
Chapter 3

The Kerr solution

As we have seen, the solution of Einstein’s equations describing the
exterior of an isolated, spherically symmetric object (the Schwarzschild
solution) is quite simple. Indeed, it has been found in 1916, imme-
diately after the derivation of Einstein’s equation. In the case of
a rotating body, instead, the problem (which is very relevant: as-
trophysical bodies do rotate) is much more difficult: we don’t know
any analytic, exact solution describing the exterior of a rotating star
(even if we know approximate solutions).

But we know the exact solution describing a rotating, stationary,
axially symmetric black hole. It is the Kerr solution , derived in
1963 by R. Kerr. We say that this metric describes a black hole,
because it is a solution of Einstein equations in vacuum (Tµν = 0)
and it has a curvature singularity covered by an horizon: like in the
case of Schwarzschild spacetime, everything falling inside the hole
cannot escape.

We stress that while, thanks to Birkhoff theorem, the Schwarzschild
metric for r > 2M describes the exterior of any spherically symmet-
ric isolated object (a star, a planet, a stone, etc.), the Kerr metric
outside the horizon can only describe the exterior of a black hole.1

1Actually, there is no proof that it cannot exist a stellar model matching with Kerr metric
at the surface of the star, but such a model has never been found, and it is common belief
that it is unlikely to exist.
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3.1 The Kerr metric in Boyer-Lindquist coordi-
nates

The explicit form of the metric is the following:

ds2 = −dt2 + Σ

(
dr2

∆
+ dθ2

)
+ (r2 + a2) sin2 θdφ2

+
2Mr

Σ
(a sin2 θdφ− dt)2 (3.1)

where

∆(r) ≡ r2 − 2Mr + a2

Σ(r, θ) ≡ r2 + a2 cos2 θ . (3.2)

The coordinates (t, r, θ, φ) in which it is expressed the Kerr metric
in (3.1) are called Boyer-Lindquist coordinates.

The Kerr metric depends on two parameters, M and a; compar-
ing (3.1) with the far field limit metric of an isolated object (18.3),
we see that M represents the mass of the black hole, and Ma its
angular momentum, as measured from infinity.

Some properties of the Kerr metric can be directly seen by looking
at the line element (3.1):

• It is stationary: it does not depend explicitly on time.

• It is axisymmetric: it does not depend explicitly on φ.

• It is not static: it is not invariant for time reversal t → −t.

• It is invariant for simultaneous inversion of t and φ,

t → −t

φ → −φ , (3.3)

as can be expected: the time reversal of a rotating object pro-
duces an object which rotates in the opposite direction.

• In the limit r → ∞, the Kerr metric (3.1) reduces to Minkowski
metric in polar coordinates; then, the Kerr spacetime is asymp-
totically flat.
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• In the limit a → 0 (withM %= 0), it reduces to the Schwarzschild
metric: ∆→ r(r − 2M), Σ→ r2 then

ds2 → −(1−2M/r)dt2+(1−2M/r)! 1dr2+r2(dθ2+sin2 θdφ2) .
(3.4)

• In the limit M → 0 (with a %= 0), it reduces to

ds2 = −dt2+
r2 + a2 cos2 θ

r2 + a2
dr2+(r2+a2 cos2 θ)dθ2+(r2+a2) sin2 θdφ2

(3.5)
which is the metric of flat space in spheroidal coordinates:

ds2 = −dt2 + dx2 + dy2 + dz2 (3.6)

where

x =
√
r2 + a2 sin θ cosφ

y =
√
r2 + a2 sin θ sinφ

z = r cos θ . (3.7)

Indeed,

dx =
r√

r2 + a2
sin θ cosφdr +

√
r2 + a2 cos θ cosφdθ −

√
r2 + a2 sin θ sin φdφ

dy =
r√

r2 + a2
sin θ sinφdr +

√
r2 + a2 cos θ sinφdθ +

√
r2 + a2 sin θ cosφdφ

dz = cos θdr − r sin θdθ (3.8)

thus

dx2 + dy2 + dz2 =

(
r2

r2 + a2
sin2 θ + cos2 θ

)
dr2

+
(
(r2 + a2) cos2 θ + r2 sin2 θ

)
dθ2 + (r2 + a2) sin2 θdφ2

=
r2 + a2 cos2 θ

r2 + a2
dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdφ2 .

(3.9)

• The metric (3.1) is singular for ∆ = 0 and for Σ = 0. By com-
puting the curvature invariants (like for instance RµναβRµναβ)
one finds that they are regular at ∆ = 0, and singular at Σ = 0.
Thus Σ = 0 is a true, curvature singularity of the manifold,
whereas (as we will show) ∆ = 0 is a coordinate singularity.
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Notice that in the Schwarzschild limit (a = 0), Σ = r2 = 0 gives
the curvature singularity, while (for r %= 0) ∆ = r(r− 2M) = 0
gives the coordinate singularity at the horizon.

The metric has the form

gµν =





gtt 0 0 gtφ
0 Σ

∆ 0 0
0 0 Σ 0
gtφ 0 0 gφφ



 (3.10)

with

gtt = −
(
1− 2Mr

Σ

)

gtφ = −2Mr

Σ
a sin2 θ

gφφ =

[
r2 + a2 +

2Mra2

Σ
sin2 θ

]
sin2 θ . (3.11)

The gφφ component can be rewritten in a different way, which will
be useful later:

gφφ = (r2 + a2) sin2 θ +
2Mra2 sin4 θ

Σ

=
sin2 θ

Σ

[
(r2 + a2 cos2 θ)(r2 + a2) + 2Mra2 sin2 θ

]

=
sin2 θ

Σ

[
(r2 + a2)2 − (r2 + a2)a2 sin2 θ + 2Mra2 sin2 θ

]

=
sin2 θ

Σ

[
(r2 + a2)2 − a2 sin2 θ∆

]
. (3.12)

Let us compute the inverse metric. To get gµν , we only have to
invert the tφ block in (3.10), while the inversion of the rθ part is
trivial. The metric in the tφ block is

g̃ab =

(
gtt gtφ
gtφ gφφ

)
(3.13)

and its determinant is

g̃ = gttgφφ − g2tφ
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= −
(
1− 2Mr

Σ

)[
r2 + a2 +

2Mra2

Σ
sin2 θ

]
sin2 θ − 4M2r2a2

Σ2
sin4 θ

= −
[
r2 + a2 +

2Mra2

Σ
sin2 θ

]
sin2 θ + (r2 + a2)

2Mr

Σ
sin2 θ

= −(r2 + a2) sin2 θ +
2Mr

Σ
sin2 θ

[
−a2 sin2 θ + r2 + a2

]

= −(r2 + a2) sin2 θ + 2Mr sin2 θ = −∆sin2 θ (3.14)

therefore

g̃ab = − 1

∆ sin2 θ

(
gφφ −gtφ
−gtφ gtt

)
(3.15)

and

gµν =





gtt 0 0 gtφ

0 ∆
Σ 0 0

0 0 1
Σ 0

gtφ 0 0 gφφ



 (3.16)

with

gtt = − 1

∆

[
r2 + a2 +

2Mra2

Σ
sin2 θ

]

gtφ = −2Mr

Σ∆
a

gφφ =
∆− a2 sin2 θ

Σ∆sin2 θ
(3.17)

where we have used the fact that

Σ− 2Mr

Σ∆sin2 θ
=

r2 + a2 cos2 θ − 2Mr

Σ∆sin2 θ
=
∆− a2 sin2 θ

Σ∆sin2 θ
. (3.18)

3.2 Symmetries of the metric

Being stationary and axisymmetric, the Kerr metric admits two
Killing vector fields:

k ≡ ∂

∂t
m ≡ ∂

∂φ
(3.19)

or equivalently, in coordinates (t, r, θ, φ),

kµ ≡ (1, 0, 0, 0) mµ ≡ (0, 0, 0, 1) . (3.20)
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In the motion of a particle with four-velocity uµ, there are then two
conserved quantities:

E ≡ −uµkµ = −ut L = uµmµ = uφ . (3.21)

In the case of massive particles, for which the four-momentum is
P µ = muµ, they are the energy at infinity per mass unit and the an-
gular momentum per mass unit, respectively. In the case of massless
particle, we can choose properly the affine parameter (as we will al-
ways do in the following) so that the four-momentum coincides with
the four-velocity: P µ = uµ; thus, for massless particles E is the en-
ergy at infinity and L the angular momentum.

It can be shown that kµ, mµ are the only Killing vector fields of
the Kerr metric; thus, any Killing vector field is a linear combination
of them.

3.3 Frame dragging and ZAMO

Let us consider an observer, with timelike four-velocity uµ, which
falls into the black hole with zero angular momentum

L = uφ = 0 . (3.22)

This implies that at r → ∞, where the metric becomes flat, also
uφ = 0, and its angular velocity is zero. Such observer is conven-
tionally named ZAMO, which stands for “zero angular momentum
observer”. The contravariant φ component of the velocity does not
vanish (except in the limit r → ∞):

uφ = gφtut %= 0 (3.23)

then the trajectory of the ZAMO has a non-zero angular velocity:

Ω ≡ dφ

dt
=

dφ
dτ
dt
dτ

=
uφ

ut
%= 0 . (3.24)

To compute Ω in terms of the metric (3.1), which is given in covari-
ant form, we use the fact that

uφ = 0 = gφφu
φ + gφtu

t (3.25)

thus

Ω =
uφ

ut
= − gφt

gφφ
. (3.26)
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We have

gφt = −2Mra

Σ
sin2 θ (3.27)

and, due to (3.12),

gφφ =
sin2 θ

Σ

[
(r2 + a2)2 − a2 sin2 θ∆

]
, (3.28)

therefore the angular velocity of a ZAMO is

Ω =
2Mar

(r2 + a2)2 − a2∆sin2 θ
. (3.29)

Notice that

(r2 + a2)2 > a2 sin2 θ(r2 + a2 − 2Mr) (3.30)

thus we always have Ω/(Ma) > 0: the angular velocity has the same
sign as the angular momentum Ma of the black hole, namely, the
motion of the ZAMO is corotating with the black hole.

We can conclude that an observer which approaches a Kerr black
hole with a trajectory which has zero angular velocity at infinity
(and then zero angular momentum) is dragged by the gravitational
field of the black hole, acquiring an angular velocity corotating with
the black hole.

3.4 Horizon structure of the Kerr metric

3.4.1 Removal of the singularity at ∆ = 0

To show that ∆ = 0 is a coordinate singularity, we make a coordi-
nate transformation that brings the metric into a form which is not
singular at ∆ = 0, and then extend the spacetime; such coordinates
are called Kerr coordinates. They are the generalization, to rotat-
ing black holes, of the Eddington-Finkelstein coordinates derived in
Schwarzschild spacetime. To begin with, we need to find two families
of null geodesics, one ingoing and one outgoing, and to determine the
corresponding null coordinates (u, v), i.e. the quantities which are
constant in any of these geodesics. In the case of Kerr geometry, the
spacetime cannot be decomposed in a product of two-dimensional
manifolds, thus the study of null geodesics is more complex than in
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the Schwarzschild case. The Kerr metric admits two special families
of null geodesics, named principal null geodesics, given by

uµ =
dxµ

dλ
=

(
dt

dλ
,
dr

dλ
,
dθ

dλ
,
dφ

dλ

)
=

(
r2 + a2

∆
,±1, 0,

a

∆

)
, (3.31)

where the sign plus (minus) corresponds to outgoing (ingoing) geodesics.
In the Schwarzschild limit these are the usual outgoing and ingoing
geodesics uµ = (1/(1 − 2M/r),±1, 0, 0), but in the Kerr case they
acquire an angular velocity dφ/dλ proportional to a and diverging
when ∆ = 0.

We will show explicitly that (3.31) are geodesics later, in the
coordinate frame we are going to define; here we check that they are
null:

gµνu
µuν = 0 . (3.32)

We have

gµν
dxµ

dλ

dxν

dλ
= −

(
dt

dλ

)2

+ Σ

(
1

∆

(
dr

dλ

)2

+

(
dθ

dλ

)2
)

+(r2 + a2) sin2 θ

(
dφ

dλ

)2

+
2Mr

Σ

(
a sin2 θ

dφ

dλ
− dt

dλ

)2

.

(3.33)

First, we notice that

dt

dλ
− a sin2 θ

dφ

dλ
=

r2 + a2 − a2 sin2 θ

∆
=
Σ

∆
. (3.34)

Then,

gµνu
µuν = −(r2 + a2)2

∆2
+
Σ

∆
+ (r2 + a2) sin2 θ

a2

∆2
+

2MrΣ

∆2

=
1

∆2

[
−(r2 + a2)(r2 + a2) + (r2 + a2 cos2 θ)(r2 + a2 − 2Mr)

+ sin2 θa2(r2 + a2) + (r2 + a2 cos2 θ)2Mr
]
= 0 (3.35)

and the tangent vector (3.31) is null.
Let us consider the ingoing geodesics, whose tangent vector we

call

lµ =

(
r2 + a2

∆
,−1, 0,

a

∆

)
; (3.36)
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let us parametrize the geodesics in terms of r:

dt

dr
= −r2 + a2

∆

dφ

dr
= − a

∆
. (3.37)

We want these geodesics to be coordinate lines of our new system;
thus, one of our coordinates is r, while the others are quantities
which are constant along a geodesic of the family. One of these is
θ, which is constant along the considered geodesics; the remaining
two coordinates are given by

v ≡ t+ T (r)

φ̄ ≡ φ+ Φ(r) (3.38)

where T (r) and Φ(r) are solutions of2

dT

dr
=

r2 + a2

∆
dΦ

dr
=

a

∆
(3.39)

so that, along a geodesic of the family,

dv

dr
=

dφ̄

dr
≡ 0 (3.40)

and the tangent vector of the ingoing principal null geodesics (3.36)
is, in the new coordinates, simply

lµ = (0,−1, 0, 0) . (3.41)

We can now compute the metric tensor in the coordinate system
(v, r, θ, φ̄). We recall that, in Boyer-Lindquist coordinates,

ds2 = −dt2+Σ

(
dr2

∆
+ dθ2

)
+(r2+a2) sin2 θdφ2+

2Mr

Σ
(a sin2 θdφ−dt)2 .

(3.42)
We have

dv = dt+
r2 + a2

∆
dr ; dt = dv − r2 + a2

∆
dr

dφ̄ = dφ+
a

∆
dr ; dφ = dφ̄− a

∆
dr , (3.43)

2Notice that (3.39) have an unique solution, with the only arbitrariness of the choice of
the origins of v and φ̄, because the right-hand sides of (3.39) depend on r only.
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then

−dt2 = −dv2 − (r2 + a2)2

∆2
dr2 + 2

r2 + a2

∆
dvdr

(r2 + a2) sin2 θdφ2 = (r2 + a2) sin2 θdφ̄2 + (r2 + a2)
a2

∆2
sin2 θdr2

−2(r2 + a2)
a

∆
sin2 θdrdφ̄ , (3.44)

Σ
∆dr2 + Σdθ2 do not change (r, θ are also coordinates in the new
frame), the parenthesis in the last term of (3.42) reduces to

dt− a sin2 θdφ = dv − a sin2 θdφ̄− r2 + a2 − a2 sin2 θ

∆
dr

= dv − a sin2 θdφ̄− Σ

∆
dr , (3.45)

thus

2Mr

Σ
(dt− a sin2 θdφ)2 =

2Mr

Σ
dv2 +

2Mr

Σ
a2 sin4 θdφ̄2

−4Mr

∆
dvdr +

4Mr

∆
a sin2 θdφ̄dr +

2MrΣ

∆2
dr2 − 4Mr

Σ
a sin2 θdvdφ̄

(3.46)

and, putting all together, we have that the coefficient of dvdr is

2
r2 + a2

∆
− 4Mr

∆
= 2 , (3.47)

the coefficient of dφ̄dr is

−2(r2 + a2)
a

∆
sin2 θ +

4Mr

∆
a sin2 θ = −2a sin2 θ , (3.48)

and the coefficient of dr2 is

Σ

∆
− (r2 + a2)2

∆2
+

r2 + a2

∆2
a2 sin2 θ +

2Mr

∆2
(r2 + a2 cos2 θ)

=
Σ

∆
− (r2 + a2)(r2 + a2 − 2Mr)

∆2
+

r2 + a2 − 2Mr

∆2
a2 sin2 θ

=
Σ

∆
− r2 + a2 − a2 sin2 θ

∆
= 0 . (3.49)
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Therefore,

ds2 = −
(
1− 2Mr

Σ

)
dv2 + 2dvdr + Σdθ2

+
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θdφ̄2

−2a sin2 θdrdφ̄− 4Mra

Σ
sin2 θdvdφ̄ . (3.50)

The coordinates (v, r, θ, φ̄) are called Kerr coordinates . They re-
duce to the Eddington-Finkelstein coordinates for a = 0. In this
frame, it is easy to show that lµ are tangent vector to geodesics;
indeed, since lµ = (0,−1, 0, 0),

lνlµ;ν = lνlαΓµ
να = Γµ

rr = 0 ⇔ Γrrµ = 0 ⇔ gµr,r = grr,µ = 0
(3.51)

and this is the case, because in (3.50) grr = 0 and gvr, gφ̄r do not
depend on r.

In the Kerr coordinates, differently from the the Boyer-Lindquist
coordinates, the metric is not singular at ∆ = 0. Thus, after chang-
ing coordinates to the Kerr frame, we can extend the manifold, to
include also the submanifold ∆ = 0, and removing the correspond-
ing coordinate singularity.

We note, for later use, that being

gvr = 1 grr = gθr = 0 gφ̄r = −a sin2 θ , (3.52)

we have
lµ = (−1, 0, 0, a sin2 θ) . (3.53)

Notice also that, as we have shown above,

gφ̄φ̄ =
(r2 + a2)2 −∆a2 sin2 θ

Σ
sin2 θ

= (r2 + a2) sin2 θ +
2Mr

Σ
a2 sin4 θ (3.54)

and

2Mr

Σ
(dv − a sin2 θdφ̄)2 =

2Mr

Σ

[
dv2 + a2 sin4 θdφ̄2 − 2a sin2 θdvdφ̄

]

(3.55)
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therefore the metric in Kerr coordinates can also be written in the
simpler form

ds2 = −dv2 + 2dvdr + Σdθ2 + (r2 + a2) sin2 θdφ̄2 − 2a sin2 θdrdφ̄

+
2Mr

Σ
(dv − a sin2 θdφ̄)2 . (3.56)

If we want an explicit time coordinate, we can define

t̄ ≡ v − r (3.57)

so that the metric (3.56) becomes

ds2 = −dt̄2 + dr2 + Σdθ2 + (r2 + a2) sin2 θdφ̄2 − 2a sin2 θdrdφ̄

+
2Mr

Σ
(dt̄+ dr − a sin2 θdφ̄)2 . (3.58)

3.4.2 The horizon

Here we study the submanifold

∆ = r2 + a2 − 2Mr = 0 , (3.59)

which is a coordinate singularity in Boyer-Lindquist coordinates

ds2 = −dt2+Σ

(
dr2

∆
+ dθ2

)
+(r2+a2) sin2 θdφ2+

2Mr

Σ
(a sin2 θdφ−dt)2 .

(3.60)
When a2 > M2, the equation ∆ = 0 has no real solution. In this case
there is no horizon, and the Kerr solution does not describe a black
hole. In this situation, the singularity Σ = 0 is not “covered” by any
horizon (“naked singularity”), and this would bring to paradoxes
in our universe. For this reason, and for the reason that known
astrophysical processes are believed to give rise to black holes with
|a| < M , this situation is generally considered unphysical. Here and
in the following, then, we will restrict our analysis to the case

a2 ≤ M2 (3.61)

(the limiting case a2 = M2 is called extremal black hole).
We have

∆(r) = (r − r+)(r − r! ) (3.62)
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with

r+ ≡ M +
√
M2 − a2

r! ≡ M −
√
M2 − a2 (3.63)

solutions of Eq. (3.60). The surfaces of the coordinate singularity
∆ = 0 are then r = r+ and r = r! .

Let us consider now the surfaces Θ ≡ r − constant = 0, whose
normal is

nµ = Θ,µ = (0, 1, 0, 0) . (3.64)

From (3.64), (3.16)

nµnνg
µν = grr =

∆

Σ
. (3.65)

Thus, on the surfaces r = r+ and r = r! , where ∆ = 0, nµnµ = 0,
and these surfaces are null hypersurfaces, i.e. horizons. Being r+ >
r! , we can say that r = r+ is the outer horizon, and r = r! is the
inner horizon. Actually, we should have used the Kerr coordinates
to make this computation, but the result would be the same; indeed,
the surfaces r = const. are the same in the two frames, and the sign
of nµnµ is the same as well. It can be easily checked that the result
it the same by computing nµnµ in Kerr coordinates.

The two horizons separate the spacetime in three regions:

I . The region with r > r+. Here the r = const. hypersurfaces are
timelike. The r → ∞ limit, where the metric becomes flat, is
in this region; so we can consider this region the exterior of the
black hole.

II . The region with r! < r < r+. Here the r = const. hyper-
surfaces are spacelike. An object which falls inside the outer
horizon, can only continue falling to decreasing values of r, until
it reaches the inner horizon and pass to region III.

III . The region with r < r! . Here the r = const. hypersurfaces are
timelike. This region contains the singularity, which we will
study in section 3.6.

In the case of extremal black holes, when a2 = M2, the two horizons
coincide, and region II disappears.
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If we consider the outer horizon r+ as a sort of “surface” of the
black hole, then we could conventionally consider the angular ve-
locity at r = r+ of an observer which falls radially from infinity -
i.e., an observer with zero angular momentum, or ZAMO - as a sort
of “angular velocity” of the black hole. The angular velocity of a
ZAMO is given by (3.29):

Ω =
dφ

dt
=

2Mar

(r2 + a2)2 − a2∆sin2 θ
. (3.66)

At r = r+, ∆ = 0 thus

Ω =
2Mar+

(r2+ + a2)2
≡ ΩH (3.67)

which is a constant. In this sense, we can say that a black hole
rotates rigidly.

The quantity ΩH = Ω(r+) can be expressed in a simpler way. We
have

(r+ −M)2 = M2 − a2 (3.68)

therefore
r2+ + a2 = 2Mr+ (3.69)

and
ΩH =

a

2Mr+
=

a

r2+ + a2
. (3.70)

3.5 The inÞnite redshift surface and the ergo-
sphere

While in Schwarzschild spacetime the horizon is also the surface
where gtt changes sign, in Kerr spacetime these surfaces do not co-
incide. We have that

gtt = −1 +
2Mr

Σ
= − 1

Σ

(
r2 − 2Mr + a2 cos2 θ

)

= − 1

Σ
(r − rS+)(r − rS! ) = 0 (3.71)

when r = rS+ and when r = rS! , where

rS± ≡ M ±
√
M2 − a2 cos2 θ . (3.72)
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These surfaces are called infinite redshift surfaces, because if a source
located on a point Pem near the black hole emits a light signal with
frequency νem, it will be observed at infinity with frequency

νobs =

√
gtt(Pem)

gtt(Pobs)
νem (3.73)

thus if at Pem gtt = 0, νobs = 0.
The coefficient of r2 in (3.71) is negative, so gtt < 0 outside

[rS−, rS+], and gtt > 0 inside that interval. On the other hand, being√
M2 − a2 cos2 θ ≥

√
M2 − a2, the horizons, located at

r± = M ±
√
M2 − a2 , (3.74)

fall inside the interval [rS−, rS+ ]:

rS! ≤ r! < r+ ≤ rS+ . (3.75)

They coincide at θ = 0, π, i.e. on the symmetry axis, while at the

S+
r

r+

ergosphere

horizon

Figure 3.1: The ergosphere and the outer horizon

equatorial plan rS+ = 2M and rS! = 0.
Therefore, there is a region outside the outer horizon where gtt >

0 3. This region, i.e.
r+ < r < rS+ (3.76)

is called ergoregion, and its outer boundary r = rS+ is called ergo-
sphere. Notice that, being the ergosphere outside the outer horizon,

3This does not happen in Schwarzschild spacetime, where gtt > 0 only inside the horizon
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an observer from infinity can go inside the ergoregion and come back
to infinity.

In the ergoregion the killing vector kµ = (1, 0, 0, 0) becomes
spacelike:

kµkνgµν = gtt > 0 . (3.77)

We define a static observer an observer (i.e. a timelike curve) with
tangent vector proportional to kµ. The coordinates r, θ, φ are con-
stant along its worldline, therefore this observer is still in the Boyer-
Lindquist coordinate system (3.60). Such an observer cannot exist
inside the ergosphere, because kµ is spacelike there; in other words,
an observer inside the ergosphere cannot stay still, but is forced to
move.

A stationary observer is an observer which does not see the metric
change in its motion. Then, its tangent vector must be a killing
vector, i.e. it must be a combination of the two killing vectors of
the Kerr metric, k = ∂/∂t and m = ∂/∂φ:

uµ =
kµ + ωmµ

|k + ωm| = (ut, 0, 0, uφ) = ut(1, 0, 0, ω) (3.78)

where we have defined the angular velocity of the observer

ω ≡ dφ

dt
=

uφ

ut
. (3.79)

In other words, the worldline has constant r and θ. The observer
can only move along a circle, with angular velocity ω. Indeed, in
such orbits it does not see the metric change, being the spacetime
axially symmetric.

A stationary observer can exist provided

uµuνgµν = (ut)2
[
gtt + 2ωgtφ + ω

2gφφ
]
= −1 (3.80)

i.e.
ω2gφφ + 2ωgtφ + gtt < 0 . (3.81)

To solve (3.81), let us consider the equation

ω2gφφ + 2ωgtφ + gtt = 0 (3.82)

whose solutions are

ω± =
−gtφ ±

√
g2tφ − gttgφφ

gφφ
. (3.83)
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The discriminant is (using eq.(3.14))

g2tφ − gttgφφ = ∆sin2 θ . (3.84)

Thus, a stationary observer cannot exist when ∆ < 0, i.e. inside the
horizon r! < r < r+.

Being (see (3.30))

gφφ =
sin2 θ

Σ
[(r2 + a2)2 − a2 sin2 θ∆] > 0 , (3.85)

the coefficient of ω2 in (3.81) is positive, and the inequality (3.81)
is satisfied, outside the outer horizon (where r > r+, so ∆ > 0 and
then ω! < ω+), for

ω! < ω < ω+ . (3.86)

On the outer horizon r = r+, ∆ = 0 and ω! = ω+, so (3.81) has
no solution, whereas equation (3.82), corresponding to a stationary
null worldline (for instance, a photon), has one solution only; the
only possible stationary null worldline on the horizon has

ω = − gtφ
gφφ

= ΩH (3.87)

i.e. it has the ZAMO angular velocity. This is another reason why
the angular velocity of the ZAMO at the horizon is considered as the
black hole angular velocity: it is the only possible angular velocity
of a stationary particle on the outer horizon.

On the infinite redshift surface, gtt = 0 so (being gtφ < 0)

ω! =
−gtφ −

√
g2tφ

gφφ
= 0 . (3.88)

As expected, for r ≥ rS+ ω! ≤ 0, and ω = 0 belongs to the interval
(3.86), thus the static observer (which has ω = 0) is allowed, while
for r < rS+ ω! > 0 and the static observer is not allowed.

3.6 The singularity of the Kerr metric

Let us consider the curvature singularity

Σ = r2 + a2 cos2 θ = 0 . (3.89)
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If we interpret the Boyer-Lindquist coordinates t, r, θ, φ as spherical
polar coordinates, like in Schwarzschild spacetime, it is not clear at
all where is the singularity: Σ = 0 at r = 0, θ = π/2, not at r = 0,
θ %= π/2, but this has no meaning in polar coordinates; we need a
coordinate system which has not the coordinate singularity r = 0,
so that we can distinguish and analyze the curvature singularity.

3.6.1 The Kerr-Schild coordinates

In order to understand the singularity structure, we now change
coordinate frame, to the so-called Kerr-Schild coordinates, which
are well defined in r = 0. Let us start with the metric in Kerr
coordinates (t̄, r, θ, φ̄), given in eq. (3.58):

ds2 = −dt̄2 + dr2 + Σdθ2 + (r2 + a2) sin2 θdφ̄2 − 2a sin2 θdrdφ̄

+
2Mr

Σ
(dt̄+ dr − a sin2 θdφ̄)2 . (3.90)

The Kerr-Schild coordinates (t̄, x, y, z) are defined by

x =
√
r2 + a2 sin θ cos

(
φ̄+ arctan

a

r

)

y =
√
r2 + a2 sin θ sin

(
φ̄+ arctan

a

r

)

z = r cos θ . (3.91)

In the next section we will derive the form of the metric in Kerr-
Schild coordinates, showing that the coordinate singularity r = 0
can be removed in this frame; therefore, in this frame we only have
the curvature singularity; to understand the structure of the curva-
ture singularity, then, we must consider it in this frame.

We have

x2 + y2 = (r2 + a2) sin2 θ

z2 = r2 cos2 θ (3.92)

thus
x2 + y2

r2 + a2
+

z2

r2
= 1 , (3.93)

then the surfaces with constant r are ellipsoids (Figure 3.2), and

x2 + y2

a2 sin2 θ
− z2

a2 cos2 θ
= 1 , (3.94)
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then the surfaces with constant θ are half-hyperboloids (Figure 3.3).
In Figures 3.2, 3.3 we have represented the r = const, θ = const

Z

X Y

r=0

Figure 3.2: r = const ellipsoidal surfaces in the Kerr-Schild frame; the thick
line represents ther = 0 disk.

Z

X Y r=0

�e=0

�e=�//2

�e=�//4

�e=�/
�e=3/4�/

Figure 3.3: θ = const half-hyperboloidal surfaces in the Kerr-Schild frame; the
thick ring represents the r = 0 , θ = π/2 singularity.

surfaces in the Kerr-Schild (t̄, x, y, z) frame. This means that x, y, z
are represented as Euclidean coordinates, and r, θ are considered as
functions of x, y, z.

Notice that if we look at Kerr spacetime where r is sufficiently
large, the r, θ coordinates behave like ordinary polar coordinates.
But closer to the black hole, their nature changes: r = 0 is not a
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single point but a disk,

x2 + y2 ≤ a2 , z = 0 (3.95)

and this disk is parametrized by the coordinate θ. In particular,

r = 0 θ =
π

2
(3.96)

corresponds to the ring

x2 + y2 = a2 , z = 0 . (3.97)

This is the structure of the singularity of the Kerr metric: it is a
ring singularity. Inside the ring, the metric is perfectly regular.

3.6.2 The metric in Kerr-Schild coordinates

By calling α = arctan a/r, we have

r2 sin2 α = a2 cos2 α (3.98)

thus

r2 = (r2 + a2) cos2 α

a2 = (r2 + a2) sin2 α (3.99)

and, rewriting (3.91) as

x = sin θ
√
r2 + a2(cos φ̄ cosα− sin φ̄ sinα)

y = sin θ
√
r2 + a2(sin φ̄ cosα + cos φ̄ sinα)

z = r cos θ (3.100)

and substituting (3.99) we have

x = sin θ(r cos φ̄− a sin φ̄)

y = sin θ(r sin φ̄+ a cos φ̄)

z = r cos θ . (3.101)

Differentiating,

dx = cos θ(r cos φ̄− a sin φ̄)dθ + sin θ cos φ̄dr − sin θ(r sin φ̄+ a cos φ̄)dφ̄

dy = cos θ(r sin φ̄+ a cos φ̄)dθ + sin θ sin φ̄dr + sin θ(r cos φ̄− a sin φ̄)dφ̄

dz = −r sin θdθ + cos θdr (3.102)
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thus

dx2 + dy2 + dz2 = dr2 +
(
r2 sin2 θ + (r2 + a2) cos2 θ

)
dθ2

+(r2 + a2) sin2 θdφ̄2 − 2 sin2 θadrdφ̄

= dr2 + Σdθ2 + (r2 + a2) sin2 θdφ̄2 − 2a sin2 θdrdφ̄ .

(3.103)

Then, the metric (3.90) is the Minkowski metric plus the term

2Mr

Σ
(dt̄+ dr − a sin2 θdφ̄)2 . (3.104)

Being

Σ = r2 + a2 cos2 θ = r2 +
a2z2

r2
, (3.105)

the factor 2Mr/Σ is easily expressed in Kerr-Schild coordinates:

2Mr

Σ
=

2Mr3

r4 + a2z2
. (3.106)

The one-form dt̄+ dr − a sin2 θdφ̄ is more complicate to transform.
We will prove that

dt̄+ dr − a sin2 θdφ̄ = dt̄+
r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+

zdz

r
.

(3.107)
First of all, let us express the differentials (3.102) as

dx =
cos θ

sin θ
xdθ + sin θ cos φ̄dr − ydφ̄

dy =
cos θ

sin θ
ydθ + sin θ sin φ̄dr + xdφ̄

dz = −r sin θdθ + cos θdr . (3.108)

We have

xdx+ ydy =
cos θ

sin θ
(x2 + y2)dθ + sin θ(x cos φ̄+ y sin φ̄)dr

= sin θ cos θ(r2 + a2)dθ + sin2 θrdr

(3.109)

ydx− xdy = −(x2 + y2)dφ̄+ sin θ(y cos φ̄− x sin φ̄)dr

= −(r2 + a2) sin2 θdφ̄+ sin2 θadr

(3.110)

zdx = −r2 sin θ cos θdθ + r cos2 θdr (3.111)
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then

(xdx+ ydy)
r

r2 + a2
+ (ydx− xdy)

a

r2 + a2
+

zdz

r

=

(
r sin θ cos θdθ +

r2

r2 + a2
sin2 θdr

)

+

(
−a sin2 θdφ̄+

a2

r2 + a2
sin2 θdr

)

+
(
−r sin θ cos θdθ + cos2 θdθ

)

= dr − a sin2 θdφ̄ (3.112)

which proves (3.107). The metric in Kerr-Schild coordinates is then

ds2 = −dt̄2 + dx2 + dy2 + dz2

+
2Mr3

r4 + a2z2

[
dt̄+

r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+

zdz

r

]2
.

(3.113)

Notice that the metric has the form

gµν = ηµν +Hlµlν (3.114)

with

H ≡ 2Mr3

r4 + a2z2
(3.115)

and, in Kerr-Schild coordinates,

lµdx
µ = −

(
dt̄+

r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+

zdz

r

)
(3.116)

while in Kerr coordinates

lαdx
α = −

(
dt̄+ dr − a sin2 θdφ̄

)
= −dv + a sin2 θdφ̄ (3.117)

thus lµ is exactly the null vector (3.53), i.e. the generator of the
principal null geodesics which have been used to define the Kerr
coordinates. The form (3.114), called Kerr-Schild form, has been
the starting point for Kerr to derive his solution.

3.6.3 Some strange features of the inner region of the Kerr
metric

If we took seriously the Kerr metric and its ring singularity, we find
some really weird features. We should keep in mind that what we are
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going to discuss has no direct link with astrophysical observations,
since only the region r > r+ is causally connected to us. Further-
more, we are considering an ethernal black hole, and it is unlikely
that these properties apply also to astrophysical Kerr black holes,
originating (at finite time) from gravitational collapse. It is only for
completeness in our discussion on the Kerr metric that I briefly dis-
cuss such features, which, although fascinating, should not be taken
too seriously.

Maximal extension of the Kerr metric

As we have discussed above, the Kerr metric in Kerr-Schild coordi-
nates is

ds2 = −dt̄2 + dx2 + dy2 + dz2

+
2Mr3

r4 + a2z2

[
dt̄+

r(xdx+ ydy)− a(xdy − ydx)

r2 + a2
+

zdz

r

]2

(3.118)

where r is a function of (t̄, x, y, z), defined implicitly by

r4 − (x2 + y2 + z2 − a2)r2 − a2z2 = 0 . (3.119)

This metric is not singular inside the ring, i.e. at r = 0, θ %= π/2,
or, equivalently,

r = 0 , x2 + y2 < a2 . (3.120)

It is singular at the ring r = 0, θ = π/2, i.e. r = 0, x2 + y2 = a2;
this ring is a true curvature singularity: indeed the scalar invariant
RµναβRµναβ diverges there.

We can then extend the spacetime manifold to r = 0, θ %= π/2,
removing the coordinate singularity at the interior of the ring. As
discussed in the case of Schwarzschild spacetime, we have to ex-
tend the spacetime manifold so that the geodesics can be extended
across the ring itself. But this extension cannot simply consist in the
inclusion of the hypersurface corresponding to the coordinate sin-
gularity (in this case, the interior of the ring), as we did to remove
the horizon singularity.

To understand this problem, let us consider an observer falling
to the center of the ring through the θ = 0 axis; along its geodesic,
x = y = 0 and r = z. It arrives at z = r = 0 (which is not
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Figure 3.4: Removal of the disc singularity. The top of the disc in the spacetime
with r ≥ 0 (left panel) is identiÞed with the bottom of the spacetime with r ≤ 0
(right panel), and viceversa. Crossing the ring, an observer can pass from the
r > 0 region to the r < 0 region (and, crossing again, come back to ther > 0
region) avoiding discontinuities in dr/dλ and in θ.

a singularity of the spacetime) with θ = 0 and a finite value of
dz/dλ = dr/dλ; then, θ jumps to π and dr/dλ changes sign. One
could object that we should not worry about r, θ, since x, y, z, which
are the coordinates in this frame, behave regularly; on the other
hand, if we compute the curvature scalars, we find that they are
discontinuous as we pass through the ring. Therefore, we have not
really removed the coordinate singularity inside the ring.

Let us consider, now, the equation (3.119) for r: it admits two real
solutions for r (there are other two, but they are complex conjugate),
one positive and one negative. Therefore, for each set of Kerr-Schild
coordinates there are two different real values of r, with opposite
signs. We have then two different (asymptotically flat) spacetimes
described by the metric (3.118), one with r > 0 and one with r < 0.
The spacetime with r < 0 has no horizon, as can be easily verified
studying the surfaces r = const..

If we identify the top of the disc x2 + y2 < a2, z = 0 in the
spacetime with r > 0 with the bottom of the disc x2 + y2 < a2,
z = 0 in the spacetime with r < 0, and viceversa, as in Figure 3.4,
we have really removed the coordinate singularity of the disc. Our
observer, falling in the disc with r positive but decreasing, emerges
on the top of the disc of the space with r < 0, θ = 0. The observer,
at this point, can escape to the asymptotically flat limit r → −∞.
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Actually, the maximal extension of Kerr spacetime is even larger.
A detailed study of geodesic completeness would go far beyond these
lectures, we only give the final result. Requiring that all (timelike
or null) geodesics which do not hit the curvature singularity can
be extended, forward and backwards, for an infinite amount of the
affine parameter, one finds that it is necessary to patch together
an infinity of copies of Kerr spacetime, both with r > 0 and with
r < 0. A schematic structure of the maximally extended spacetime
(considered, for simplicity, along the θ = 0 axis) is shown in Figure
3.5, where the regions I, II, III correspond to:

I : r+ < r < +∞ (exterior of the black hole)

II : r! < r < r+ (where the r = const. surfaces are spacelike)

III : −∞ < r < r! (ring singularity and r < 0 space) .

The dashed hyperbolic curves corresponds to r = 0.

r = + 

r = �ï  

r = �ï  r = �ï  

r = �ï  

r = + r = + 

r = + 

r = + r = + 

r = + r = + 

I

II

I

II

III

II

II

II

III

Figure 3.5: Schematic representation of the maximal extension of the Kerr
metric, along the θ = 0 axis. The dashed hyperbolic curves correspond to
r = 0. We denote with I the exterior of the black hole, with II the regions
between the inner and outer horizons, with III the inner regions where the
r = 0 disc is located and the asymptotically ßat region with r < 0.

The situation, then, is very different from that of the Schwarzschild
spacetime, where the two asymptotically flat regions are causally
disconnected; in Kerr spacetime an observer which falls inside the
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inner horizon can either cross the ring, escaping to the asymptoti-
cally flat region r < 0, or reach another copy of the region II, and
then another copy of the region I, which is asymptotically flat with
r > 0, and so on. Such copies of the region I are causally connected.

On the other hand, we should remind that this scheme only de-
scribes an eternal black hole. In the case of a black hole originating
from a gravitational collapse this multiplication of spacetimes dis-
appears; indeed, our region I cannot receive signals from a region
II, because they should come from t → −∞, when the black hole
was not yet born.

Causality violations

To conclude the discussion of the ring singularity of Kerr spacetime,
we show another weird feature of the region close to the singularity.

r = 0

�a r < 0

Figure 3.6: Close timelike curve in Kerr spacetime.

Let us consider a curve γ consisting in a ring just outside the
singular ring, in the spacetime with r < 0:

γ :
{
t̄ = const., θ =

π

2
, 0 ≤ φ̄ ≤ 2π, |r| * a,M, r < 0

}
. (3.121)

The curve γ belongs to the inner region of the black hole, and can be
reached by an observer that crosses the two horizons, pass through
the r = 0 ring, and goes around it up to the z = 0 plane, just outside
the ring (see Fig. 3.6).

The norm of the tangent vector to this curve is (since θ = π/2
and then Σ = r2)

mµmνgµν = gφ̄φ̄ = gφφ =
1

r2
(
(r2 + a2)2 − a2(r2 + a2 − 2Mr)

)
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=
1

r2
(r4+r2a2+2Mra2)=r2+a2+

2Ma2

r
< 0 (3.122)

since r < 0 and |r| * a,M . Therefore the curve γ is a timelike
curve, and then can be interpreted as the worldline of an observer
(even if it is not a geodesic), but it is also a closed curve; its existence
is a causality violation: the observer meets itself in its own past.

The occurrence of closed timelike curves (CTC) in some solutions
of Einstein’s equations was first found by Kurt Godel, but Godel’s
solution was considered as unphysical. In the present case, instead,
the CTC appears in a solution in some sense related to a physical
process, i.e. the gravitational collapse.

Actually in a “real” rotating black hole, born in a gravitational
collapse, the structure of ring singularity (and then the occurrence
of CTCs) could be destroyed by the presence of the fluid and of an
initial time of the singularity, but presently there is no definitive
proof that this is the case. Therefore, while the presence of a col-
lapsing fluid surely eliminates the multiple copies of spacetime in the
maximal extension, it is not clear if it also eliminates the causality
violations inherent to the ring singularity.

A possible point of view could be that of considering the problem
of causality violation, together with the problem of the existence of a
singularity (where some timelike geodesics end, in a finite amount of
proper time), as inconsistencies of the theory of general relativity,
which could disappear once a more fundamental theory (unifying
general relativity with quantum field theory) will take its place.
Indeed, quantum gravity effects are expected to be significant near
the singularities.

In any case, we should not worry about this problem, since these
CTCs occur inside the horizon, and then cannot be observed (at
least, as long as we do not fall into a Kerr black hole); this is a further
motivation for the cosmic censorship conjecture, which then protects
us (and the consistency of the observable universe) not only from
future singularities, but also from causality violations associated to
the ring singularity.

3.7 General black hole solutions

In general, we can define a black hole as an asymptotically flat
solution of Einstein’s equations in vacuum with an horizon, and a
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curvature singularity inside the horizon. Black holes form in the
gravitational collapse of stars, if they are sufficiently massive.

When a star has collapsed producing a black hole, we can expect
that, after some time, it settles down to a stationary state as a result
of gravitational waves emission. It is then reasonable to consider
stationary black holes (i.e. black holes admitting a killing vector
field which is timelike at r sufficiently large).

There are some remarkable theorems on stationary black holes,
derived by S. Hawking, W. Israel, B. Carter, which prove the fol-
lowing:

• A stationary black hole is axially symmetric.

• Any stationary, axially symmetric black hole, without electric
charge, is described by the Kerr solution.

• Any stationary, axially symmetric black hole is described by the
so-called Kerr-Newman solution , which is a generalization
of Kerr solution with nonvanishing electric charge and nonvan-
ishing electromagnetic fields, characterized by the mass M , the
angular momentum J , and the charge Q of the black hole.

Furthermore, we remark that any static black hole is spherically
symmetric, and, if it has no electric charge, it is described by the
Schwarzschild solution; in presence of electric charge, it is described
by the Reissner-Nordstrom solution, which is the non-rotating
limit of the Kerr-Newman solution, and is characterized by the mass
M and the charge Q. We have not considered in these lectures the
Reissner-Nordstrom and the Kerr-Newman solutions because it is
widely believed that they are not astrophysically relevant; indeed,
if an astrophysical black hole has an electric charge, it would likely
lose it in a very short timescale, due to the interactions with the
surrounding matter.

We can conclude that a general stationary black hole is character-
ized by three quantities only: the mass M , the angular momentum
J , and the charge Q. All other features of the star which has col-
lapsed to the black hole are not features of the final black hole. This
result has been summarized with the sentence: “A black hole has
no hair ”. For this reason, the unicity theorems are also called no
hair theorems.
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