
Chapter 14

Gravitational waves generation

In this chapter we will introduce the quadrupole formalism which allows to estimate the
gravitational energy and the waveforms emitted by an evolving physical system described
by the stress-energy tensor T µ⌫ . We shall solve eq. (13.27) under the following assumption:
we shall assume that the region where the source is confined, namely

|xi| < ✏, Tµ⌫ 6= 0, (14.1)

is much smaller than the wavelenght of the emitted radiation, �GW = 2⇡c
! . This implies that

2⇡c

!
� ✏ ! ✏ ! ⌧ c ! vtypical ⌧ c,

i.e. the velocities typical of the physical processes we are considering are much smaller than
the speed of light; for this reason this is called the slow-motion approximation.
Let us consider the first equation in (13.27)

2F h̄µ⌫ = �16⇡G

c4
Tµ⌫ , (14.2)

where

h̄µ⌫ = hµ⌫ �
1

2
⌘µ⌫h and 2F =

"

� 1

c2
@2

@t2
+r2

#

.

By Fourier-expanding both h̄µ⌫ and Tµ⌫

Tµ⌫(t, x
i) =

Z +1

�1
Tµ⌫(!, x

i)e�i!t d!, (14.3)

h̄µ⌫(t, x
i) =

Z +1

�1
h̄µ⌫(!, x

i)e�i!t d!, i = 1, 3

eq. (14.2) becomes "

r2 +
!2

c2

#

h̄µ⌫(!, x
i) = �KTµ⌫(!, x

i) (14.4)

where

K =
16⇡G

c4
. (14.5)
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We shall solve eq. (14.4) outside and inside the source, matching the two solutions across
the source boundary.

The exterior solution
Outside the source T µ⌫ = 0 and eq. (14.4) becomes

"

r2 +
!2

c2

#

h̄µ⌫(!, x
i) = 0. (14.6)

In polar coordinates, the Laplacian operator r2 is

r2 =
1

r2
@

@r

"

r2
@

@r

#

+
1

r2 sin ✓

@

@✓

"

sin ✓
@

@✓

#

+
1

r2 sin2 ✓

@2

@�2
.

We shall consider the simplest solution of this equation, i.e. one which does not depend on
� and ✓:

h̄µ⌫(!, r) =
Aµ⌫(!)

r
ei

!
c r +

Zµ⌫(!)

r
e�i!c r.

This solution represents a spherical wave, with an ingoing part (⇠ e�i!c r), and an outgoing
( ⇠ ei

!
c r) part; indeed, substituting in the second eq. (14.3) h̄µ⌫(!, xi) by ⇠ e±i!c r the result

of the integration over ! gives a function of (t⌥ r
c ) respectively.

Since we are interested only in the wave emitted from the source, we shall set Zµ⌫ = 0,
and consider the solution

h̄µ⌫(!, r) =
Aµ⌫(!)

r
ei

!
c r. (14.7)

This is the solution outside the source and on its boundary, where T µ⌫ vanishes as well. Aµ⌫

is the wave amplitude to be found by solving the equations inside the source.

The interior solution
The wave equation "

r2 +
!2

c2

#

h̄µ⌫(!, x
i) = �KTµ⌫(!, x

i) (14.8)

can be solved for each assigned value of the indices µ, ⌫. To solve eq. (14.8) let us integrate
over the source volume

Z

V

"

r2 +
!2

c2

#

h̄µ⌫(!, x
i)d3x = �K

Z

V
Tµ⌫(!, x

i)d3x.

The first term can be expanded as follows
Z

V
r2 h̄µ⌫(!, x

i) d3x =
Z

V
div[rrr h̄µ⌫ ] d

3x =
Z

S

⇣
rrr h̄µ⌫

⌘k
dSk (14.9)

where rrr h̄µ⌫ is the gradient of h̄µ⌫ , S is the surface surrounding the source volume, and we
have applied Gauss theorem to rrr h̄µ⌫ . Using eq. (14.7) the surface integral can be approxi-
mated as follows
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Z

S

⇣
rrr h̄µ⌫

⌘k
dSk ' 4⇡ ✏2

 
d

dr

Aµ⌫

r
ei

!
c r

!

r=✏

= 4⇡ ✏2

� Aµ⌫

r2
ei

!
c r +

Aµ⌫

r

✓
i!

c

◆
ei

!
c r
�

r=✏
;

if we keep the leading term and discard terms of order ✏, we find 1

Z

V
r2 h̄µ⌫(!, x

i) d3x ' � 4⇡ Aµ⌫(!),

and eq. (14.8) becomes

�4⇡ Aµ⌫ +
Z

V

!2

c2
h̄µ⌫(!, x

i) d3x = �K
Z

V
Tµ⌫(!, x

i) d3x. (14.10)

The second term Z

V

!2

c2
h̄µ⌫(!, x

i) d3x

satisfies the following inequality

Z

V

!2

c2
h̄µ⌫(!, x

i) d3x ⇠< |h̄µ⌫ |max
!2

c2
4

3
⇡✏3, (14.11)

where |h̄µ⌫ |max is the maximum reached by h̄µ⌫ in the volume V , and since the right-hand
side of eq. (14.11) is of order ✏3 it can be neglected. Consequently eq. (14.10) becomes

�4⇡Aµ⌫(!) = �K
Z

V
Tµ⌫(!, x

i) d3x (14.12)

i.e.

Aµ⌫(!) =
4G

c4

Z

V
Tµ⌫(!, x

i) d3x.

Thus, the solution of the wave equation inside the source gives the wave amplitude Aµ⌫(!)
as an integral of the stress-energy tensor of the source over the source volume. Knowing
Aµ⌫(!) we finally find

h̄µ⌫(!, r) =
4G

c4
· e

i ! r
c

r

Z

V
Tµ⌫(!, x

i) d3x, (14.13)

or, by the inverse Fourier transform

h̄µ⌫(t, r) =
4G

c4
1

r

Z

V
Tµ⌫(t�

r

c
, xi) d3x. (14.14)

This is the gravitational signal emitted by the source.
The integral in (14.14) can be further simplified, but in the meantime note that:

1It should be noted that ei
!
c r ⇠ 1 since we have assumed that �GW >> ✏.
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1) The solution (14.14) for h̄µ⌫ automatically satisfies the second eq. (13.27), i.e. the
harmonic gauge condition

@

@xµ
h̄µ

⌫ = 0.

To prove this, we first notice that the solution (14.14) is equivalent to the expression (13.29)

h̄µ⌫(t,x) =
4G

c4

Z

V

Tµ⌫(t� |x-x0|
c ,x0)

|x-x0| d3x0; (14.15)

indeed, since
|x0| < ✏ , and r � ✏, (14.16)

then
r ⌘ |x| ' |x-x’|. (14.17)

By defining the following function

g (~x� ~x 0) ⌘ 4G

c5
1

|x-x0|�
"

t0 �
 

t� |x-x0|
c

!#

, (14.18)

where ~x = (ct,x) and ~x 0 = (ct0,x0), eq. (14.15) can be written as a four-dimensional integral
as follows

h̄µ⌫(~x) =
Z

⌦
Tµ⌫(~x

0) g (~x� ~x 0) d4x0, (14.19)

where ⌦ ⌘ V ⇥ I, and I is the time interval to be taken such that g(~x� ~x0) vanishes at the

extrema of I; this happens if I is so large that, for all x0 2 V , the expression t � |x-x0|
c is

inside I; indeed, from the definition (14.18) g is di↵erent from zero only for t0 = t� |x-x0|
c .

Since g is a function of the di↵erence (~x� ~x0), then

@

@xµ
[g (~x� ~x 0)] = � @

@xµ 0 [g (~x� ~x 0)] . (14.20)

Consequently,

@

@xµ
h̄µ⌫(~x) =

Z

⌦
T µ⌫(~x 0)

@

@xµ
g (~x� ~x 0) d4x0 = �

Z

⌦
T µ⌫(~x 0)

@

@xµ 0 g (~x� ~x 0) d4x0 . (14.21)

The last term can be integrated by parts and gives

Z

⌦
T µ⌫(~x 0)

@

@xµ 0 g (~x� ~x 0) d4x0 =
Z

⌦
d4x0 @

@xµ 0 [T
µ⌫(~x 0)g (~x� ~x 0)]

�
Z

⌦
d4x0

"
@

@xµ 0T
µ⌫(~x 0)g (~x� ~x 0)

#

d4x0 = 0 .

The first integral vanishes since T µ⌫ = 0 on the boundary of V and g = 0 on the boundary
of I, the second because the stress-energy tensor satisfies the conservation law T µ⌫

,⌫ = 0.
Consequently

@

@xµ
h̄µ⌫(~x) = 0 .
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Q.E.D.
2) In order to extract the physical components of the wave we still have to project h̄µ⌫ on
the TT-gauge.
3) Eq. (14.14) has been derived on two very strong assumptions: weak field (gµ⌫ = ⌘µ⌫+hµ⌫)
and slow motion (vtypical << c). For this reason that expression has to be considered as an
estimate of the emitted radiation by the system, unless the two conditions are really satisfied.

14.1 The Tensor Virial Theorem

In order to simplify the integral in eq. (14.14) we shall use the conservation law that Tµ⌫

satisfies (see chapter 7)

@T µ⌫

@x⌫
= 0, ! 1

c

@T µ0

@t
= � @T µk

@xk
, µ = 0..3, k = 1..3. (14.22)

Let us integrate this equation over the source volume, assuming the index µ is fixed

1

c

@

@t

Z

V
T µ0d3x = �

Z

V

@T µk

@xk
d3x.

By Gauss’ theorem, the integral over the volume is equal to the flux of T µk across the surface
S enclosing that volume, thus the right-hand-side becomes

Z

V

@T µk

@xk
d3x =

Z

S
T µkdSk.

By definition, on S T µ⌫ = 0 and consequently the surface integral vanishes; thus

1

c

@

@t

Z

V
T µ0d3x = 0, !

Z

V
T µ0d3x = const. (14.23)

From eq. (14.14) it follows that

h̄µ0 = const, µ = 0..3,

and since we are interested in the time-dependent part of the field we shall put

h̄µ0 = 0, µ = 0..3. (14.24)

(Indeed, in the TT-gauge h̄µ0 = 0.) We shall now prove the Tensor-Virial Theorem which
establishes that

1

c2
@2

@t2

Z

V
T 00 xk xn d3x = 2

Z

V
T kn d3x, k, n = 1..3. (14.25)

Let us consider the space-components of the conservation law (14.22)

@T n0

@x0
= �@T ni

@xi
, i, n = 1..3;
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multiply both members by xk and integrate over the source volume

1

c

@

@t

Z

V
T n0 xk d3x = �

Z

V

@T ni

@xi
xk d3x

= �
2

4
Z

V

@
⇣
T ni xk

⌘

@xi
d3x�

Z

V
T ni @xk

@xi
d3x

3

5

= �
Z

S

⇣
T ni xk

⌘
dSi +

Z

V
T nk d3x,

(remember that @xk

@xi = �ki ). As before
Z

S

⇣
T ni xk

⌘
dSi = 0, therefore

1

c

@

@t

Z

V
T n0 xk d3x =

Z

V
T nk d3x.

Since T nk is symmetric we can rewrite this equation in the following form

1

2c

@

@t

Z

V

⇣
T n0 xk + T k0 xn

⌘
d3x =

Z

V
T nk d3x. (14.26)

Let us now consider the 0 component of the conservation law

1

c

@T 00

@t
+

@T 0i

@xi
= 0, i = 1..3

multiply by xkxn and integrate over V

1

c

@

@t

Z

V
T 00 xk xn d3x = �

Z

V

@T 0i

@xi
xk xn d3x

= �
2

4
Z

V

@
⇣
T 0i xk xn

⌘

@xi
d3x�

Z

V

 

T 0i @xk

@xi
xn + T 0i xk @xn

@xi

!

d3x

3

5

= �
Z

S

⇣
T 0i xk xn

⌘
dSi +

Z

V

⇣
T 0k xn + T 0n xk

⌘
d3x

the first integral vanishes and this equation becomes

1

c

@

@t

Z

V
T 00 xk xn d3x =

Z

V

⇣
T 0k xn + T 0n xk

⌘
d3x.

If we now di↵erentiate with respect to x0 we find

1

c2
@2

@t2

Z

V
T 00 xk xn d3x =

1

c

@

@t

Z

V

⇣
T 0k xn + T 0n xk

⌘
d3x,

and using eq. (14.26) we finally find

1

c2
@2

@t2

Z

V
T 00 xk xn d3x = 2

Z

V
T kn d3x, k, n = 1, 3. (14.27)



CHAPTER 14. GRAVITATIONAL WAVES GENERATION 188

The left-hand-side of this equation is the second time derivative of the quadrupole mo-
ment tensor of the system

qkn(t) =
1

c2

Z

V
T 00(t, xi) xk xnd3x, k, n = 1, 3, (14.28)

which is a function of time only. Thus, in conclusion

Z

V
T kn(t, xi) d3x =

1

2

d2

dt2
qkn(t).

By using eqs. (14.14) and (14.24) we finally find

8
>>><

>>>:

h̄µ0 = 0, µ = 0..3

h̄ik(t, r) =
2G

c4r
·
"
d2

dt2
qik(t� r

c
)

# . (14.29)

This is the gravitational wave emitted by a gravitating system evolving in time. It can be
composed of masses or of any form of energy, because mass and energy are both sources of
the gravitational field.

NOTE THAT

1. G
c4 ⇠ 8 · 10�50 s2/g cm : this is the reason why gravitational waves are extremely
weak!!

2. In order to make the physical degrees of freedom explicitely manifest we still have to
transform to the TT-gauge.

3. These equations have been derived on very strong assumptions: one is that T µ⌫
,⌫ = 0,

i.e. that the motion of the bodies is dominated by non-gravitational forces. However,
and remarkably, the result (14.29) depends only on the sources motion and not on the
forces acting on them.

4. A system of accelerated charged particles has a time-varying dipole moment

~dEM =
X

i

qi~ri

and it will emit dipole radiation, the flux of which depends on the second time derivative
of ~dEM . For an isolated system of masses we can define a gravitational dipole moment

~dG =
X

i

mi~ri,

which satisfies the conservation law of the total momentum of an isolated system

d

dt
~dG = ~0.
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For this reason, gravitational waves do not have a dipole contribution. It should be
stressed that for a spherical or axisymmetric, stationary distribution of matter (or
energy) the quadrupole moment is a constant, even if the body is rotating. Thus,
a spherical or axisymmetric star does not emit gravitational waves; similarly a star
which collapses in a perfectly spherically symmetric way has a vanishing d2qik

dt2 and does
not emit gravitational waves. To produce these waves we need a certain degree of
asymmetry, as it occurs for instance in the non-radial pulsations of stars, in a non
spherical gravitational collapse, in the coalescence of massive bodies etc.

14.2 How to transform to the TT-gauge

The solution (14.29) describes a spherical wave far from the emitting source. Locally, it
looks like a plane wave propagating along the direction of the unit vector orthogonal to the
wavefront

n↵ = (0, ni), i = 1.., 3 (14.30)

where

ni =
xi

r
. (14.31)

In order to express this waveform in the TT-gauge we shall make an infinitesimal coordinate
transformation xµ 0 = xµ + ✏µ and choose the vector ✏µ which satisfies the wave equation
2F ✏µ = 0, so that the harmonic gauge condition is preserved, as explained in chapter 14.
The conditions to impose on the perturbed metric are

h̄0
↵� n� = 0, trasverse wave condition

h̄0
↵� ⌘↵� = 0, vanishing trace.

It should be mentioned that the transverse-wave condition implies that h̄µ0 = 0, µ = 0, 3
as required in eq. (14.24). Indeed, given the wave-vector kµ = (k0, k0ni) we know by eq.
(13.41) that kµh̄0

µ⌫ = 0 , i.e.
k0h̄0

0⌫ + k0nih̄0
i⌫ = 0.

The second term vanishes because of the trasverse wave condition, therefore

h0
0⌫ = 0.

We remind here that, as shown in eq. (13.62), in the TT-gauge h̄µ⌫ and hµ⌫ coincide.
To hereafter, we shall work in the 3-dimensional euclidean space with metric �ij.
Consequently, there will be no di↵erence between covariant and contravariant
indices.

We shall now describe a procedure to project the wave in the TT-gauge, which is equiv-
alent to perform the coordinate transformation mentioned above. As a first step, we define
the operator which projects a vector onto the plane orthogonal to the direction of n

Pjk ⌘ �jk � njnk . (14.32)
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Indeed, it is easy to verify that for any vector V j, PjkV k is orthogonal to nj, i.e. (PjkV k)nj =
0, and that

P j
kP

k
lV

l = P j
lV

l . (14.33)

Note that Pjk = Pkj, i.e. Pjk is symmetric. The projector is transverse, i.e.

njPjk = 0 . (14.34)

Then, we define the transverse–traceless projector:

Pjkmn ⌘ PjmPkn �
1

2
PjkPmn . (14.35)

which “extracts” the transverse-traceless part of a

 
0
2

!

tensor. In fact, using the definition

(14.35), it is easy to see that it satisfies the following properties

• Pjklm = Plmjk

• Pjklm = Pkjml

and
PjkmnPmnrs = Pjkrs ; (14.36)

• it is transverse:

njPjkmn = nkPjkmn = nmPjkmn = nnPjkmn = 0 ; (14.37)

• it is traceless:
�jkPjkmn = �mnPjkmn = 0 . (14.38)

Since hjk and h̄jk di↵er only by the trace, and since the projector Pjklm extracts the
traceless part of a tensor (eq. 14.38), the components of the perturbed metric tensor in the
TT-gauge can be obtained by applying the projector Pjkmn either to hjk or to h̄jk

hTT
jk = Pjkmnhmn = Pjkmnh̄mn. (14.39)

By applying P on h̄jk defined in eq. (14.29) we get
8
><

>:

hTT
µ0 = 0, µ = 0, 3

hTT
jk (t, r) =

2G

c4r
·
"
d2

dt2
QTT

jk (t� r

c
)

#
(14.40)

where
QTT

jk ⌘ Pjkmnqmn (14.41)

is the transverse–traceless part of the quadrupole moment. Sometimes it is useful to
define the reduced quadrupole moment Qjk

Qjk ⌘ qjk �
1

3
�jkq

m
m (14.42)

whose trace is zero by definition, i.e.

�jkQjk = 0 , (14.43)

and from eq. (14.38), it follows that

QTT
jk = Pjkmnqmn = PjkmnQmn . (14.44)
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14.3 Gravitational wave emitted by a harmonic oscil-
lator

Let us consider a harmonic oscillator composed of two equal masses m oscillating at a
frequency ⌫ = !

2⇡ with amplitude A. Be l0 the proper length of the string when the system
is at rest. Assuming that the oscillator moves on the x-axis, the position of the two masses
will be (

x1 = �1
2 l0 � A cos!t

x2 = +1
2 l0 + A cos!t

.

The 00-component of the stress-energy tensor of the system is

z

x

y

T 00 =
2X

n=1

cp0 �(x� xn) �(y) �(z);

and since v << c, ! � ⇠ 1 ! p0 = mc, it reduces to

T 00 = mc2
2X

n=1

�(x� xn) �(y) �(z);

the xx-component of the quadrupole moment qik(t) = 1
c2
R
V T 00(t,x) xi xkdx3 is

qxx = qxx = m
Z

V
�(x� x1) x

2 dx �(y) dy �(z) dz (14.45)

+
Z

V
�(x� x2) x

2 dx �(y) dy �(z) dz
�

= m
h
x2
1 + x2

2

i
= m


1

2
l20 + 2A2 cos2 !t+ 2Al0 cos !t

�

= m
h
cost+ A2 cos 2!t+ 2Al0 cos !t

i
,
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where we have used the trigonometric expression cos 2↵ = 2 cos2 ↵� 1.
The zz-component of the quadrupole moment is

qzz = = m
Z

V
�(x� x1) dx �(y) dy �(z) z2 dz

+
Z

V
�(x� x2) dx �(y) dy �(z) z2 dz

�
= 0

because
Z

V
z2 �(z) dz = 0. Since the motion is confined to the x-axis, all remaining

components of qij vanish.
We shall compute, as an example, the wave emerging in the z-direction; in this case n =
x
r ! (0, 0, 1) and

Pjk = �jk � njnk =

0

B@
1 0 0
0 1 0
0 0 0

1

CA .

By applying to Qij the transverse-traceless projector Pjkmn constructed from Pjk, we find

QTT
xx =

✓
PxmPxn �

1

2
PxxPmn

◆
qmn =

✓
PxxPxx �

1

2
P 2
xx

◆
qxx =

1

2
qxx, (14.46)

QTT
yy =

✓
PymPyn �

1

2
PyyPmn

◆
qmn = �1

2
PyyPxxqxx = �1

2
qxx,

QTT
xy =

✓
PxmPyn �

1

2
PxyPmn

◆
qmn = 0,

QTT
zz =

✓
PzmPzn �

1

2
PzzPmn

◆
qmn = 0.

In addition QTT
zx = QTT

zy = 0. Using these expressions eqs. (14.40) become
8
>>><

>>>:

hTT
µ0 = 0

hTT
zi = 0, hTT

xy = 0

hTT
xx(t, z) = �hTT

yy(t, z) =
G

c4z

d2

dt2
qxx(t�

z

c
),

(14.47)

and using eq. (14.45)

hTT
xx = �hTT

yy =
G

c4z
·
"
d2

dt2
qxx(t�

z

c
)

#

, (14.48)

= � 2Gm

c4z
!2


2A2 cos 2!(t� z

c
) + Al0 cos !(t� z

c
)
�
.

Thus, radiation emitted by the harmonic oscillator along the z-axis is linearly polarized.
If, for instance, we consider two masses m = 103 kg, with l0 = 1 m, A = 10�4 m, and ! = 104

rad/s, the term [2A2 cos 2!t] is negligible, and the dominant term is at the same frequency
of the oscillations:

hTT
xx ⇠ �2Gm

c4z
!2 Al0 cos !(t� z

c
) ⇠ 1.6 · 10�35

z
,

which is, as expected, very very small.
It should be noticed that due to the symmetry of the system, the wave emitted along y will
be the same. To find the wave emitted along x, we choose n = (1, 0, 0) and use the same
procedure: no radiation will be found.
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14.4 Gravitational wave emitted by a binary system in
circular orbit

We shall now estimate the gravitational signal emitted by a binary system composed of two
stars moving on a circular orbit around their common center of mass. For simplicity we shall
assume that the two stars of mass m1 and m2 are point masses. Be l0 the orbital separation,
M the total mass

M ⌘ m1 +m2, (14.49)

and µ the reduced mass

µ ⌘ m1m2

M
. (14.50)

Let us consider a coordinate frame with origin coincident with the center of mass of the
system as indicated in figure (14.1) and be

l0 = r1 + r2, r1 =
m2l0
M

, r2 =
m1l0
M

. (14.51)

The orbital frequency can be found from Kepler’s law

G
m1m2

l20
= m1 !2

K

m2l0
M

, G
m1m2

l20
= m2 !2

K

m1l0
M

,

from which we find

!K =

s
GM

l30
(14.52)

is the Keplerian frequency. Be (x1, x2) and (y1, y2) the coordinates of the masses m1 and m2

y

r1

r2

m1

m2

x

Figure 14.1: Two point masses in circular orbit around the common center of mass

on the orbital plane

x1 =
m2
M l0 cos!Kt x2 = �m1

M
l0 cos!Kt

y1 =
m2
M l0 sin!Kt y2 = �m1

M
l0 sin!Kt. (14.53)
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The 00-component of the stress-energy tensor of the system is

T 00 = c2
2X

n=1

mn �(x� xn) �(y � yn) �(z) ,

and the non vanishing components of the quadrupole moment are

qxx = m1

Z

V
x2�(x� x1) dx �(y � y1) dy �(z) dz

+ m2

Z

V
x2�(x� x2) dx �(y � y2) dy �(z) dz = m1x

2
1 +m2x

2
2

= µ l20 cos2 !Kt =
µ

2
l20 cos 2!Kt+ cost,

qyy = m1

Z

V
�(x� x1) dx y2 �(y � y1) dy �(z) dz

+ m2

Z

V
�(x� x2) dx y2 �(y � y2) dy �(z) dz = m1y

2
1 +m2y

2
2

= µ l20 sin2 !Kt = �µ

2
l20 cos 2!Kt+ cost1,

and

qxy = m1

Z

V
x�(x� x1) dx y �(y � y1) dy �(z) dz

+ m2

Z

V
x�(x� x2) dx y �(y � y2) dy �(z) dz

= m1x1y1 +m2x2y2 = µ l20 cos!t sin!Kt =
µ

2
l20 sin 2!Kt.

(we have used cos 2↵ = 2 cos2 ↵� 1, sin2 ↵ = 1
2 �

1
2 cos 2↵ and m1m2 = µM).

In summary

qxx =
µ

2
l20 cos 2!Kt+ cost

qyy = �µ

2
l20 cos 2!Kt+ cost1

qxy =
µ

2
l20 sin 2!Kt,

and
qkk = ⌘kl qkl = qxx + qyy = costant.

Therefore, the time-varying part of qij and of Qij = qij � 1
3 �ij qkk are equal:

qxx = �qyy =
µ

2
l20 cos 2!Kt (14.54)

qxy =
µ

2
l20 sin 2!Kt,

and defining a matrix Aij

Aij(t) =

0

B@
cos 2!Kt sin 2!Kt 0
sin 2!Kt � cos 2!Kt 0

0 0 0

1

CA (14.55)
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we can write
qij =

µ

2
l20 Aij + const. (14.56)

Since the wave emitted along a generic direction n in the TT-gauge is

hTT
ij (t, r) =

2G

rc4
d2

dt2


QTT

ij (t� r

c
)
�

where QTT
ij (t�r

c
) = PijklQkl(t�

r

c
) = Pijklqkl(t�

r

c
)

using eq. (14.52) we find

hTT
ij = �2G

rc4
µ

2
l20 (2!K)

2 [PijklAkl] = �1

r
⇥ 4 µ M G2

r l0 c4
[PijklAkl] . (14.57)

By defining a wave amplitude

h0 =
4 µ M G2

l0 c4
(14.58)

we can finally write the emitted wave as

hTT
ij (t, r) = � h0

r
ATT

ij (t� r

c
), (14.59)

where

ATT
ij (t� r

c
) =


PijklAkl(t�

r

c
)
�

(14.60)

depends on the orientation of the line of sight with respect to the orbital plane.
From these equations we see that the radiation is emitted at twice the orbital frequency.

For example, if n = z, Pij = diag(1, 1, 0)

ATT
ij (t) =

0

B@
cos 2!Kt sin 2!Kt 0
sin 2!Kt � cos 2!Kt 0

0 0 0

1

CA (14.61)

and

hTT
xx = �hTT

yy = �h0

z
cos 2!K(t�

z

c
) (14.62)

hTT
xy = �h0

z
sin 2!K(t�

z

c
).

In this case the wave has both polarizations, and since hTT
xx = h0/z <

n
ei!(t�

x
c )
o

and

hTT
xy = h0/z =

n
ei!(t�

x
c )
o
, the wave is circularly polarized.

If n = x, Pij = diag(0, 1, 1)

ATT
ij =

0

B@
0 0 0
0 �1

2 cos 2!Kt 0
0 0 1

2 cos 2!Kt

1

CA (14.63)

and

hTT
yy = �hTT

zz = +
1

2

h0

x
cos 2!K(t�

x

c
), (14.64)
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i.e. the wave is a linearly polarized wave.
If n = y, Pij = diag(1, 0, 1) and

ATT
ij =

0

B@

1
2 cos 2!Kt 0 0

0 0 0
0 0 �1

2 cos 2!Kt

1

CA (14.65)

and again the wave is linearly polarized

hTT
xx = �hTT

zz = �1

2

h0

y
cos 2!K(t�

y

c
). (14.66)

Eqs. (14.58) can be used to estimate the amplitude of the gravitational signal emitted by
the binary system PSR 1913+16 discovered in 1975, (R.A. Hulse and J.H. Taylor, Discovery
Of A Pulsar In A Binary System, Astrophys. J. 195, L51, 1975) which consists of two
neutron stars orbiting at a very short distance from each other. The data we know from
observations are:

y

l
0

x

Figure 14.2: Two equal point masses in circular orbit

m1 ⇠ m2 ⇠ 1.4M�, l0 = 0.19 · 1012 cm (14.67)

T = 7h 45m 7s, ⌫K =
!K

2⇡
⇠ 3.58 · 10�5 Hz

where T is the orbital period. Note that the two stars have nearly equal masses: they are
comparable to that of the Sun, and their orbital separation is about twice the radius of the
Sun! The orbit is eccentric with eccentricity ✏ ' 0.617, however we shall assume it is circular
and apply eqs. (14.58). For this system the emission frequency is

⌫GW = 2⌫K ⇠ 7.16 · 10�5 Hz, (14.68)

therefore the wavelenght of the emitted radiation is

�GW =
c

⌫GW
⇠ 1014 cm i.e. �GW >> l0. (14.69)
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Thus, the slow-motion approximation, on which the quadrupole formalism is based, is cer-
tainly satisfied in this case even though the two neutron stars are orbiting at such small
distance from each other. The distance of the system from Earth is r = 5 kpc, and since

1 pc = 3.08 · 1018 cm, ! r = 1.5 · 1022 cm.

The wave amplitude is

h0 =
4 µ M G2

r l0 c4
⇠ 5 · 10�23.

A new binary pulsar has more recently been discovered (M. Burgay et al., An increased
estimate of the merger rate of double neutron stars from observations of a highly relativistic
system Nature 426, 531, 2003) which has an even shorter orbital period and it is closer than
PSR 1913+16: it is the double pulsar PSR J0737-3039, whose orbital parameters are

m1 = 1.337M�, m2 ⇠ 1.250M� (14.70)

T = 2.4h, e = 0.08

r = 500 pc l0 ⇠ 1.2R�.

In this case the orbit is nearly circular,

µ =
m1m2

m1 +m2
= 0.646M� ! h0 =

4µMG2

rl0c4
⇠ 1.1 · 10�21,

and waves are emitted at the frequency

⌫GW = 2 ⌫K = 2.3 · 10�4 Hz.

In this section we have considered only circular orbits; the calculations can be generalized
to the case of eccentric or open orbits by replacing the equation of motion of the two masses
(14.53) by those appropriate to the chosen orbit. By this procedure it is possible to show
that when the orbits are ellipses, gravitational waves are emitted at frequencies multiple of
the orbital frequency ⌫K , and that the number of equally spaced spectral lines increases with
the eccentricity.

14.5 Energy carried by a gravitational wave

In order to evaluate how much energy is radiated in gravitational waves by an evolving
system, we need to define a tensor that properly describes the energy content of the gravi-
tational field. Our e↵ort will not be completely successful, since we will be able to define a
quantity which behaves like a tensor only under linear coordinate transformations. However,
this pseudo-tensor will be useful for the purpose we have in mind.
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14.5.1 The stress-energy pseudotensor of the gravitational field

In Chapter 7 we have shown that the stress-energy tensor of matter satisfies a divergenceless
equation

T µ⌫
;⌫ = 0. (14.71)

If we choose a locally inertial frame (LIF), the covariant derivative reduces to the ordinary
derivative and eq. (14.71) becomes

@T µ⌫

@x⌫
= 0. (14.72)

We shall now try to find a quantity, ⌘µ⌫� , such that

T µ⌫ =
@

@x↵
⌘µ⌫↵; (14.73)

In this way, if we impose that ⌘µ⌫↵ is antisymmetric in the indices ⌫ and ↵, the
conservation law (14.72) will automatically be satisfied.

The problem now is: can we find the explicit expression of ⌘µ⌫�?
From Einstein’s equations we know that

T µ⌫ =
c4

8⇡G

✓
Rµ⌫ � 1

2
gµ⌫R

◆
; (14.74)

since we are in a locally inertial frame, the Riemann tensor, whose generic expression is

R�↵�� =
1

2

"
@2g��
@x↵@x�

+
@2g↵�
@x�@x�

� @2g��
@x↵@x�

� @2g↵�
@x�@x�

#

(14.75)

+g�⇢
⇣
��
↵��

⇢
�� � ��

↵��
⇢
��

⌘
,

reduces to the term in square brackets since all ��
↵�’s vanish; it follows that in this frame the

Ricci tensor becomes

Rµ⌫ = gµ↵g⌫�R↵� = gµ↵g⌫�g��R�↵�� (14.76)

=
1

2
gµ↵g⌫�g��

 
@2g��
@x↵@x�

+
@2g↵�
@x�@x�

� @2g��
@x↵@x�

� @2g↵�
@x�@x�

!

.

By using this equation, after some cumbersome calculations eq. (14.74) becomes

T µ⌫ =
@

@x↵

(
c4

16⇡G

1

(�g)

@

@x�

h
(�g)

⇣
gµ⌫g↵� � gµ↵g⌫�

⌘i)

. (14.77)

The term in parentheses is antisymmetric in the indices ⌫ and ↵ and it is the quantity
we were looking for:

⌘µ⌫↵ =
c4

16⇡G

1

(�g)

@

@x�

h
(�g)

⇣
gµ⌫g↵� � gµ↵g⌫�

⌘i
. (14.78)

If we now introduce the quantity

⇣µ⌫↵ = (�g)⌘µ⌫↵ =
c4

16⇡G

@

@x�

h
(�g)

⇣
gµ⌫g↵� � gµ↵g⌫�

⌘i
, (14.79)
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since we are in a locally inertial frame @
@x�

1
(�g) = 0, therefore we can write eq. (14.77) as

@⇣µ⌫↵

@x↵
= (�g)T µ⌫ . (14.80)

This equation has been derived in a LIF, where all first derivatives of the metric tensor
vanish, but in any other frame this will not be true and the di↵erence @⇣µ⌫↵

@x↵ � (�g)T µ⌫ will
not be zero, but a quantity which we shall call (�g)tµ⌫ i.e.

(�g)tµ⌫ =
@⇣µ⌫↵

@x↵
� (�g)T µ⌫ . (14.81)

tµ⌫ is symmetric because both T µ⌫ and @⇣µ⌫↵

@x↵ are symmetric in µ and ⌫. The explicit
expression of tµ⌫ can be found by substituting in eq. (14.81) the definition of ⇣µ⌫↵ given in
eq. (14.79), and T µ⌫ computed in terms of the Ricci tensor from eq. (14.74) in an arbitrary
frame (i.e. starting from the full expression of the Riemann tensor given in eq. 14.75): after
some careful manipulation of the equations it is possible to show that

tµ⌫ =
c4

16⇡G

n⇣
2��

↵��
�
�� � ��

↵��
�
�� � ��

↵��
�
��

⌘ ⇣
gµ↵g⌫� � gµ⌫g↵�

⌘

+ gµ↵g�� (�⌫
↵��

�
�� + �⌫

���
�
↵� � �⌫

���
�
↵� � �⌫

↵��
�
��)

+ g⌫↵g�� (�µ
↵��

�
�� + �µ

���
�
↵� � �µ

���
�
↵� � �µ

↵��
�
��)

+ g↵�g�� (�µ
↵��

⌫
�� � �µ

↵��
⌫
��)
o

This is the stress-energy pseudotensor of the gravitational field we were looking for. Indeed
we can rewrite eq. (14.81), valid in any reference frame, in the following form

(�g) (tµ⌫ + T µ⌫) =
@⇣µ⌫↵

@x↵
, (14.82)

and since ⇣µ⌫↵ is antisymmetric in µ and ↵

@

@xµ

@⇣µ⌫↵

@x↵
= 0,

and consequently
@

@xµ
[(�g) (tµ⌫ + T µ⌫)] = 0. (14.83)

This equation expresses a conservation law, because, as explained in chapter 7, it has the
form of a vanishing ordinary divergence of the quantity [(�g) (tµ⌫ + T µ⌫)] . Since tµ⌫ when
added to the stress-energy tensor of matter (or fields) satisfies a conservation law, and since
it vanishes only in a locally inertial frame where gravity is suppressed, we interpret tµ⌫

as the entity that contains the information on the energy and momentum carried by the
gravitational field. Thus eq. (14.83) expresses the conservation law of the total energy and
momentum. Unfortunately, tµ⌫ is not a tensor; indeed it is a combination of the �’s that
are not tensors.
However, as the �’s, it behaves as a tensor under linear coordinate transformations.
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14.5.2 The energy flux carried by a gravitational wave

Let us consider an emitting source and the associated 3-dimensional coordinate frame O
(x, y, z). Be an observer located at P = (x1, y1, z1) as shown in figure 14.3. Be r =p
x12 + y12 + z12 its distance from the origin. The observer wants to detect the wave

coming along the direction identified by the versor n = r
|r| . As a pedagogical tool, let us

consider a second frame O’ (x0, y0, z0), with origin coincident with O, and having the x0-axis
aligned with n. Assuming that the wave traveling along x0 direction is linearly polarized and
has only one polarization, the corresponding metric tensor will be

gµ0⌫0 =

0

BBBBBB@

(ct) (x0) (y0) (z0)
�1 0 0 0
0 1 0 0
0 0 [1 + hTT

+ (t, x0)] 0
0 0 0 [1� hTT

+ (t, x0)]

1

CCCCCCA
.

The observer wants to measure the energy which flows per unit time across the unit sur-

y

P

y’
x’

x
z

z’

n

Figure 14.3: A binary system lies in the z-x plane. An observer located at P wants to detect
the energy flux of gravitational waves emitted by the system.

face orthogonal to x0, i.e. t0x
0
, therefore he needs to compute the Christo↵el symbols i.e.

the derivatives of hTT
µ0⌫0 . According to eq. (14.40) the metric perturbation has the form

hTT(t, x0) = const
x0 · f(t � x0

c ), and since the only derivatives which matter are those with
respect to time and x0

@hTT

@t
⌘ ḣTT =

const

x0 ḟ ,

@hTT

@x0 ⌘ hTT 0 = �const

x02 f +
const

x0 f 0 ⇠ �1

c

const

x0 ḟ = �1

c
ḣTT,
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where we have retained only the dominant 1/x0 term. Thus, the non-vanishing Christo↵el
symbols are:

�0
y0y0 = ��0

z0z0 =
1
2 ḣTT

+ �y0
0y0 = ��z0

0z0 =
1

2
ḣTT
+ (14.84)

�x0
y0y0 = ��x0

z0z0 =
1
2c ḣTT

+ �y0
y0x0 = ��z0

z0x0 = � 1

2c
ḣTT
+ .

By substituting the Christo↵el symbols in tµ⌫ we find

ct0x
0
=

dEGW

dtdS
=

c3

16⇡G

2

4
 
dhTT(t, x0)

dt

!2
3

5 .

If both polarizations are present

gµ0⌫0 =

0

BBBBBB@

(ct) (x0) (y0) (z0)
�1 0 0 0
0 1 0 0
0 0 [1 + hTT

+ (t, x0)] hTT
⇥ (t, x0)

0 0 hTT
⇥ (t, x0) [1� hTT

+ (t, x0)]

1

CCCCCCA
,

and

ct0x
0

=
dEGW

dtdS
=

c3

16⇡G

2

4
 
dhTT

+ (t, x0)

dt

!2

+

 
dhTT

⇥ (t, x0)

dt

!2
3

5 (14.85)

=
c3

32⇡G

2

4
X

jk

 
dhTT

jk (t, x0)

dt

!2
3

5 .

This is the energy per unit time which flows across a unit surface orthogonal to the direction
x0. However, the direction x0 is arbitrary; if the observer is located in a di↵erent position
and computes the energy flux he receives, he will find formally the same eq. (14.85) but with
hTT
jk referred to the TT-gauge associated with the new direction. Therefore, if we consider

a generic direction r = rn

t0r =
c2

32⇡G

2

4
X

jk

 
dhTT

jk (t, r)

dt

!2
3

5 . (14.86)

In General Relativity the energy of the gravitational field cannot be defined locally, therefore
to find the GW-flux we need to average over several wavelenghts, i.e.

dEGW

dtdS
=
D
ct0r

E
=

c3

32⇡G

*
X

jk

 
dhTT

jk (t, r)

dt

!2+

.
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Since 8
><

>:

hTT
µ0 = 0, µ = 0, 3

hTT
ik (t, r) =

2G

c4r
·
"
d2

dt2
QTT

ik

✓
t� r

c

◆#

by direct substitution we find

dEGW

dtdS
=

G

8⇡c5 r2

*
X

jk

✓
...
Q

TT

jk

✓
t� r

c

◆◆2
+

. (14.87)

As explained in section 14.39,
QTT

jk ⌘ Pjkmnqmn

is the quadrupole tensor projected onto the TT-gauge; moreover, we introduced the reduced
quadrupole moment

Qjk ⌘ qjk �
1

3
�jkq

m
m (14.88)

which is traceless by definition, and consequently

QTT
jk = Pjkmnqmn = PjkmnQmn . (14.89)

In order to obtain the gravitational luminosity of a source LGW = dEGW
dt , i.e. the gravita-

tional energy emitted by the source per unit time, it is more convenient to use the reduced
quadrupole moment, therefore we shall write Eq. (14.87) in terms of Qjk, i.e.

dEGW

dtdS
=

G

8⇡c5 r2

*
X

jk

✓
Pjkmn

...
Qmn

✓
t� r

c

◆◆2
+

. (14.90)

The gravitational luminosity therefore is

LGW =
Z dEGW

dtdS
dS =

Z dEGW

dtdS
r2d⌦ (14.91)

=
G

2c5
1

4⇡

Z
d⌦

*
X

jk

✓
Pjkmn

...
Qmn

✓
t� r

c

◆◆2
+

,

where d⌦ = (d cos ✓)d� is the solid angle element. This integral can be computed by using
the properties of Pjkmn:

X

jk

⇣
Pjkmn

...
Qmn

⌘2
=
X

jk

Pjkmn

...
QmnPjkrs

...
Qrs = (14.92)

=

2

4
X

jk

PmnjkPjkrs

3

5
...
Qmn

...
Qrs = Pmnrs

...
Qmn

...
Qrs

=

(�mr � nmnr) (�ns � nnns)�

1

2
(�mn � nmnn) (�rs � nrns)

�
...
Qmn

...
Qrs.

If we expand this expression, and remember that
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• �mn

...
Qmn = �rs

...
Qrs = 0

because the trace of Qij vanishes by definition, and

• nmnr�ns
...
Qmn

...
Qrs = nnns�mr

...
Qmn

...
Qrs

because Qij is symmetric,

at the end we find
X

jk

⇣
Pjkmn

...
Qmn

⌘2
=

...
Qrn

...
Qrn � 2nm

...
Qms

...
Qsrnr +

1

2
nmnnnrns

...
Qmn

...
Qrs . (14.93)

By substituting this expression in eq. (14.92) we find

LGW =
G

2c5
1

4⇡


...
Qrn

...
Qrn

Z
d⌦� 2

...
Qms

...
Qsr

Z
nmnrd⌦+

1

2

...
Qmn

...
Qrs

Z
nmnnnrnsd⌦

�
. (14.94)

Thus, the integrals to be performed over the solid angle are:

1

4⇡

Z
nmnrd⌦, and

1

4⇡

Z
nmnnnrnsd⌦. (14.95)

Let us compute the first.
In polar coordinates, the versor n can be written as

ni = (sin ✓ cos�, sin ✓ sin�, cos ✓). (14.96)

Thus, for parity reasons
1

4⇡

Z
d⌦nmnr = 0 when m 6= r. (14.97)

Furthermore, since there is no preferred direction in the integration (isotropy), it must be
Z

d⌦ n2
1 =

Z
d⌦ n2

2 =
Z
d⌦ n2

3 ! 1

4⇡

Z
d⌦nmnr = const · �mr . (14.98)

For instance,

1

4⇡

Z
d⌦(n3)

2 =
1

4⇡

Z
d cos ✓d� cos2 ✓ =

1

4⇡

Z 2⇡

0
d�
Z 1

�1
d cos ✓ cos2 ✓ =

1

3
, (14.99)

and consequently
1

4⇡

Z
d⌦nmnr =

1

3
�mr . (14.100)

The second integral in (14.95) can be computed in a similar way and gives

1

4⇡

Z
d⌦nmnnnrns =

1

15
(�mn�rs + �mr�ns + �ms�nr) . (14.101)

By substituting Eqs. (14.100) and (14.101) in Eq. (14.94), we find

LGW =
G

2c5


...
Qrn

...
Qrn �

2

3

...
Qms

...
Qsr�mr +

1

30

...
Qmn

...
Qrs (�mn�rs + �mr�ns + �ms�nr)

�

=
G

2c5


...
Qrn

...
Qrn �

2

3

...
Qrs

...
Qsr +

1

30

⇣ ...
Qmn�mn

...
Qrs�rs +

...
Qrn

...
Qrn +

...
Qsn

...
Qns

⌘�

=
G

2c5
...
Qrn

...
Qrn


1� 2

3
+

2

30

�
=

G

2c5
...
Qrn

...
Qrn ⇥

2

5
=

G

5c5
...
Qrn

...
Qrn ,
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where we have used the property Qmn�mn = Qrs�rs = 0 due to the fact that the reduced
quadrupole tensor is traceless. Finally, the gravitational wave luminosity is

LGW =
G

5c5

*
3X

k,n=1

...
Qkn

✓
t� r

c

◆
...
Qkn

✓
t� r

c

◆+

. (14.102)

This formula was derived by A. Einstein in the paper Über Gravitationswellen published in
19182.

2The original article can be found on the website http://adsabs.harvard.edu/abs/1918SPAW.......154E


