do not show significant
differences.
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In a similar way, the damping time of the f-mode can
be fitted as a function of the compactness M=R as follows

!f ! R4

cM3

!
a" b

M
R

"#1
;

a ! $8:7% 0:2& ' 10#2; b ! #0:271% 0:009:
(3)

The data for the f-mode and the fits are shown in Fig. 2.
In the upper panel we plot "f versus M=R3, for all
considered stellar models. The fit (2) is plotted as a thick
solid line, and the fit given in [2], which is based on the
EOSs considered in that paper, is plotted as a dashed line
labeled as ‘‘AK-fit’’. In the lower panel we plot the damp-
ing time !f versus the compactness M=R, our fit and the
corresponding AK-fit.

From Fig. 2 we see that our new fit for "f is system-
atically lower than the AK-fit by about 100 Hz; this
basically shows that the new EOS are, on average, less
compressible (i.e., stiffer) than the old ones. Conversely,
Eq. (3) is very similar to the fit found in [2].

The frequency of the first p-mode, and of the first polar
and axial w- and wII-modes can be fitted as a function of
the compactness as follows

" ! 1
K

!
a" b

M
R

"
; (4)

where K ! M for "p1
;"pol

wII
1

and "ax
wII
1

, whereas K ! R for

"pol
w1 and "ax

w1
. The parameters of the fit, a and b, are given

in Table I.
The data and the fit for the mode p1 are shown in Fig. 3.

In the upper panel we plot "p1
multiplied by the stellar

mass M, the new fit and the corresponding AK-fit, versus
the star compactness; it can be noted that the two fits have
a different slope. In the lower panel the inverse of the
damping time multiplied by the mass (M=!p) is plotted
versus M=R: the spread of the data is apparent. Indeed, as
already noted in [2], in this case a fit has no significance.

For the remaining axial and polar w-modes we find that
the damping times are very well fitted by suitable func-
tions of the compactness as follows

! ! 10#3 'M
!
c" d

M
R

" e
#
M
R

$
2
"#1

; (5)

where c, d and e, expressed in km/s, are given in Table I.

We do not plot all fits and data for the w-modes because
the graphs would not add more relevant information.

The empirical relations derived above could be used, as
described in [2,35], to determine the mass and the radius
of the star from the knowledge of the frequency and
damping time of the modes; but now we want to address
a different question: we want to understand whether the
knowledge of the mode frequencies and of the mass of the
star, which is after all the only observable on which we

TABLE I. The values of the parameters of the fits given by Eqs. (4) and (5) are given for the
first p-mode and for the first axial and polar w modes (see text)

Mode a b c d e

p1 #1:5% 0:8 79% 4 ( ( ( ( ( ( ( ( (
wpol

1 215% 1:3 #474% 7 36% 19 720% 200 #2300% 500
wIIpol

1 #5:8% 0:4 102% 2 21% 16 700% 170 #1400% 500
wax

1 121% 2 #146% 12 48% 6 360% 70 #1340% 170
wIIax

1 #13:1% 0:4 110% 2 #7% 11 1400% 120 #2700% 300
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FIG. 3 (color online). The frequency (upper panel) and the
damping time (lower panel) of the first p-mode are plotted as a
function of the compactness of the star. The AK-fit and the new
fit for the frequency are plotted, in the upper panel, as a dashed
and continuous line, respectively. As already noted in [2] the
data referring to the damping time are so spread that a fit has
no significance.
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A GW-detection from a NS pulsating in its QNMs could allow us: 
  to infer the value of the NS radius R, strongly constraining the EoS

      (N. Andersson & K. Kokkotas, ’98, O. Benhar et al. ’04, ’07) 
  to discriminate between different possible EoS
  to establish whether the emitting source is a NS or a quark star,
  if it is a quark star, to costrain the quark star EoS.
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However, there is much more than the f-mode of non-rotating cold stars.
In recent years, a lot of effort has been devoted in many groups to model 

different kinds of NS oscillations including more and more physics in the game:
  QNMs of rotating NSs

     They are extremely impotant, becauase these modes 
     can become unstable, with a large gravitational emission

  QNMs of magnetized NSs
     Expecially oscillations of the crust, eventually coupled 
     with the core. Interplay of magnetic field and crustal strain.
     Results can be compares with observational data (giant flares in magnetars)

  QNMs of hot, newly born NSs 
     In the first tens of seconds after the bounce, thermodynamics and
     neutrinos strongly affect the stellar structure and its QNM spectrum 
   

  QNMs of superfluid NSs
     NSs (if not too young) are superfluid (see Ian’s lecture). 
     This feature (in particular, having two fluids) significantly affect the
     QNM  spectrum. 
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A neutron star can radiate gravitational waves 
in various astrophysical processes.

In particular, deformed rotating NSs and oscillating NSs
are promising sources for ground based interferometers 

such as Advanced LIGO/Virgo, KAGRA, ET.

Gravitational waves will hopefully be detected soon.

Such a detection would provide unvaluble information:

  on the astrophysical processes involving NSs

  on the behaviour of matter in their cores 
     (and then, on the nature of hadronic interaction)

  finally (even though it was not discussed in this lecture)
     on the nature of the gravitational interaction


