Chapter 13

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity is the existence of
gravitational waves. The idea that a perturbation of the gravitational field should propagate
as a wave is, in some sense, intuitive. For example electromagnetic waves were introduced
when the Coulomb theory of electrostatics was replaced by the theory of electrodynamics,
and it was shown that they transport through space the information about the evolution
of charged systems. In a similar way when a mass-energy distribution changes in time, the
information about this change should propagate in the form of waves. However, gravitational
waves have a distinctive feature: due to the twofold nature of ¢,,, which is the metric tensor
and the gravitational potential, gravitational waves are metric waves. Thus when they
propagate the geometry, and consequently the proper distance between spacetime points,
change in time.

Gravitational waves can be studied by following two different approaches, one based on
perturbative methods, the second on the solution of the non linear Einstein equations.

The perturbative approach
Be ggy a known exact solution of Einstein’s equations; it can be, for instance, the metric
of flat spacetime 1), or the metric generated by a Schwarzschild black hole. Let us consider
a small perturbation of ggy caused by some source described by a stress-energy tensor T)¢,;.
We shall write the metric tensor of the perturbed spacetime, g, as follows

Juv = 921, + h,ul/; (131)
where h,,, is the small perturbation
|| << 1 |-

It is clear that this assumption is ambiguous, because we should specify in which reference
frame this is true; however we shall assume that this frame does exists.
The inverse metric can be written as

g = g — W 4 O(h?), (13.2)
where the indices of h*¥ have been raised with the unperturbed metric

B = ORGP g (13.3)



Indeed, with this definition,
(6°" = B)(90% + ) = 0l + O(h). (13.4)

In order to find the equations that describe h,,,, we shall write Einstein’s equations for the
metric (13.1) in the form
81G 1
Ry, = o <THV - §9WT> ) (13.5)
where 7}, is the sum of two terms, one associate to the source that generates the background
geometry gg,,, say T7,, and one associate to the source of the perturbation 67}, which is of
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order h. We remind that the Ricci tensor R, is
0 0
R;w = %Pam/ — %Faua + Fagal—‘al“, — Fag,jrgua, (136)

and that the affine connections Fgu are

1 (07
Fgu = 597 [9au + Gous — 9ol - (13.7)

The T}, computed for the perturbed metric (13.1) are
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where 0I'y, (h) are of first order in h,,
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When we substitute eq. (13.9) in the Ricci tensor we get

Ry (9w) = RS, (4°) (13.10)

[ 0
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%0 (9°) 677 (h) + 0T 5 (h) T7 1 (9°)
— 1%, (6°) 017 e () = 6T, (W) T7 0 (9°) + O(h?) = RS, (6°) + 0 Ry, (h) + O(h?)
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We now have to work out the right-hand side of the Einstein equations (13.5), i.e. (T;w -1 gw,T)7
and separate the terms which are of order h. Since T}, = TSV + 0T},
T = ¢"Tu = (g™ —n") (T}, + 0T,) (13.11)
g"Ty, — BT, — g% 6T,, + O(h*) = T° + 6T + O(h?).



Consequently

1 1
(TW - §gWT> = T8, + 0T — 5 (0 + huw) (TO+0T) + O(?) (13.12)
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= <TW 29T ) + {5TW -5 (gWaT -y T )} +O(h?).

Combining eqgs. (13.10) and (13.11), and reminding that ggy is, by assumption, the exact so-

lution of Einstein’s equations in vacuum R, (¢") = SZf <T0V -3 ggyTO), Einstein’s equations
for the perturbations h,, reduce to
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+ I, (go) ', (h) + %4 (h)I7,, (9())

= T (0°) T (1) =T () T°0a (0°) = =1 [my - % (95,07 + b T°)| + O(h?),

that are linear in h,,. Their solution describes the propagation of gravitational waves in the
considered background.! This approximation works sufficiently well in a variety of physical
situations because gravitational waves are very weak. This point will be better understood
in the next chapter, when we will discuss the generation of gravitational waves.

The "exact” approach

The second approach to the study of gravitational waves seeks for exact solutions of
Einstein’s equations which describe both the source and the emitted wave, but no solution
of this kind has been found so far. Of course the non-linearity of the equations makes
the problem very difficult; however, it may be noted that also in electrodynamics an exact
solution of Maxwell’s equations appropriate to describe the electromagnetic field produced
by a current which decreases in an electric oscillator due to the emission of electromagnetic
waves has never been found, although Maxwell’s equations are linear.

Exact solutions of Einstein’s equations describing gravitational waves can be found only
if one imposes some particular symmetry as for example plane, spherical, or cylindrical sym-
metry. The interaction of plane waves can also be described in terms of exact solutions, and
due to the non-linearity of the equations of gravity it is very different from the interaction
of electromagnetic waves.

In the following we shall use the perturbative approach to show that a weak perturbation
of the flat spacetime satisfies the wave equation.

!Notice that the right-hand side of eq.(13.13) is a particular case of the Palatini identity.



13.1 A perturbation of the flat spacetime propagates
as a wave

Let us consider the flat spacetime described by the metric tensor 7, and a small pertur-
bation h,,, such that the resulting metric can be written as

G = N + Py || << 1. (13.14)

The affine connections (13.8) computed for the metric (13.14) give
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Since the metric gf),, = 7,, is constant, I',,(¢°) = 0 and the right-hand side of eq. (13.13)
simply reduces to

ore,, o' e 9
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The operator O is the D’Alambertian in flat spacetime

i 00 o

+ V2. (13.17)

Einstein’s equations (13.5) for h,,, finally become
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As already discussed in chapter 8, the solution of eqs. (13.18) is not uniquely determined.
If we make a coordinate transformation, the transformed metric tensor is still a solution: it
describes the same physical situation seen from a different frame. But since we are working
in the weak field limit, we are entitled to make only those transformations which preserve
the condition [h],| << 1 (note that in this Section we denote the transformed tensor
as h;w rather than as h,,,, since this simplifies the discussion of infinitesimal coordinate
transformations).
If we make an infinitesimal coordinate transformation

" =zt + e(2), (13.19)

(the prime refers to the coordinate x*, not to the index p) where e is an arbitrary vector

such that g:: is of the same order of A, then

oz Oe®
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Since
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M+ Wy + €0+ € + O(R?) (13.21)

and g, = N + hyw, then (up to O(h?))

Oe,  Oe,
oxv Ozt
In order to simplify eq. (13.18) it appears convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied, i.e.

By = Py —

(13.22)

g, =0. (13.23)

Let us see why. This condition is equivalent to say that, up to terms that are first order in
h,., the following equation is satisfied ?
O g 10
oxr " 20z
Using this condition the term in square brackets in eq. (13.18) vanishes, and Einstein’s
equations reduce to a simple wave equation supplemented by the condition (13.24)

{ Ophy, = —15€ (T, — $9,,07)

0 pu — 1 0 ppu
8x“hu_28th K

h*,. (13.24)

(13.25)

(to hereafter, we omit the superscript 'pert’ to indicate the stress-energy tensor associated
to the source of the perturbation). If we introduce the tensor

= 1
hpl/ = h;u/ - §np,uh7 (1326)

where h = n*"h,,, = h*,, eqs. (13.25) become

DFB;LI/ = - lﬁcZG(sTuy

1 (13.27)
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Since the first two terms are equal we find
1
g#l’rzu = 77)\K {hﬂn,u - §hl’w€}

q.e.d.



Thus, we have shown that a perturbation of a flat spacetime propagates as
a wave travelling at the speed of light, and that Einstein’s theory of gravity
predicts the existence of gravitational waves.

As in electrodynamics, the solution of eqs. (13.27) can be written in terms of retarded
potentials
/
: AG [ Tyt — XX %)

o (t,x) = oy ’X_Xf ‘ d*x’, (13.29)

and the integral extends over the past light-cone of the event (¢,x). In eq. (13.29) we have
removed the ‘0’ in front of the stress energy tensor which, to hereafter, will be considered as
a quantity of order h. Equation (13.29) describes the gravitational waves generated by the
source 1},.

We may now ask how egs. (13.28) and (13.27) should be modified if, instead of consid-
ering the perturbation of a flat spacetime, we would consider the perturbation of a curved
background. For example, suppose gfw is the Schwarzshild solution for a non rotating
black hole. In this case, it is possible to show that, by a suitable choice of the gauge, the
Einstein equations written for certain combinations of the components of the metric tensor,
can be reduced to a form similar to eqs. (13.27). However, since the background spacetime is
now curved, the propagation of the waves will be modified with respect to the flat case. The
curvature will act as a potential barrier by which waves are scattered and the final equation

will have the form
167G

DF(I) - V(J]'u)q) = — 1

T 13.30
- (13.30

where ® is the appropriate combination of metric functions, T is a combination of the stress-
energy tensor components, Op is the d’Alambertian of the flat spacetime and V is the
potential barrier generated by the spacetime curvature. In other words, the perturbations of
a sperically symmetric, stationary gravitational field would be described by a Schroedinger-
like equation! A complete account on the theory of perturbations of black holes can be
found in the book The Mathematical Theory of Black Holes by S. Chandrasekhar, Oxford:
Claredon Press, (1984).

13.2 How to choose the harmonic gauge

We shall now show that if the harmonic-gauge condition is not satisfied in a reference frame,
we can always find a new frame where it is, by making an infinitesimal coordinate transfor-
mation

N =1 e (13.31)
provided
Ohs 10}
Ope, = 2 — ——L. (13.32)
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Indeed, when we change the coordinate system I = ¢g#T'*,, transforms according to
equation (9.63), i.e.

’ 3(/6)‘, a2$>\l
MY = TF — g 13.
OxP OxPOx°’ (13.33)
where, from eq. (13.31)
0¥ o0&
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If gu = Nw + hu (see footnote after eq. (13.23))
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[P =n™ {humu - §h”m} ; (13.34)
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therefore in the new gauge the condition I'V =0 becomes
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If we neglect second order terms in h eq.(13.36) becomes
Y |:(9h': 10h",

— Ope* =0.
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Contracting with 1), and remembering that ny,n™* = 6% we finally find
- oh*, 10h",
€a = - = :
F ozt 2 Oz~

This equation can in principle be solved to find the components of ¢,, which identify the
coordinate system in which the harmonic gauge condition is satisfied.

13.3 Plane gravitational waves
The simplest solution of the wave equation in vacuum (13.28) is a monocromatic plane wave
B = R{ A} (13.37)

where A, is the polarization tensor, i.e. the wave amplitude and k is the wave vector.
By direct substitution of (13.37) into the first equation we find

- o 0 ’ 0 ox"
_ o8 tkyxV\ _ o af . ikyxY | _
Ophu =15 o5 (7)== [Zkyaxﬁe ] = (13.38)
0 , 0 4
af - ikyxY | _ afB . ikyaxY | _
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thus, (13.37) is a solution of (13.28) if k is a null vector. In addition the harmonic gauge
condition requires that

0

@B“y =0, (13.39)
which can be written as 5
N g her = 0. (13.40)
Using eq. (13.37) it gives
n“o‘gjﬂAweikVﬂ =0 = n"Auk, =0 — kA", =0. (13.41)

This further condition expresses the orthogonality of the wave vector and of the polarization
tensor.
Since hy, is constant on those surfaces where

kox® = const, (13.42)

these are the equations of the wavefront. It is conventional to refer to &° as £, where w
is the frequency of the waves. Consequently

k= (2 k). (13.43)
C
Since % is a null vector
—(ko)? + (kp)* + (k,)* + (k.)*> = 0, ie. (13.44)
w = cho = cy/(ka)? + (ky)? + (k2)?, (13.45)

where (k;, ky, k) are the components of the unit 3-vector k.

13.4 The TT-gauge

We now want to see how many of the ten components of h,, have a real physical meaning,
i.e. what are the degrees of freedom of a gravitational plane wave. Let us consider a wave
propagating in flat spacetime along the z' = z-direction. Since h,, is independent of y
and z, egs. (13.28) become (as before we raise and lower indices with 7, )

0? 0%\ -

i.e. h*, is an arbitrary function of t 4+ £, and

ai#hﬂy =0. (13.47)



Let us consider, for example, a progressive wave h*, = h*, [x(t,z)], where x(t,z) =
t — <. Being

v dx Ot ox
S _ ooy _ o (13.48)
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eq. (13.47) gives

d - 10n', 0Oh", 10 [+, -
pp, = v Y == |ht, —h*,| =0. 13.49
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This equation can be integrated, and the constants of integration can be set equal to zero
because we are interested only in the time-dependent part of the solution. The result is

|

Bty = he, ht, =
Etw = Bmmv Btz =

i (13.50)
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We now observe that the harmonic gauge condition does not determine the gauge uniquely.
Indeed, if we make an infinitesimal coordinate transformation

ot =t 4 e, (13.51)

from eq. (13.33) we find that, if in the old frame I'* = 0, in the new frame 'V = 0, provided

/
b 8?2;;0 —0, (13.52)
namely, if e* satisfies the wave equation
Opet = 0. (13.53)
If we have a solution of the wave equation,
Ophu, =0 (13.54)

and we perform a gauge transformation, the perturbations in the new gauge
h;w = hy — Oue, — Oy€, (13.55)

give B B
W = My — Op€y — Oy + 100 (13.56)

and, due to (13.53), the new tensor is solution of the wave equation,
Dph;w =0. (13.57)

It can be shown that the converse is also true: it is always possible to find a vector ¢,
satisfying (13.53) to set to zero four components of h,, solution of (13.54).
Thus, we can use the four functions €” to set to zero the following four quantities

Btm = }_lty = Btz = Byy + Bzz = Y. (1358)



From eq. (13.50) it then follows that

Wy =h"y =h*, = h', = 0. (13.59)

The remaining non-vanishing components are ﬁzy and ﬁyy — h?,. These components cannot
be set equal to zero, because we have exhausted our gauge freedom.
From egs. (13.58) and (13.59) it follows that

h*, = h'y+h*, +hY, + h*, =0, (13.60)
and since -
ht, = h*, = 20", = =h*,, (13.61)
it follows that B
ht, =0, — h*, = ht,, (13.62)

i.e. in this gauge h,, and hy,, coincide and are traceless. Thus, a plane gravitational
wave propagating along the z-axis is characterized by two functions h,, and hy, = —h..,
while the remaining components can be set to zero by choosing the gauge as we have shown:

00 0 0
00 0 0

M =10 0 hy (13.63)
0 0 hy. —hy,

In conclusion, a gravitational wave has only two physical degrees of freedom
which correspond to the two possible polarization states. The gauge in which this
is clearly manifested is called the TT-gauge, where ‘T'T-" indicates that the components of
the metric tensor h,, are different from zero only on the plane orthogonal to the direction
of propagation (transverse), and that h,,, is traceless.

13.5 How does a gravitational wave affect the motion
of a single particle

Consider a particle at rest in flat spacetime before the passage of the wave. We set an
inertial frame attached to this particle, and take the x-axis coincident with the direction of
propagation of an incoming T'T-gravitational wave. The particle will follow a geodesic of the
curved spacetime generated by the wave

d*z> dzt dzv  dU“

r<,——=
dr? T dr dr dr

+ T, UMY = 0. (13.64)

At t =0 the particle is at rest (U* = (1,0,0,0)) and the acceleration impressed by the
wave will be

due .
( dT > — —Faoo — —inaﬁ [hgo,o + h0670 —_ hOO,ﬁ} , (1365)
(t=0)



but since we are in the TT-gauge it follows that

(dU> _o. (13.66)
dr (t=0)

Thus, U* remains constant also at later times, which means that the particle is not acceler-
ated neither at ¢ = 0 nor later! It remains at a constant coordinate position, regardeless
of the wave. We conclude that the study of the motion of a single particle is not
sufficient to detect a gravitational wave.

13.6 Geodesic deviation induced by a gravitational wave

We shall now study the relative motion of particles induced by a gravitational wave. Consider
two neighbouring particles A and B, with coordinates 2y, z’5. We shall assume that the two
particles are initially at rest, and that a plane-fronted gravitational wave reaches them at
some time ¢ = 0, propagating along the x-axis. We shall also assume that we are in the T7'-
gauge, so that the only non-vanishing components of the wave are those on the (y, z)-plane.
In this frame, the metric is

ds® = Gudxtdz” = (1, + hfg)daz“daz” ) (13.67)

Since goo = 190 = —1, we can assume that both particles have proper time 7 = ct. Since the
two particles are initially at rest, they will remain at a constant coordinate position even
later, when the wave arrives, and their coordinate separation

dat = aly — ol (13.68)

remains constant. However, since the metric changes, the proper distance between them will
change. For example if the particles are on the y-axis,

YB 1 YB 1
Al = /ds = / gyl 2dy = / |1+ h'T,,(t — x/c)|2dy # constant. (13.69)
YA Yya

We now want to study the effect of the wave by using the equation of geodesic deviation.
To this purpose, it is convenient to change coordinate system and use a locally inertial
frame {z®} centered on the geodesic of one of the two particles, say the particle A; in the
neighborhood of A the metric is

ds? = Npdz®dx™ + O(|5x|?) . (13.70)

i.e. it differs from Minkowski’s metric by terms of order |dx|?. It may be reminded that, as
discussed in Chapter 1, it is always possible to define such a frame.
In this frame the particle A has space coordinates 2%y = 0 (i = 1,2,3), and

dzt

?lA = (]-7 07 07 0) 9 g,UJu"A - "7}1’1/’ 9 gu/y/7a/|A - 0 (le Fz/V/IA = 0) s

(13.71)

th=1/c,



where the subscript | A means that the quantity is computed along the geodesic of the particle
A. Moreover, the space components of the vector dz# which separates A and B are the

coordinates of the particle B: ' '
zh = ox’ . (13.72)

To simplify the notation, in the following we will rename the coordinates of this locally
inertial frame attached to A as {z*}, and we will drop all the primes.
The separation vector dx* satisfies the equation of geodesic deviation (see Chapter 7):
2851 a 1.5
DI _ gy AT (13.73)
dr dr dr
If we evaluate this equation along the geodesic of the particle A, using egs. (13.71) (removing
the primes) we find
1 d*6z
2 dt?
If the gravitational wave is due to a perturbation of the flat metric, as discussed in this
chapter, the metric can be written as ¢, = 1., + hy,,, and the Riemann tensor

= R, 027 . (13.74)
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because in the TT-gauge h;y = hgo = 0. ¢ and m can assume only the values 2 and 3,
i.e. they refer to the y and 2z components. It follows that

1, PhIT,

RYoom = 0" Rioom = 5 1" 577 13.78
00 ?7 00 2 77 028t2 ’ ( )
and the equation of geodesic deviation (13.74) becomes

s 1, O°HTT,

—bat = - g™, 13.79

a2’ T2 T (13.79)

For ¢ <0 the two particles are at rest relative to each other, and consequently

6x) = 6, with dx) =  const, t<0. (13.80)



Since hy, is a small perturbation, when the wave arrives the relative position of the particles
will change only by infinitesimal quantities, and therefore we put

627 (t) = oz + ozl (t),  t>0, (13.81)

where 535{(15) has to be considered as a small perturbation with respect to the initial position
dz{ . Substituting (13.81) in (13.79), remembering that 0z is a constant and retaining
only terms of order O(h), eq. (13.79) becomes

d2 . 1 . 82 hTTik
ﬁ&c{ =5 o Sk (13.82)
This equation can be integrated and the solution is
A 1
6xd = daf + 3 ATy g, (13.83)

which clearly shows the tranverse nature of the gravitational wave; indeed, using the fact
that if the wave propagates along x only the components hoy = —hgs, hog = hgo are different
from zero, from eqs. (13.83) we find

1
Sxt = dxl + 3 n'thTTy, ak = ) (13.84)
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Thus, the particles will be accelerated only in the plane orthogonal to the direction of
propagation.

Let us now study the effect of the polarization of the wave. Consider a plane wave whose
nonvanishing components are (we omit in the following the superscript T7T")

hyy = —he=2R{A 001 (13.85)
hye = hey=2R{A 0D

Consider two particles located, as indicated in figure (13.1) at (0, yo,0) and (0,0, zo). Let us
consider the polarization '+’ first, i.e. let us assume

AL #0 and Ay =0. (13.86)

Assuming A, real egs. (13.85) give

hyy = —hae = 2A4 cosw(t — %), hye = hy = 0. (13.87)

Ifat t=0 w(t—%) =7 ,eqgs. (13.84) written for the two particles for ¢ >0 give

)], (13.88)

].

1 x
1) z =0, y:y0+§hyyy0:y0[1+A+cosw(t—z

1
2)  y=0, z:zo+§hzz zo:zo[l—fhcosw(t—E
c



After a quarter of a period ( cosw(t — %) = —1)
D s=0 y=wll-A (13.80)
2) y=0, z=z[l+ A4

1) 2 =0, Y = 1o, (13.90)

x

After three quarters of a period ( cosw(t — %) = 1)

1) z =0, y = yo[l + A4l (13.91)
2) y =0, z =zl — A4l

Similarly, if we consider a small ring of particles centered at the origin, the effect produced
by a gravitational wave with polarization '+’ is shown in figure (13.2).
Let us now see what happens if Ay #0 and A, =0 :
hyy =hoe =0, hy. = h.y = 24, cosw(t — —). (13.92)
c

Comparing with eqs. (13.84) we see that a generic particle initially at P = (yo, 29), when
t > 0 will move according to the equations

1 T

Y =yo+ §hyz 20 = Yo + 20Ax cosw(t — E)’ (13.93)
1 T

Z =z + §h2y Yo = 20 + YoAx cosw(t — E)

Let us consider four particles disposed as indicated in figure (13.3)

1) y=r, z=r, (13.94)
2) y= -, z=r,
3) y=—r, z=-r,
4) y=r, z=-r
As before, we shall assume that the initial time ¢ =0 corresponds to w(t—2) =7 . After
a quarter of a period (cosw(t — %) = —1), the particles will have the following positions
1) y=r[l—A], z=r[l— A, (13.95)
2) y=r[—-1—A.], z=r[l+ A,
3) y=r[—1+ A, z=r[-1+ A,
4) y=r[l+ A, z=r[-1—-A].



SO ~ 5 I ]
i ze ] i 2 ]
0 * 0 . > ]
- 1 — - 1 ]
-5 - — -5 - ]
|O _lllllllllllllllllll_ |O _||||||1|1||1|1|||1|—
—1N S SN N = 1N, —1N —K N = 1N
5 [ 1 s5F .
: 2 ¢ : : : i
L i L ® _
0 F . > 0 —»
o 1 . L 1 -
-5 - | _5 - —
|O PR RN TN TN NN T TN TN T NN TN T M TN N TR MO AN |O PN S TN T NN TN TN TN M N TN NN MO T AN TN M AN
—1N R 0O = 10 —1N S =N N = 1N

)

Figure 13.1:
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Figure 13.2:



After half a period cosw(t— %) = 0, and the particles go back to the initial positions. After
three quarters of a period, when cosw(t — %) =1

1) y=r[l+ A, z=r[l+ Ay, (13.96)
2) y=r[—14+ Al z=r[l—A.],

3) y:T[_l_Ax]a Z:T[_l_Ax]a

4) y=r[l— A, z=r[-1+A].

The motion of the particles is indicated in figure (13.3).

It follows that a small ring of particles centered at the origin, will again become an
ellipse, but rotated at 45° (see figure (13.4)) with respect to the case previously analysed.
In conclusion, we can define A, and A, as the polarization amplitudes of the wave.
The wave will be linearly polarized when only one of the two amplitudes is different from
Z€ero.
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Figure 13.3:
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Figure 13.4:



