
Chapter 13

Gravitational Waves

One of the most interesting predictions of the theory of General Relativity is the existence of
gravitational waves. The idea that a perturbation of the gravitational field should propagate
as a wave is, in some sense, intuitive. For example electromagnetic waves were introduced
when the Coulomb theory of electrostatics was replaced by the theory of electrodynamics,
and it was shown that they transport through space the information about the evolution
of charged systems. In a similar way when a mass-energy distribution changes in time, the
information about this change should propagate in the form of waves. However, gravitational
waves have a distinctive feature: due to the twofold nature of gµ⌫ , which is the metric tensor
and the gravitational potential, gravitational waves are metric waves. Thus when they
propagate the geometry, and consequently the proper distance between spacetime points,
change in time.

Gravitational waves can be studied by following two di↵erent approaches, one based on
perturbative methods, the second on the solution of the non linear Einstein equations.

The perturbative approach
Be g0µ⌫ a known exact solution of Einstein’s equations; it can be, for instance, the metric

of flat spacetime ⌘µ⌫ , or the metric generated by a Schwarzschild black hole. Let us consider
a small perturbation of g0µ⌫ caused by some source described by a stress-energy tensor T µ⌫

pert.
We shall write the metric tensor of the perturbed spacetime, gµ⌫ , as follows

gµ⌫ = g0µ⌫ + hµ⌫ , (13.1)

where hµ⌫ is the small perturbation

|hµ⌫ | << |g0µ⌫ |.

It is clear that this assumption is ambiguous, because we should specify in which reference
frame this is true; however we shall assume that this frame does exists.

The inverse metric can be written as

gµ⌫ = g0µ⌫ � hµ⌫ +O(h2) , (13.2)

where the indices of hµ⌫ have been raised with the unperturbed metric

hµ⌫ ⌘ g0µ↵g0 ⌫�h↵� . (13.3)
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Indeed, with this definition,
⇣

g0µ⌫ � hµ⌫)(g0⌫↵ + h⌫↵

⌘

= �µ↵ +O(h2) . (13.4)

In order to find the equations that describe hµ⌫ , we shall write Einstein’s equations for the
metric (13.1) in the form

Rµ⌫ =
8⇡G

c4

✓

Tµ⌫ �
1

2
gµ⌫T

◆

, (13.5)

where Tµ⌫ is the sum of two terms, one associate to the source that generates the background
geometry g0µ⌫ , say T 0

µ⌫ , and one associate to the source of the perturbation �Tµ⌫ , which is of
order h. We remind that the Ricci tensor Rµ⌫ is

Rµ⌫ =
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and that the a�ne connections ��
�µ are
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�µ computed for the perturbed metric (13.1) are
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where ���
�µ (h) are of first order in hµ⌫
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. (13.9)

When we substitute eq. (13.9) in the Ricci tensor we get

Rµ⌫ (gµ⌫) = R0
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(13.10)
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We now have to work out the right-hand side of the Einstein equations (13.5), i.e.
⇣

Tµ⌫ � 1

2

gµ⌫T
⌘

,

and separate the terms which are of order h. Since Tµ⌫ = T 0

µ⌫ + �Tµ⌫

T = gµ⌫Tµ⌫ =
⇣

g0µ⌫ � hµ⌫
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(13.11)

= g0µ⌫T 0

µ⌫ � hµ⌫T 0

µ⌫ � g0µ⌫�Tµ⌫ +O(h2) ⌘ T 0 + �T +O(h2).



Consequently
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Combining eqs. (13.10) and (13.11), and reminding that g0µ⌫ is, by assumption, the exact so-

lution of Einstein’s equations in vacuum Rµ⌫ (g0) =
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for the perturbations hµ⌫ reduce to
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that are linear in hµ⌫ . Their solution describes the propagation of gravitational waves in the
considered background.1 This approximation works su�ciently well in a variety of physical
situations because gravitational waves are very weak. This point will be better understood
in the next chapter, when we will discuss the generation of gravitational waves.

The ”exact” approach
The second approach to the study of gravitational waves seeks for exact solutions of

Einstein’s equations which describe both the source and the emitted wave, but no solution
of this kind has been found so far. Of course the non-linearity of the equations makes
the problem very di�cult; however, it may be noted that also in electrodynamics an exact
solution of Maxwell’s equations appropriate to describe the electromagnetic field produced
by a current which decreases in an electric oscillator due to the emission of electromagnetic
waves has never been found, although Maxwell’s equations are linear.

Exact solutions of Einstein’s equations describing gravitational waves can be found only
if one imposes some particular symmetry as for example plane, spherical, or cylindrical sym-
metry. The interaction of plane waves can also be described in terms of exact solutions, and
due to the non-linearity of the equations of gravity it is very di↵erent from the interaction
of electromagnetic waves.

In the following we shall use the perturbative approach to show that a weak perturbation
of the flat spacetime satisfies the wave equation.

1Notice that the right-hand side of eq.(13.13) is a particular case of the Palatini identity.



13.1 A perturbation of the flat spacetime propagates
as a wave

Let us consider the flat spacetime described by the metric tensor ⌘µ⌫ and a small pertur-
bation hµ⌫ , such that the resulting metric can be written as

gµ⌫ = ⌘µ⌫ + hµ⌫ , |hµ⌫ | << 1. (13.14)

The a�ne connections (13.8) computed for the metric (13.14) give
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+O(h2). (13.15)

Since the metric g0µ⌫ ⌘ ⌘µ⌫ is constant, ��
µ⌫(g0) = 0 and the right-hand side of eq. (13.13)

simply reduces to
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The operator 2F is the D’Alambertian in flat spacetime
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+r2. (13.17)

Einstein’s equations (13.5) for hµ⌫ finally become
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As already discussed in chapter 8, the solution of eqs. (13.18) is not uniquely determined.
If we make a coordinate transformation, the transformed metric tensor is still a solution: it
describes the same physical situation seen from a di↵erent frame. But since we are working
in the weak field limit, we are entitled to make only those transformations which preserve
the condition |h0

µ⌫ | << 1 (note that in this Section we denote the transformed tensor
as h0

µ⌫ rather than as hµ0⌫0, since this simplifies the discussion of infinitesimal coordinate
transformations).

If we make an infinitesimal coordinate transformation

xµ0 = xµ + ✏µ(x), (13.19)

(the prime refers to the coordinate xµ, not to the index µ) where ✏µ is an arbitrary vector
such that @✏µ

@x⌫

is of the same order of hµ⌫ , then
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. (13.20)



Since
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and gµ⌫ = ⌘µ⌫ + hµ⌫ , then (up to O(h2))
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In order to simplify eq. (13.18) it appears convenient to choose a coordinate system in which
the harmonic gauge condition is satisfied, i.e.

gµ⌫��
µ⌫ = 0. (13.23)

Let us see why. This condition is equivalent to say that, up to terms that are first order in
hµ⌫ , the following equation is satisfied 2
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Using this condition the term in square brackets in eq. (13.18) vanishes, and Einstein’s
equations reduce to a simple wave equation supplemented by the condition (13.24)
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(to hereafter, we omit the superscript ’pert’ to indicate the stress-energy tensor associated
to the source of the perturbation). If we introduce the tensor

h̄µ⌫ ⌘ hµ⌫ �
1

2
⌘µ⌫h , (13.26)

where h = ⌘µ⌫hµ⌫ ⌘ hµ
µ, eqs. (13.25) become
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and outside the source where �Tµ⌫ = 0
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Since the first two terms are equal we find
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Thus, we have shown that a perturbation of a flat spacetime propagates as
a wave travelling at the speed of light, and that Einstein’s theory of gravity
predicts the existence of gravitational waves.

As in electrodynamics, the solution of eqs. (13.27) can be written in terms of retarded
potentials

h̄µ⌫(t,x) =
4G

c4

Z Tµ⌫(t� |x-x0|
c ,x0 )

|x-x0 | d3x0, (13.29)

and the integral extends over the past light-cone of the event (t,x). In eq. (13.29) we have
removed the ‘�’ in front of the stress energy tensor which, to hereafter, will be considered as
a quantity of order h. Equation (13.29) describes the gravitational waves generated by the
source Tµ⌫ .

We may now ask how eqs. (13.28) and (13.27) should be modified if, instead of consid-
ering the perturbation of a flat spacetime, we would consider the perturbation of a curved
background. For example, suppose g0µ⌫ is the Schwarzshild solution for a non rotating
black hole. In this case, it is possible to show that, by a suitable choice of the gauge, the
Einstein equations written for certain combinations of the components of the metric tensor,
can be reduced to a form similar to eqs. (13.27). However, since the background spacetime is
now curved, the propagation of the waves will be modified with respect to the flat case. The
curvature will act as a potential barrier by which waves are scattered and the final equation
will have the form

2F�� V (xµ)� = �16⇡G

c4
T (13.30)

where � is the appropriate combination of metric functions, T is a combination of the stress-
energy tensor components, 2F is the d’Alambertian of the flat spacetime and V is the
potential barrier generated by the spacetime curvature. In other words, the perturbations of
a sperically symmetric, stationary gravitational field would be described by a Schroedinger-
like equation! A complete account on the theory of perturbations of black holes can be
found in the book The Mathematical Theory of Black Holes by S. Chandrasekhar, Oxford:
Claredon Press, (1984).

13.2 How to choose the harmonic gauge

We shall now show that if the harmonic-gauge condition is not satisfied in a reference frame,
we can always find a new frame where it is, by making an infinitesimal coordinate transfor-
mation

x�0
= x� + ✏�, (13.31)
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Indeed, when we change the coordinate system �� = gµ⌫��
µ⌫ transforms according to

equation (9.63), i.e.
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therefore in the new gauge the condition ��0 = 0 becomes
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If we neglect second order terms in h eq.(13.36) becomes
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Contracting with ⌘�↵ and remembering that ⌘�↵⌘� = �↵ we finally find
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This equation can in principle be solved to find the components of ✏↵, which identify the
coordinate system in which the harmonic gauge condition is satisfied.

13.3 Plane gravitational waves

The simplest solution of the wave equation in vacuum (13.28) is a monocromatic plane wave
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where Aµ⌫ is the polarization tensor, i.e. the wave amplitude and ~k is the wave vector.
By direct substitution of (13.37) into the first equation we find
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thus, (13.37) is a solution of (13.28) if ~k is a null vector. In addition the harmonic gauge
condition requires that
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h̄µ

⌫ = 0 , (13.39)

which can be written as
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Using eq. (13.37) it gives
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This further condition expresses the orthogonality of the wave vector and of the polarization
tensor.

Since h̄µ⌫ is constant on those surfaces where

k↵x
↵ = const, (13.42)

these are the equations of the wavefront. It is conventional to refer to k0 as !
c , where !

is the frequency of the waves. Consequently
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Since ~k is a null vector
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where (kx, ky, kz) are the components of the unit 3-vector k.

13.4 The TT -gauge

We now want to see how many of the ten components of hµ⌫ have a real physical meaning,
i.e. what are the degrees of freedom of a gravitational plane wave. Let us consider a wave
propagating in flat spacetime along the x1 = x-direction. Since hµ⌫ is independent of y
and z, eqs. (13.28) become (as before we raise and lower indices with ⌘µ⌫ )
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Let us consider, for example, a progressive wave h̄µ
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eq. (13.47) gives
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This equation can be integrated, and the constants of integration can be set equal to zero
because we are interested only in the time-dependent part of the solution. The result is
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t = h̄x

t, h̄t
y = h̄x

y, (13.50)

h̄t
x = h̄x

x, h̄t
z = h̄x

z.

We now observe that the harmonic gauge condition does not determine the gauge uniquely.
Indeed, if we make an infinitesimal coordinate transformation

xµ0 = xµ + ✏µ, (13.51)

from eq. (13.33) we find that, if in the old frame �⇢ = 0, in the new frame ��0 = 0, provided
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namely, if ✏µ satisfies the wave equation

2F ✏
µ = 0. (13.53)

If we have a solution of the wave equation,

2F h̄µ⌫ = 0 (13.54)

and we perform a gauge transformation, the perturbations in the new gauge
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and, due to (13.53), the new tensor is solution of the wave equation,

2F h̄
0
µ⌫ = 0 . (13.57)

It can be shown that the converse is also true: it is always possible to find a vector ✏µ
satisfying (13.53) to set to zero four components of h̄µ⌫ solution of (13.54).

Thus, we can use the four functions ✏µ to set to zero the following four quantities

h̄t
x = h̄t
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z = h̄y

y + h̄z
z = 0. (13.58)



From eq. (13.50) it then follows that
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The remaining non-vanishing components are h̄z
y and h̄y

y� h̄z
z. These components cannot

be set equal to zero, because we have exhausted our gauge freedom.
From eqs. (13.58) and (13.59) it follows that
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z = 0, (13.60)

and since
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it follows that
hµ

µ = 0, ! h̄µ
⌫ ⌘ hµ

⌫ , (13.62)

i.e. in this gauge hµ⌫ and h̄µ⌫ coincide and are traceless. Thus, a plane gravitational
wave propagating along the x-axis is characterized by two functions hxy and hyy = �hzz,
while the remaining components can be set to zero by choosing the gauge as we have shown:

hµ⌫ =

0

B

B

B

@

0 0 0 0
0 0 0 0
0 0 hyy hyz

0 0 hyz �hyy

1

C

C

C

A

. (13.63)

In conclusion, a gravitational wave has only two physical degrees of freedom
which correspond to the two possible polarization states. The gauge in which this
is clearly manifested is called the TT -gauge, where ‘TT -’ indicates that the components of
the metric tensor hµ⌫ are di↵erent from zero only on the plane orthogonal to the direction
of propagation (transverse), and that hµ⌫ is traceless.

13.5 How does a gravitational wave a↵ect the motion
of a single particle

Consider a particle at rest in flat spacetime before the passage of the wave. We set an
inertial frame attached to this particle, and take the x-axis coincident with the direction of
propagation of an incoming TT -gravitational wave. The particle will follow a geodesic of the
curved spacetime generated by the wave

d2x↵

d⌧ 2
+ �↵

µ⌫
dxµ

d⌧

dx⌫

d⌧
⌘ dU↵

d⌧
+ �↵

µ⌫U
µU ⌫ = 0. (13.64)

At t = 0 the particle is at rest (U↵ = (1, 0, 0, 0)) and the acceleration impressed by the
wave will be

 

dU↵

d⌧

!

(t=0)

= ��↵
00

= �1

2
⌘↵� [h�0,0 + h

0�,0 � h
00,�] , (13.65)



but since we are in the TT -gauge it follows that
 

dU↵

d⌧

!

(t=0)

= 0. (13.66)

Thus, U↵ remains constant also at later times, which means that the particle is not acceler-
ated neither at t = 0 nor later! It remains at a constant coordinate position, regardeless
of the wave. We conclude that the study of the motion of a single particle is not
su�cient to detect a gravitational wave.

13.6 Geodesic deviation induced by a gravitational wave

We shall now study the relative motion of particles induced by a gravitational wave. Consider
two neighbouring particles A and B, with coordinates xµ

A, x
µ
B. We shall assume that the two

particles are initially at rest, and that a plane-fronted gravitational wave reaches them at
some time t = 0, propagating along the x-axis. We shall also assume that we are in the TT -
gauge, so that the only non-vanishing components of the wave are those on the (y, z)-plane.
In this frame, the metric is

ds2 = gµ⌫dx
µdx⌫ = (⌘µ⌫ + hTT

µ⌫ )dx
µdx⌫ . (13.67)

Since g
00

= ⌘
00

= �1, we can assume that both particles have proper time ⌧ = ct. Since the
two particles are initially at rest, they will remain at a constant coordinate position even
later, when the wave arrives, and their coordinate separation

�xµ = xµ
B � xµ

A (13.68)

remains constant. However, since the metric changes, the proper distance between them will
change. For example if the particles are on the y-axis,

�l =
Z

ds =
Z y

B

y
A

|gyy|
1
2dy =

Z y
B

y
A

|1 + hTT
yy(t� x/c)| 12dy 6= constant. (13.69)

We now want to study the e↵ect of the wave by using the equation of geodesic deviation.
To this purpose, it is convenient to change coordinate system and use a locally inertial
frame {x↵0} centered on the geodesic of one of the two particles, say the particle A; in the
neighborhood of A the metric is

ds2 = ⌘↵0�0dx
↵0dx�0 +O(|�x|2) . (13.70)

i.e. it di↵ers from Minkowski’s metric by terms of order |�x|2. It may be reminded that, as
discussed in Chapter 1, it is always possible to define such a frame.

In this frame the particle A has space coordinates xi0
A = 0 (i = 1, 2, 3), and

tA = ⌧/c ,
dxµ0

d⌧ |A
= (1, 0, 0, 0) , gµ0⌫0 |A = ⌘µ0⌫0 , gµ0⌫0,↵0 |A = 0 (i.e.�↵0

µ0⌫0 |A = 0) ,

(13.71)



where the subscript |Ameans that the quantity is computed along the geodesic of the particle
A. Moreover, the space components of the vector �xµ0

which separates A and B are the
coordinates of the particle B:

xi0

B = �xi0 . (13.72)

To simplify the notation, in the following we will rename the coordinates of this locally
inertial frame attached to A as {xµ}, and we will drop all the primes.

The separation vector �xµ satisfies the equation of geodesic deviation (see Chapter 7):

D2�xµ

d⌧ 2
= Rµ

↵��

dx↵

d⌧

dx�

d⌧
�x� . (13.73)

If we evaluate this equation along the geodesic of the particle A, using eqs. (13.71) (removing
the primes) we find

1

c2
d2�xi

dt2
= Ri

00j�x
j . (13.74)

If the gravitational wave is due to a perturbation of the flat metric, as discussed in this
chapter, the metric can be written as gµ⌫ = ⌘µ⌫ + hµ⌫ , and the Riemann tensor

R↵�µ =
1

2

 

@2g↵µ
@x@x�

+
@2g�
@x↵@xµ

� @2g↵�
@x@xµ

� @2gµ
@x↵@x�

!

+ (13.75)

+ g⌫� (�
⌫
��

�
↵µ � �⌫

µ�
�
↵�) ,

after neglecting terms which are second order in hµ⌫ , becomes

R↵�µ =
1

2

 

@2h↵µ

@x@x�
+

@2h�

@x↵@xµ
� @2h↵�

@x@xµ
� @2hµ

@x↵@x�

!

+O(h2); (13.76)

consequently

Ri00m =
1

2

 

@2him

@x0@x0

+
@2h

00

@xi@xm
� @2hi0

@x0@xm
� @2h

0m

@xi@x0

!

=
1

2
hTT
im,00, (13.77)

because in the TT -gauge hi0 = h
00

= 0. i and m can assume only the values 2 and 3,
i.e. they refer to the y and z components. It follows that

R�
00m = ⌘�iRi00m =

1

2
⌘�i

@2hTT
im

c2@t2
, (13.78)

and the equation of geodesic deviation (13.74) becomes

d2

dt2
�x� =

1

2
⌘�i

@2hTT
im

@t2
�xm. (13.79)

For t  0 the two particles are at rest relative to each other, and consequently

�xj = �xj
0

, with �xj
0

= const, t  0. (13.80)



Since hµ⌫ is a small perturbation, when the wave arrives the relative position of the particles
will change only by infinitesimal quantities, and therefore we put

�xj(t) = �xj
0

+ �xj
1

(t), t > 0, (13.81)

where �xj
1

(t) has to be considered as a small perturbation with respect to the initial position
�xj

0

. Substituting (13.81) in (13.79), remembering that �xj
0

is a constant and retaining
only terms of order O(h), eq. (13.79) becomes

d2

dt2
�xj

1

=
1

2
⌘ji

@2hTT
ik

@t2
�xk

0

. (13.82)

This equation can be integrated and the solution is

�xj = �xj
0

+
1

2
⌘ji hTT

ik �xk
0

, (13.83)

which clearly shows the tranverse nature of the gravitational wave; indeed, using the fact
that if the wave propagates along x only the components h

22

= �h
33

, h
23

= h
32

are di↵erent
from zero, from eqs. (13.83) we find

�x1 = �x1

0

+
1

2
⌘11hTT

1k �xk
0

= �x1

0

(13.84)

�x2 = �x2

0

+
1

2
⌘22hTT

2k �xk
0

= �x2

0

+
1

2

⇣

hTT
22

�x2

0

+ hTT
23

�x3

0

⌘

�x3 = �x3

0

+
1

2
⌘33hTT

3k �xk
0

= �x3

0

+
1

2

⇣

hTT
32

�x2

0

+ hTT
33

�x3

0

⌘

.

Thus, the particles will be accelerated only in the plane orthogonal to the direction of
propagation.

Let us now study the e↵ect of the polarization of the wave. Consider a plane wave whose
nonvanishing components are (we omit in the following the superscript TT )

hyy = �hzz = 2<
n

A
+

ei!(t�
x

c

)

o

, (13.85)

hyz = hzy = 2<
n

A⇥e
i!(t�x

c

)

o

.

Consider two particles located, as indicated in figure (13.1) at (0, y
0

, 0) and (0, 0, z
0

). Let us
consider the polarization ’+’ first, i.e. let us assume

A
+

6= 0 and A⇥ = 0. (13.86)

Assuming A
+

real eqs. (13.85) give

hyy = �hzz = 2A
+

cos!(t� x

c
), hyz = hzy = 0. (13.87)

If at t = 0 !(t� x
c ) =

⇡
2

, eqs. (13.84) written for the two particles for t > 0 give

1) z = 0, y = y
0

+
1

2
hyy y

0

= y
0

[1 + A
+

cos!(t� x

c
)], (13.88)

2) y = 0, z = z
0

+
1

2
hzz z

0

= z
0

[1� A
+

cos!(t� x

c
)].



After a quarter of a period ( cos!(t� x
c ) = �1)

1) z = 0, y = y
0

[1� A
+

], (13.89)

2) y = 0, z = z
0

[1 + A
+

].

After half a period ( cos!(t� x
c ) = 0)

1) z = 0, y = y
0

, (13.90)

2) y = 0, z = z
0

.

After three quarters of a period ( cos!(t� x
c ) = 1)

1) z = 0, y = y
0

[1 + A
+

], (13.91)

2) y = 0, z = z
0

[1� A
+

].

Similarly, if we consider a small ring of particles centered at the origin, the e↵ect produced
by a gravitational wave with polarization ’+’ is shown in figure (13.2).

Let us now see what happens if A⇥ 6= 0 and A
+

= 0 :

hyy = hzz = 0, hyz = hzy = 2A⇥ cos!(t� x

c
). (13.92)

Comparing with eqs. (13.84) we see that a generic particle initially at P = (y
0

, z
0

), when
t > 0 will move according to the equations

y = y
0

+
1

2
hyz z

0

= y
0

+ z
0

A⇥ cos!(t� x

c
), (13.93)

z = z
0

+
1

2
hzy y

0

= z
0

+ y
0

A⇥ cos!(t� x

c
).

Let us consider four particles disposed as indicated in figure (13.3)

1) y = r, z = r, (13.94)

2) y = �r, z = r,

3) y = �r, z = �r,

4) y = r, z = �r.

As before, we shall assume that the initial time t = 0 corresponds to !(t� x
c ) =

⇡
2

. After
a quarter of a period (cos!(t� x

c ) = �1), the particles will have the following positions

1) y = r[1� A⇥], z = r[1� A⇥], (13.95)

2) y = r[�1� A⇥], z = r[1 + A⇥],

3) y = r[�1 + A⇥], z = r[�1 + A⇥],

4) y = r[1 + A⇥], z = r[�1� A⇥].



,

,

Figure 13.1:



,

,

Figure 13.2:



After half a period cos!(t� x
c ) = 0, and the particles go back to the initial positions. After

three quarters of a period, when cos!(t� x
c ) = 1

1) y = r[1 + A⇥], z = r[1 + A⇥], (13.96)

2) y = r[�1 + A⇥], z = r[1� A⇥],

3) y = r[�1� A⇥], z = r[�1� A⇥],

4) y = r[1� A⇥], z = r[�1 + A⇥].

The motion of the particles is indicated in figure (13.3).
It follows that a small ring of particles centered at the origin, will again become an

ellipse, but rotated at 450 (see figure (13.4)) with respect to the case previously analysed.
In conclusion, we can define A

+

and A⇥ as the polarization amplitudes of the wave.
The wave will be linearly polarized when only one of the two amplitudes is di↵erent from
zero.
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Figure 13.3:
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Figure 13.4:


