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9.5 SINGULARITIES IN GENERAL RELATIVITY
9.5.1 Geodesic completeness
How can we define a singularity in General Relativity? This is not a trivial issue, since
singularities (either curvature or coordinate ones) do not belong to the spacetime manifold.
As discussed in Sec. 9.3, looking at the singular points of the metric components gµ⌫ can
be misleading: changing coordinates some of them could be mapped to regular points, some
others could be mapped to infinity.

We clarify the last remark with an example. Let us consider a two-dimensional manifold
with metric

ds2 =
1

(x2 + y2)2
�

dx2 + dy2
�

. (9.61)

Since the metric components are singular at (x, y) = (0, 0), one may think that this point
(or, more precisely, this limit) is a singularity. However, the manifold with metric 9.61 is
just the flat Euclidean space in a particular coordinate frame; indeed, changing to the frame
(x0, y0) with

x0 =
x

x2 + y2
, (9.62)

y0 =
y

x2 + y2
, (9.63)

the metric 9.61 becomes ds2 = (dx0)2 + (dy0)2 (we leave the proof as an exercise). In the
coordinates (x0, y0), the point (x, y) = (0, 0) is the limit (x0, y0) ! (1,1) (the so-called
“point at infinity”). Obviously, the point at infinity does not belong to the manifold (remind
that a manifold is an open set, see Chapter 2), but this does not mean that the Euclidean
space is singular. We can conclude that, although (x, y) = (0, 0) does not belong to the
manifold, it should not be considered a singularity because it is just the point at infinity in
disguise.

This example suggests a way to characterize the singularities: they can be seen as a sort
of “hole”, or “edge” of the spacetime, which does not belong to the manifold, but which can
actually be reached by a physical object. If, instead, the spacetime is ill-defined in a certain
limit ((x, y) ! (0, 0), i.e. (x0, y0) ! (1,1) in the example above) which cannot be reached
by physical objects, such limit should not be considered as a singularity.

We now introduce a formal, coordinate-invariant definition of singularities based on
the following property: a spacetime is geodesically complete if every timelike and null
geodesic can be extended to arbitrarily large values of the a�ne parameter. If the spacetime
admits at least one incomplete (i.e., which cannot be extended) timelike or null geodesic,
the spacetime is geodesically incomplete 4. We say that the spacetime has a singularity
if it is geodesically incomplete.

Coming back to the manifold with metric 9.61, no geodesic going towards (x, y) =
(0, 0) reach that limit for a finite value of the a�ne parameter. For instance, the geodesic
(x0(�), y0(�)) = (�, 0), in the coordinates (x, y) has the form (x(�), y(�)) = (��1, 0), and
x ! 0 as � ! 1.

We remark that this definition applies both to curvature and coordinate singularity. In
the following we shall discuss the di↵erence between these two classes of singularities, and
how a coordinate singularity can be removed.

4We only consider timelike and null geodesics because, unlike spacelike geodesics which cannot be asso-
ciated to the motion of physical objects, they describe the motion of massive and massless particles, i.e. of
observers or signals.
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9.5.2 How to remove a coordinate singularity
Some singularities can be removed with the following procedure. Let M be a spacetime
manifold with a (timelike or null) geodesic which cannot be extended beyond a finite value
of the a�ne parameter. Let gµ⌫ be the components of the metric tensor in a given coordi-
nate frame {xµ}, defined in a domain U ⇢ R4. We remark that, by definition, the metric
components gµ⌫ and the components of the inverse metric, gµ⌫ , are regular in U (the latter
requirement is equivalent to g = det(gµ⌫) 6= 0 in U). To remove the singularity we follow
these steps:

• We choose a new coordinate frame {x↵0}. The domain V ⇢ R4 of the new coordinates
is the image of U through the coordinate transformation; we choose the transformation
xµ ! x↵0

such that the metric components g↵0�0 are regular and invertible in a larger
domain in R4, V 0 � V .

• Let M0 be the manifold described by the coordinates {x↵0} defined in the larger
domain V 0, endowed with the metric tensor g↵0�0 . We have

M0 � M . (9.64)

We say that the spacetime has been extended if we consider the larger manifold M0

as the spacetime manifold.

The singularity corresponding to the incomplete geodesic has been removed if, in the new
spacetime, that geodesic can be extended to arbirarily large values of the a�ne parameter.

As anticipated above, only some singularities can be removed with this procedure. They
are called coordinate singularities. Those which cannot be removed are true spacetime
singularities, and are called curvature singularities. As discussed in Sec. 9.3, curvature
invariants are regular on coordinate singularities, while they can diverge approachng cur-
vature singularities.

If several coordinate singularities are present the above procedure can be repeated,
further extending the spacetime manifold. Once all coordinate singularities are removed, we
have the maximal extension of the spacetime: in this case, all (timelike or null) geodesics
which cannot be extended to arbitrarily large values of the a�ne parameter, correspond to
true curvature singularities.

In the following we shall discuss a simple example of spacetime with a coordinate singu-
larity: the Rindler spacetime, which presents interesting similarities with the Schwarzschild
geometry. Subsequently, we shall discuss how to remove the r = 2m singularity of the
Schwarzschild spacetime.
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Some remarks on coordinate singularities

A metric space M (i.e. a manifold endowed with a metric tensor, see Section 2.5) is
called extendible if it coincides with a subset of another metric space M0, and the
metric of M0, restricted to this subset, coincides with the metric of M. It has been
argued (see e.g. [43, 106, 52]) that the spacetime describing the Universe should be
inextendible. This assumption means that our spacetime is a maximal extension, and
all singularities are curvature singularities. Many authors assume inextendibility in
modelling the spacetime, although strictly speaking there is no actual proof of this
conjecture.
Thus, when we refer to curvature singularities as “true” spacetime singularities, and
to coordinate singularities as mere artefacts of an inadequate choice of the coordinate
frame, we are implicitly assuming that the spacetime is inextendible.

Box 9-C

9.5.3 Extension of the Rindler spacetime
The metric of the Rindler spacetime in two spacetime dimensions is

ds2 = �x2dt2 + dx2, �1 < t < 1, 0 < x < 1 . (9.65)

The metric is singular at x ! 0. Indeed, the determinant g vanishes in this limit, and gµ⌫

diverges.
Let xµ(⌧) be a timelike geodesic in this spacetime, with proper time ⌧ (we remind that

the proper time is an a�ne parameter for timelike geodesics, see Chapter 3) and four-
velocity uµ = dxµ

d⌧ . Since the metric is independent of time, it admits a timelike Killing
vector with components, in the frame (t, x), kµ = (1, 0). According to Eq. 8.52,

k↵u
↵ = g↵�k

↵u� = �x2u0 = const ⌘ �E , (9.66)

therefore

u0 =
dt

d⌧
=

E

x2
. (9.67)

Since the norm of the vector tangent to a timelike geodesic parametrized with proper time
is �1,

uµu⌫gµ⌫ = �x2

✓

dt

d⌧

◆2

+

✓

dx

d⌧

◆2

= �1 , (9.68)

it follows that
✓

dx

d⌧

◆2

=
E2

x2
� 1 , (9.69)

hence

dx

d⌧
= ±

r

E2

x2
� 1, ! ⌧ =

Z x xdxp
E2 � x2

= �
p

E2 � x2 + const . (9.70)

Thus, a particle starting its motion at some point x reaches x = 0 in a finite interval of
the a�ne parameter: the Rindler spacetime is geodesically incomplete. However, as can
easily be checked, the curvature scalars do not diverge at x = 0, therefore this could be
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Figure 9.6: The Rindler spacetime in the coordinates (t, x). The logarithmic curves are, respec-
tively, outgoing (u = const) and ingoing (v = const) null geodesics.

a mere coordinate singularity, which might be removed with a coordinate transformation.
Unfortunately, a systematic approach to the problem of finding the coordinates which allow
to extend the spacetime does not exist. We shall describe a procedure which is based on the
behaviour of null geodesics, and which – as can be seen a posteriori – in some cases allows
to find the appropriate transformation to remove a coordinate singularity.

Let xµ(�) be a null geodesic, with a�ne parameter � and tangent vector

uµ =
dxµ

d�
. (9.71)

Since the geodesic is null,

gµ⌫u
µu⌫ = �x2

✓

dt

d�

◆2

+

✓

dx

d�

◆2

= 0 , (9.72)

hence
✓

dt

dx

◆2

=
1

x2
. (9.73)

The solution to this equation
t = ± log x+ const, (9.74)

shows that there are two families of null geodesics belonging to the + and � sign, respec-
tively. As can be seen from Fig. 9.6, the “+” sign identifies the outgoing geodesics, for
which time increases as x increases, whereas the “�” sign identifies the ingoing geodesics,
for which time increases as x decreases. Accordingly, we can define the null outgoing and
ingoing coordinates

u = t� log x and v = t+ log x . (9.75)



168 ⌅ General Relativity: the physical theory of gravity

They are constant along any outgoing or ingoing geodesic, respectively. Since dudv = dt2 �
x�2dx2 and ev�u = x2, the metric 9.65 becomes

ds2 = �ev�ududv. (9.76)

The coordinates u and v are defined in the range (�1,+1), and cover the original region
x > 0, �1 < t < +1. Since the singular point x = 0 (with t finite) is mapped to the point
at infinity (u, v) ! (+1,�1), the coordinate frame (u, v) does not allow to extend the
spacetime, i.e. to apply the procedure described in Sec. 9.5.2.

We shall now define a new coordinate system (U, V ), such that along any null geodesic,
one coordinate is an a�ne parameter and the other is constant. In this new frame it will be
possible to extend the spacetime and remove the coordinate singularity x = 0.

Let us consider an outgoing null geodesic, u = const, and the timelike Killing vector
field ~k admitted by Rindler’s metric. From Eqs. 9.66 and 9.71 it follows that

k↵u
↵ = g↵�k

↵u� = �x2u0 = const ⌘ �E, ! d� =
x2

E
dt . (9.77)

Since along a u = const geodesic dt = 1
2d(u+ v) = 1

2dv, we get

d� =
x2

2E
dv =

ev�u

2E
dv = Cevdv (9.78)

where C = e�u/(2E) is constant. In the same way, if we consider an ingoing null geodesic
v = const,

d� =
x2

2E
du =

ev�u

2E
du = C 0e�udu (9.79)

with C 0 = ev/(2E) constant. If we define

U(u) = �e�u

V (v) = ev , (9.80)

from Eqs. 9.78 and 9.79 it follows that along a null outgoing geodesic d� = CdV , and along
a null ingoing geodesic d� = C 0dU . This means that on null outgoing geodesics

� = CV + const , (9.81)

and on null ingoing geodesics
� = C 0U + const . (9.82)

Eqs. 9.81, 9.82 show that V, U are linear functions of � on null outgoing and ingoing
geodesics, respectively. Thus, since linear transformations map a�ne parameters into a�ne
parameters, V is an a�ne parameter for the outgoing geodesics U = const, and U is an
a�ne parameter for the ingoing geodesics V = const, i.e. (U, V ) are the coordinates we were
looking for.

Since dU = e�udu and dV = evdv, in the new coordinates the line element 9.76 simply
becomes

ds2 = �dUdV . (9.83)

This metric is clearly free of singularities.
At this point it is useful to remind that the Rindler metric 9.65 was defined in the

region 0 < x < 1, �1 < t < 1 of the (t, x) coordinates; this region was mapped to
�1 < (u, v) < +1 in the (u, v) coordinates, that corresponds to the domain U < 0, V > 0
in the (U, V ) plane (see Fig. ??). However, the line element 9.83 is perfectly well-behaved
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Figure 9.7: Di↵erent coordinate frames for Rindler’s spacetime: (t, x) (with x > 0) is mapped to
(u, v) (with (u, v) ranging between (�1,+1)), which is mapped to the region U < 0, V > 0 in
the (U, V ) plane. The (U, V ) coordinates allow to extend the spacetime manifold.

in the entire (U, V ) plane, �1 < U < +1 ,�1 < V < +1, therefore we can extend the
original (Rindler) spacetime manifold M, to the entire (U, V ) space, and by defining the
new coordinates (T,X) through the transformation

U = T +X , V = T �X , (9.84)

the line element 9.83 becomes
ds2 = �dT 2 + dX2 , (9.85)

which is the metric of (two-dimensional) Minkowski’s spacetime in Cartesian coordinates,
defined in the domain �1 < T < +1 ,�1 < X < +1, i.e. in the Minkowski manifold
M0 � M corresponding to the entire T � X plane. Indeed, the Rindler metric is just a
boosted version of Minkowski’s metric.

With this procedure, we have eliminated the coordinate singularity in x = 0 of Rindler’s
spacetime and we have extended the spacetime to a larger manifold.

The relation between the initial coordinates (t, x) and the final coordinates (T,X) in
the region U < 0, V > 0 (we leave it as an exercise) is

x = (X2 � T 2)
1

2

t = tanh�1

✓

T

X

◆

=
1

2
log

✓

X + T

X � T

◆

. (9.86)

The singularity x = 0 corresponds to the lines T = ±X. From the second of Eqs. 9.86

T = �X corresponds to t ! �1 (9.87)

T = X corresponds to t ! +1 .

The curves x = const are the hyperbolae X2 � T 2 = const, while the curves t = const
correspond to the straight lines

X + T

X � T
= const ! T = constX . (9.88)

An illustration of the original and extended spacetimes M, M0 is given in Figure 9.8. The
Rindler space corresponds to the shaded region in the figure.
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Figure 9.8: Rindler spacetime in the (U, V ) coordinates. The curves t = const and x = const, i.e.
the coordinate lines in the initial (t, x) frame, are hyperbolae and straight lines, respectively, in the
(U, V ) frame.

9.5.4 Extension of the Schwarzschild spacetime
Let us now consider the Scharzschild spacetime. In the coordinates (t, r, ✓,') the metric is
given by Eq. 9.35, i.e.

ds2 = �
✓

1� 2m

r

◆

dt2 +
dr2

1� 2m

r

+ r2(d✓2 + sin2 ✓d'2) . (9.89)

Strictly speaking, since the metric 9.89 is not defined at r = 0 and r = 2m, it describes
the union of two disconnected manifolds, M1 with 0 < r < 2M (the black hole interior)
and M2 with r > 2M (the black hole exterior). A timelike geodesic, i.e. the worldline of a
point particle (or of an observer), falling toward the black hole cannot be extended across
r = 2M , since this hypersurface does not belong to M1 [M2, and the geodesic terminates
at a finite value of the a�ne parameter as 5 r ! 2m. However, since r = 2m is not a
curvature singularity, it can be removed with the procedure outline in Sec. 9.5.2.

Let us consider a null geodesic xµ(�) in the Schwarzschild spacetime 9.89, with ✓ = const,
' = const. The tangent vector

uµ =
dxµ

d�
=

✓

dt

d�
,
dr

d�
, 0, 0

◆

(9.90)

5Actually, r = 2m is not the unique coordinate singularity of the Schwazschild spacetime. Other singular
points of the metric 9.89 are ✓ = 0,⇡, ' = 0, 2⇡. These coordinate singularities are also present in Minkowski
space in polar coordinates, and can easily be removed with a space rotation (see Box 2-C). These coordinate
singularities are therefore “trivial”, and will not be discussed here. However, as we shall see in Chapter 18,
in other spacetimes the coordinate singularities ✓ = 0,⇡ can acquire a subtler meaning and have to be
studied in detail.
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is a null vector, thus

gµ⌫u
µu⌫ = �

✓

1� 2m

r

◆✓

dt

d�

◆2

+

✓

1� 2m

r

◆�1 ✓ dr

d�

◆2

= 0 . (9.91)

Hence
✓

dr

dt

◆2

=

✓

1� 2m

r

◆2

! dt

dr
= ± r

r � 2m
, (9.92)

the solution of which is
t = ±r⇤ + const (9.93)

where
r⇤ = r + 2m log

⇣ r

2m
� 1

⌘

if r > 2m (9.94)

and
r⇤ = r + 2m log

⇣

� r

2m
+ 1

⌘

if 0 < r < 2m. (9.95)

The coordinate r⇤ is called “tortoise” coordinate 6. As r ! +1, r⇤ ⇠ r, while as r ! 2m,
r⇤ ! �1. In other words, this change of the radial variable “pushes” the horizon to �1.
Thus, as in Rindler’s spacetime, in the Schwarzschild spacetime there exist two congruences
of null geodesics (with ✓,' constant) corresponding, respectively, to the + and � sign in
Eq. 9.93, and it is natural to define the null coordinates

u ⌘ t� r⇤ , v ⌘ t+ r⇤ . (9.96)

Null outgoing geodesics correspond to u = const, and null ingoing geodesics to v = const.
Note that there are two (u, v) maps, both defined in �1 < u < +1, �1 < v < +1: one,
with the definition 9.94, corresponding to the the manifold M2 (r > 2m); the other, with
the definition 9.95, corresponding to the the manifold M1 (0 < r < 2m).

Let us consider the manifold M2 (the black hole exterior) r > 2m. Since

dr⇤
dr

=
1

1� 2m
r

, (9.97)

the metric in the coordinates (u, v, ✓,') is

ds2 = �
✓

1� 2m

r

◆

(dt2 � dr2⇤) + r2(d✓2 + sin2 ✓d'2)

= �
✓

1� 2m

r

◆

dudv + r2(d✓2 + sin2 ✓d'2) . (9.98)

Note that now r should not be considered as a coordinate: it is a function of the coordinates
u and v, i.e. r(u, v). The metric 9.98 is still singular at r = 2m. As in the Rindler case,
we consider a new coordinate frame (U, V, ✓,') such that – at least near the horizon – V
is an a�ne parameter of the outgoing null geodesics, while U is an the a�ne parameter of
ingoing null geodesics.

On null geodesics,

k↵u
↵ = g↵�k

↵u� = �
✓

1� 2m

r

◆

dt

d�
= const ⌘ �E , (9.99)

6Like the famous Zeno’s tortoise, the coordinate r⇤ “never” reaches the horizon r = 2m, but approaches
it logarithmically.
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where ~k is the timelike Killing vector field admitted by the Schwarzschild spacetime whose
components, in the (t, r, ✓,') frame, are k↵ = (1, 0, 0, 0). Moreover, on M2 from Eq. 9.94
we find

r⇤ � r

2m
= ln

⇣ r

2m
� 1

⌘

! 1� 2m

r
=

2m

r
e
r⇤�r
2m =

2m

r
e�

r
2m e

v�u
4m . (9.100)

Therefore, on null outgoing geodesics, where u = const and dt = dv
2 ,

d� =

✓

1� 2m

r

◆

dv

2E
=

2m

r
e�

r
2m e�

u
4m e

v
4m dv . (9.101)

Similarly, on null ingoing geodesics, v = const and dt = du
2 , therefore

d� =

✓

1� 2m

r

◆

du

2E
=

2m

r
e�

r
2m e

v
4m e�

u
4m du . (9.102)

We now define the coordinates

U ⌘ �e�
u
4m , V ⌘ e

v
4m . (9.103)

Near the horizon, as r ! 2m, from Eq. 9.101 it follows that, on the null outgoing geodesics

U = const, the a�ne parameter is given by d� / e
v
4m dv, and consequently d� = CdV with

C constant, i.e. V is an a�ne parameter for outgoing geodesics as in the Rindler case (see
Eq. 9.81).

Similarly, from Eq. 9.102 it follows that, on the null ingoing geodesics V = const, the

a�ne parameter is given by d� / e�
u
4m du, and consequently d� = C 0dU with C 0 constant,

i.e. U is an a�ne parameter for ingoing geodesics, as in the Rindler case (see Eq. 9.82).
Thus, (U, V ) are the coordinates we were looking for, but we should keep in mind that

in the Schwarzschild case (U, V ) are a�ne parameters along the null ingoing and outgoing
null geodesics only near the horizon.

In the coordinate frame (U, V, ✓,'), called the Kruskal coordinates, the metric is

ds2 = �32m3

r
e�

r
2m dUdV + r2(d✓2 + sin2 ✓d'2) (9.104)

as can easily be shown by replacing Eqs. 9.100 and 9.103 in Eq. 9.98. The metric 9.104 is
no longer singular on r = 2m.

Note that the coordinates (U, V ) (Eq. 9.103) are defined in the quadrant U < 0, V > 0.
Thus, the spacetime exterior to the black hole, i.e. the manifold M2, r > 2m in the coordi-
nates (t, r, ✓,'), has been mapped to the region U < 0, V > 0 in the Kruskal coordinates.

Since

UV = �e
v�u
4m = �e

r⇤
2m =

⇣

1� r

2m

⌘

e
r

2m , (9.105)

the limit r ! 2m corresponds to U ! 0 or V ! 0.
Let us now consider the manifold M1 (0 < r < 2m). The null coordinates are defined,

as before, as u = t� r⇤, v = t+ r⇤, but r⇤ is now given by Eq. 9.95. The tortoise coordinate
is always negative, it tends to zero as r ! 0, and to �1 as r ! 2M . Since Eq. 9.97 still
holds, the metric in the coordinates (u, v) is given by Eq. 9.98,

ds2 = �
✓

1� 2m

r

◆

dudv + r2(d✓2 + sin2 ✓d'2) . (9.106)

Since Eq. 9.95 gives

1� 2m

r
= �2m

r
e�

r
2m e

v�u
4m . (9.107)
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Figure 9.9: Interior and exterior of a Schwarzschild black hole in Kruskal coordinates. In the right
panel we show the curves at t and r constant.

defining

U ⌘ +e�
u
4m , V ⌘ e

v
4m (9.108)

we find the same expression for the metric in Kruskal coordinates given in Eq. 9.104. The
coordinates (U, V ) defined in Eq. 9.108 are defined in the domain U > 0, V > 0. They are
still a�ne parameters, in the near-horizon limit, of null outgoing and ingoing geodesics, re-
spectively (Eqs. 9.101 and 9.102 still hold, with the opposite sign). Note that the singularity

r = 0 corresponds to r⇤ = 0, and thus u = v (in M1) and UV = e
v�u
4m = 1.

Summarizing, the Kruskal coordinates (U, V, ✓,') describe both the manifolds M1 and
M2 (see Fig. 9.9). In these coordinates, the black hole exterior r > 2m is mapped to the
region (U < 0, V > 0), while the interior 0 < r < 2m is mapped to (U > 0, V > 0 with
UV < 1); the coordinate singularity r = 2m (and t = +1) corresponds to the semiaxis
(U = 0, V > 0); the curvature singularity r = 0 corresponds to the upper branch of the
hyperbole UV = 1.

In the coordinate frame (U, V, ✓,') the manifold M1 [M2 can be extended across the
semiaxis (U = 0, V > 0) separating M1 and M2, since the line metric 9.104 is not singular
there. Thus, we consider a new manifold,

M � M1 [M2 , (9.109)

defined by
V > 0 , UV < 1 . (9.110)

Generally, when studying phenomena which occur near a Schwarzschild black hole such
as the capture of particles, we implicitly consider the extended manifold M: for instance,
as we shall do in the next chapter, we assume that an object falling inside the black hole
crosses the horizon r = 2m which, therefore, has to belong to the manifold. The discussion
in Sec. 9.4 about the r = const hypersurfaces also assumes that the manifold is M, since
r = 2m has been considered as a part of the manifold. However, as explained above in this
section, the coordinates (t, r, ✓,') do not cover the manifold M. Strictly speaking, when
we want to describe the black hole horizon, we should use a coordinate system in which the
r = 2m singularity is removed.

It is customary to define (as in Rindler’s spacetime, see Eqs. 9.84) the coordinates T,X
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as

T =
U + V

2
V =

U � V

2
. (9.111)

In terms of these coordinates, the metric 9.104 becomes

ds2 = �32m3

r
e�

r
2m (�dT 2 + dX2) + r2(d✓2 + sin2 ✓d'2) . (9.112)

The relation between the coordinate frames (t, r, ✓,') and (T,X, ✓,') is similar to the
expressions obtained in Rindler’s spacetime (Eq. 9.86). Indeed,

X2 � T 2 = �UV = ±e
v�u
4m = ±e

r⇤
2m = ±e

r
2m

⇣ r

2m
� 1

⌘

(9.113)

where the upper/lower sign refers to the first (U < 0) and second (U > 0) quadrants,
respectively. We also note that

t = 2m log e
u+v
4m = 2m log

✓

±V

U

◆

= 2m log

�

�

�

�

T +X

T �X

�

�

�

�

. (9.114)

While in the case of Rindler’s spacetime the coordinates (t, x) are defined in U < 0, V > 0,
in Schwarzschild’s spacetime the coordinates (t, r) are defined in U 6= 0, V > 0 (i.e., the
exterior and the interior of the black hole), therefore the coordinate transformations are
also defined in a larger domain.

The curves t = const and r = const are shown in the right panel of Fig. 9.9. Eq. 9.114
shows that the t = const curves are straight lines in the U�V (and T �X) plane; Eq. 9.113
that the r = const curves are hyperbolae.

The manifold M can still be extended: timelike and null geodesics from V = 0 cannot be
continued to large negative values of the a�ne parameter, unless we extend the manifold to
V  0. By including the region �1 < U < +1, �1 < V < +1 with UV < 1, we obtain
the maximal extension of the Schwarzschild spacetime, shown in Fig. 9.10. The dashed line
represents the worldline of an observer falling into the black hole, and the wave-like curves
represent the curvature singularity r = 0.

In the Kruskal coordinates 9.104 the null worldlines with ✓,' constant are straight lines
at 45o, i.e. U = const. or V = const.; this can easily be seen from the metric 9.104: any
worldline with tangent vector either (1, 0, 0, 0) or (0, 1, 0, 0) is null. Therefore, the light cones
can be drawn as in Minkowski’s spacetime, and the description of causal connections among
events is easy and intuitive (see Fig. 9.10). In particular, we see that signals from region I
can be sent only to region II; furthermore, there is a copy of region I, i.e. region IV, which is
causally disconnected from I, but can receive signals only from region III and send signals
to region II only. Region III is often called white hole, since all signals starting in this region
have to escape to regions I or IV across the horizon.

The incomplete (timelike and null) geodesics of the maximally extended manifold cor-
respond to the true singularity r = 0, i.e., in Kruskal coordinates UV = 1. As we shall
show in the next chapter, these geodesics reach the singularity at a finite value of the a�ne
parameter, and cannot be extended through it; for instance, an observer that falls inside
the black hole reaches the singularity in a finite amount of proper time.

The Kruskal coordinates, besides providing the maximal extension of the Schwarzschild
spacetime, can be useful to clarify an important feature of the horizon. We have shown in
Section 9.4 that, since r = 2M is a null hypersurface, it can be crossed in one direction only;
but which is this direction: inwards or outwards? The r = 2M hypersurface in the future
of the events outside the black hole, i.e. in the future of region I, is the semiaxis U = 0,
V > 0, and can only be crossed inwards (see e.g. the worldline shown in Fig. 9.10). The
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Figure 9.10: Maximal extension of Schwarzschild spacetime in Kruskal coordinates. The dashed
line represents the worldline of an observer falling into the black hole. Di↵erent regions are marked
with I, II, III, and IV.

r = 2M hypersurface in the past of region I is a di↵erent hypersurface, the semiaxis U = 0,
V < 0, which can only be crossed outwards. Similarly, the black hole interior in the future
of region I is region II, where the spacelike r = const hypersurfaces can only be crossed
inwards, while the black hole interior in the past of region I is region III, where the spacelile
r = const hypersurfaces can only be crossed outwards.

It should be stressed that the maximal extension of the Schwarzschild spacetime has no
meaning if we consider a black hole as an astrophysical object, formed in the gravitational
collapse of a star. Indeed it describes an eternal black hole, whereas the stellar collapse
occurs at a finite value of t. In particular, region III cannot exist for an astrophysical black
hole, because the semiaxis (U < 0, V = 0) corresponds to t = �1 when the black hole
was not formed yet. The Kruskal coordinates are not appropriate to describe the stellar
collapse, in which the horizon and the singularity appear at finite time. In Section 9.5.5 we
shall show how to describe this process in a di↵erent coordinate system. Here we only note
that we do not have to worry about the meaning of regions III and IV since they do not
exist in astrophysical black holes, and we can leave the discussion on the existence of other
universes (such as regions III and IV of the construction above) to science-fiction writers.

The final fate of an observer who reaches the singularity is unknown and this poses a
problem for the predictability of the theory and for its self-consistence. On the other hand,
such problem is not severe from an operational point of view, because no signal from the
observer reaching the singularity can be sent outside the black hole: the consistency of the
theory, in a certain sense, is preserved by the existence of the horizon. Roger Penrose has
conjectured that there is a fundamental principle, the cosmic censorship hypothesis, stating
that all singularities in the Universe (with the exception of a possible initial singularity)
are concealed behind a horizon and that naked singularities cannot exist in nature. There is
no definitive proof of this conjecture, but there are indications supporting it, at least under
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some reasonable assumptions about the matter fields that can produce a singularity, e.g.,
during gravitational collapse.

The presence of a curvature singularities, althogh concealed within the event horizon of
black holes, strongly suggests that Einstein’s theory is not the last word on gravity. It is
customary to consider General Relativity as an e↵ective theory which is valid at curvature
scales much smaller than Planckian curvature (curvature ⇠ 1/l2P, where lP is the Planck
length, see Box 9-B). Near the singularity, the curvature is so large that higher-order curva-
ture corrections to General Relativity might become dominant. There are several proposal
for such corrections but, at the moment, none of them is supported by observations. Even if
General Relativity will eventually have to be modified at the Planck scale, the corrections
are expected to be negligible for the astrophysical objects and for the gravitational-wave
sources discussed in the rest of this book.

9.5.5 Eddington-Finkelstein coordinates
The Kruskal coordinates allow to define a maximal extension of the Schwarzschild spacetime
covered by a unique coordinate choice. However, if we are only interested in removing the
singularity r = 2m in regions I and II, there is a simpler, and most practical choice: the
Eddington-Finkelstein coordinates 7

(v, r, ✓,') �1 < v < +1 0 < r < +1 . (9.115)

Here, as before, v = t+ r⇤, and the tortoise coordinate is defined in Eqs. 9.94, 9.95, which
can be unified in

r⇤ ⌘ r + 2m ln
�

�

�

r
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� 1

�

�

�

. (9.116)

Let us consider the Schwarzschild metric written as in Eq. 9.98

ds2 = �
✓

1� 2m

r

◆

(dt2 � dr2⇤) + r2(d✓2 + sin2 ✓d'2) . (9.117)

It describes both the M1 and M2 manifolds. Being dr⇤ = dv � dt, from Eq. 9.97 we find

dt2 � dr2⇤ = dv2 � 2dvdr⇤ = dv2 � 2
dr⇤
dr

dvdr = dv2 � 2
dvdr

1� 2m
r

, (9.118)

therefore the metric in the Eddington-Finkelstein coordinates is

ds2 = �
✓

1� 2m

r

◆

dv2 + 2dvdr + r2(d✓2 + sin2 ✓d'2) . (9.119)

This metric covers both the interior and the exterior of the black hole, i.e. the regions I and
II of the Kruskal construction, and is regular and invertible on the horizon r = 2m (the
determinant does not vanish due to the o↵-diagonal components). Note that on the horizon
v is finite because t ! +1 and r⇤ ! �1, while u diverges. All the computations and
derivations involving the interior and the exterior of the black hole, such as the study of the
r = const surfaces of Sec. 9.4, can be rigorously performed in the Eddington-Finkelstein
coordinates (note that grr = 1� 2m/r in these coordinates, too).

7Strictly speaking, (v, r, ✓,') are the ingoing Eddington-Finkelstein coordinates, while (u, r, ✓,') are
called outgoing Eddington-Finkelstein coordinates. We shall omit this specification because we only consider
the ingoing coordinates, which allow to remove the coordinate singularity between the regions I and II.
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Figure 9.11: Finkelstein diagram of a Schwarzschild black hole.

The Finkelstein diagram
A useful way to visualize the Schwarzschild spacetime is the Finkelstein diagram, in which
the axes are (t̃, r) where

t̃ ⌘ v � r = t+ 2m ln
�

�

�

r

2m
� 1

�

�

�

. (9.120)

In this diagram the null lines v = const, corresponding to ingoing massless particles, are
straight lines at 45o; the null lines u = const, corresponding to outgoing massless parti-
cles, are hyperbolic curves. These two sets of curves define the light cones centered in any
spacetime point, and allow to establish the causal relations among di↵erent events. While
the light cones in the (t, r) plane collapse to lines at the horizon, the light cones in the
Finkelstein diagram remain regular.

Since t̃ ' t for r ⌧ 2m and r � 2m, the coordinate t̃ coincides with t far away from
the horizon, but they are very di↵erent near to the horizon (where, as we shall discuss in
Chapter 10, the operational definition of the coordinate t is problematic). We also note that
the coordinate t̃ cannot be considered a “time” inside the horizon, because the vector @/@ t̃
is spacelike.

In Fig. 9.11 the coordinate lines r = const are vertical straight lines, whereas t = const
are hyperbolic (dashed) curves; the t̃-axis represents the singularity, and for this reason it
is drawn wave-like.

As mentioned above, astrophysical black holes are the result of a gravitational collapse
(see Chapter 16) occurring at some time and producing a singularity for some t = t0. A
qualitative view of the spacetime of a realistic black hole is shown in the Finkelstein diagram
in Fig. 9.12, where the shaded area represents the interior of the star. The r = 0 axis is a
curvature singularity for t̃ � t̃0, i.e. after the singularity forms; for t̃ < t̃0, the r = 0 axis is
simply the (trivial) coordinate singularity at the origin of polar coordinates. The horizon,
represented by the dashed line, is also formed during the collapse.

It is important to stress that, although we have discussed the entire Schwarzschild so-
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Figure 9.12: Finkelstein diagram of a stellar collapse originating a Schwarzschild black hole. The
shaded area represents the fluid interior of the star. The curvature singularity (wave-like line) is
formed at t̃ = t̃

0

. The horizon is represented by the dashed line.

lution, only the r > 2m region is directly relevant for astrophysical observations: relativity
imposes that no signal can come from the interior of a black hole horizon.

Finally, it is worth mentioning that a useful way to represent the causal structure of
a spacetime is through the so-called Penrose-Carter diagrams. We do not discuss this in-
teresting topic in this book, and we refer the interested reader to more specialized work,
e.g. [85].

9.6 THE BIRKHOFF THEOREM
In Sec. 9.2 we derived the Schwarzschild metric as the solution to Einstein’s equations in vac-
uum, under the assumption of staticity and spherically symmetry. This solution represents
the gravitational field external to a non-rotating, spherically symmetric body, the structure
of which is time-independent. However, the Schwarzschild solution is more general, since, as
shown by George Birkho↵ in 1923, it is the only spherically symmetric, asymptotically flat
solution to Einstein’s field equations in vacuum. Thus, to prove Birkho↵’s theorem we need
to relax the assumption that the metric admits a timelike, hypersurface-orthogonal Killing
vector field. We shall now generalize the results of Sec. 9.1, where we showed how to choose
the coordinates by imposing the spherical symmetry, assuming that the metric depends on
time. As in Sec. 9.1 we fill the three-dimensional space with two-spheres, with two-metric
(see Eq. 9.8)

ds2(2) = a2(x0, x1)(d✓2 + sin2 ✓d'2) , (9.121)

where a2(x0, x1) is an unspecified function. Contrary to what we did in Sec. 9.1, we shall
now retain the dependence on x0. The basis vectors ~e(✓) and ~e(') are tangent, respectively,
to the coordinate lines (' = const, ✓ = const), which we choose on the two-spheres. Then,
we align the poles of all spheres as explained in Sec. 9.1; in addition we choose the basis


