
Chapter 22

Geodesic motion in Kerr spacetime

Let us consider a geodesic with a�ne parameter � and tangent vector

uµ =
dxµ

d�
⌘ ẋµ. (22.1)

In this section we shall use Boyer-Lindquist’s coordinates, and the dot will indicate di↵eren-
tiation with respect to �. The tangent vector uµ is solution of the geodesic equations

uµu⌫
;µ = 0 , (22.2)

which, as shown in Chapter 11, is equivalent to the Euler-Lagrange equations

d

d�

@L
@ẋ↵

=
@L
@x↵

(22.3)

associated to the Lagrangian

L (xµ, ẋµ) =
1

2
gµ⌫ ẋ

µẋ⌫ . (22.4)

By defining the conjugate momentum pµ as

pµ ⌘ @L
@ẋµ

= gµ⌫ ẋ
⌫ , (22.5)

the Euler-Lagrange equations become

d

d�
pµ =

@L
@xµ

. (22.6)

Note that, if the metric does not depend on a given coordinate xµ, the conjugate momentum
pµ is a constant of motion and coincides with the constant of motion associated to the Killing
vector tangent to the corresponding coordinate lines. The Kerr metric in Boyer-Lindquist
coordinates is indepentent of t and �, therefore

pt = ẋt ⌘ ut = const and p� = ẋ� ⌘ u� = const; (22.7)

these quantities coincide with the constant of motion associated to the Killing vectors kµ =
(1, 0, 0, 0) and mµ = (0, 0, 0, 1), i.e. kµuµ = ut and mµuµ = u�.
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Therefore, geodesic motion in Kerr geometry is characterized by two constants of motion,
which we indicate as:

E ⌘ �kµuµ = �ut = �pt constant along geodesics

(22.8)

L ⌘ mµuµ = u� = p� constant along geodesics .

(22.9)

As explained in Section 11.2, for massive particles E and L are, respectively, the energy and
the angular momentum per unit mass, as measured at infinity with respect to the black hole.
For massless particles, E and L are the energy and the angular momentum at infinity.

Equations (22.2) (or, equivalently, (22.3)) in Kerr spacetime are very complicate to solve
directly. To simplify the problem we hall use the conserved quantities, as we did in Chapter
11 in when we studied geodesic motion in Schwarzschild’s spacetime. For this, we need four
algebraic relations involving uµ.

Furthermore
gµ⌫u

µu⌫ =  (22.10)

where

 = �1 for timelike geodesics

 = 1 for spacelike geodesics

 = 0 for null geodesics . (22.11)

Eqs. (22.8), (22.9), (22.10) give three algebraic relations involving uµ, but they are not suf-
ficient to to determine the four unknowns uµ. In Schwarzschild spacetime a fourth equation
is provided by the planarity of the orbit (u✓ = 0 if ✓(� = 0) = ⇡/2); in Kerr spacetime
orbits are planar only in the equatorial plane therefore, in general, geodesic motion cannot
be studied in a simple way, using eqs. (22.8), (22.9), (22.10) only, as we did for Scharzschild.
However, as we shall briefly explain in the last section of this chapter, there exists a further
conserved quantity, the Carter constant, which allows to find the tangent vector uµ using
algebraic relations.

22.1 Equatorial geodesics

In this section we study geodesic motion in the equatorial plane, i.e. geodesics with

✓ ⌘ ⇡

2
. (22.12)

First of all, let us prove that such geodesics exist, i.e. that eq. (22.12) is solution of the
Euler-Lagrange equations. The Lagrangian is

L =
1

2
gµ⌫ ẋ

µẋ⌫ =
1

2

⇢
�
✓
1� 2Mr

⌃

◆
ṫ2 � 4Mr

⌃
a sin2 ✓ ṫ�̇+

⌃

�
ṙ2 (22.13)

+ ⌃ ✓̇2 +

"

r2 + a2 +
2Mra2

⌃
sin2 ✓

#

sin2 ✓ �̇2

)
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and the ✓ component of Euler-Lagrange’s equations is

d

d�
(g✓µẋ

µ) =
d

d�
(⌃✓̇) = ⌃✓̈ + ⌃,µẋ

µ✓̇ =
1

2
gµ⌫,✓ẋ

µẋ⌫ . (22.14)

The right-hand side is

1

2
gµ⌫,✓ẋ

µẋ⌫ =
1

2

(

⌃,✓

 
(ṙ)2

�
+ (✓̇)2

!

+ 2 sin ✓ cos ✓(r2 + a2)(�̇)2

� 2Mr

⌃2
⌃,✓

⇣
a sin2 ✓�̇� ṫ

⌘2
+

4Mr

⌃

⇣
a sin2 ✓�̇� ṫ

⌘
2a sin ✓ cos ✓�̇

�

(22.15)

where ⌃,✓ = �2a2 sin ✓ cos ✓ and ⌃,r = 2r. It is easy to check that, when ✓ = ⇡/2, equation
(22.14) reduces to

✓̈ = �2

r
ṙ✓̇ . (22.16)

Therefore, if ✓̇ = 0 and ✓ = ⇡/2 at � = 0, then for � > 0 ✓̇ ⌘ 0 and ✓ ⌘ ⇡/2. Thus, a
geodesic which starts in the equatorial plane, remains in the equatorial plane at later times.

This also occurs in Schwarzschild spacetime, and in that case, due to the spherical sym-
metry, it is possible to generalize the result to any orbit, and prove that all geodesics are
planar. This generalization is not possible for the Kerr metric which is axially symmetric.
In this case only equatorial geodesics are planar.

On the equatorial plane, ⌃ = r2, therefore

gtt = �
✓
1� 2M

r

◆

gt� = �2Ma

r

grr =
r2

�

g�� = r2 + a2 +
2Ma2

r
(22.17)

and

E = �gtµu
µ =

✓
1� 2M

r

◆
ṫ+

2Ma

r
�̇ (22.18)

L = g�µu
µ = �2Ma

r
ṫ+

 

r2 + a2 +
2Ma2

r

!

�̇ . (22.19)

To solve eqs. (22.18), (22.19) for ṫ, �̇ we define

A ⌘ 1� 2M

r

B ⌘ 2Ma

r

C ⌘ r2 + a2 +
2Ma2

r
(22.20)
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and write eqs. (22.18), (22.19) as

E = Aṫ+B�̇ (22.21)

L = �Bṫ+ C�̇ . (22.22)

Furthermore, the following relation can be used

AC +B2 =
✓
1� 2M

r

◆ 

r2 + a2 +
2Ma2

r

!

+
4M2a2

r2
= r2 � 2Mr + a2 = � . (22.23)

Therefore,

CE � BL = [AC +B2]ṫ = �ṫ

AL+BE = [AC +B2]�̇ = ��̇ (22.24)

i.e.

ṫ =
1

�

" 

r2 + a2 +
2Ma2

r

!

E � 2Ma

r
L

#

�̇ =
1

�

✓
1� 2M

r

◆
L+

2Ma

r
E
�

. (22.25)

The quantity C defined in eq. (22.20) can be written in a di↵erent form, which will be useful
in the following:

(r2 + a2)2 � a2�

r2
=

1

r2
[(r2 + a2)(r2 + a2)� a2(r2 + a2 � 2Mr)]

=
1

r2
[(r2 + a2)r2 + 2Mra2] = r2 + a2 +

2Ma2

r
⌘ C . (22.26)

Note that C is always positive.
Let us now derive the equation for the radial component of the four-velocity. Equation

(22.10) can be written in terms of A,B,C:

gµ⌫u
µu⌫ = 

= �Aṫ2 � 2Bṫ�̇+ C�̇2 +
r2

�
ṙ2

= �[Aṫ+B�̇]ṫ+ [�Bṫ+ C�̇]�̇+
r2

�
ṙ2

= �Eṫ+ L�̇+
r2

�
ṙ2 (22.27)

where we have used eqs. (22.21), (22.22). Therefore,

ṙ2 =
�

r2
(Eṫ� L�̇+ ) =

1

r2

h
CE2 � 2BLE � AL2

i
+

�

r2
. (22.28)
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The polynomial [CE2 � 2BLE � AL2] has zeros

V± =
BL±

p
B2L2 + ACL2

C
=

L

C
[B ±

p
�] . (22.29)

Consequently, eq. (22.28) can be written as

ṙ2 =
C

r2
(E � V+)(E � V�) +

�

r2
. (22.30)

Using eq. (22.26), eqs. (22.30) and (22.29) finally become

ṙ2 =
(r2 + a2)2 � a2�

r4
(E � V+)(E � V�) +

�

r2
, (22.31)

and

V± =
2Mar ± r2

p
�

(r2 + a2)2 � a2�
L . (22.32)

In the Schwarzschild limit a ! 0 and

V+ + V� / a ! 0 , V+V� ! L2�

r4
(22.33)

therefore, if we define V ⌘ �V+V�, eqs. (22.31), (22.32) reduce to the well known form

ṙ2 = E2 � V (r), where V (r) = ��

r2
+

L2�

r4
=
✓
1� 2M

r

◆ 

�+
L2

r2

!

(22.34)

where we recall that  = �1 for timelike geodesics,  = 0 for null geodesics,  = 1 for
spacelike geodesics.

22.1.1 Kerr’s potentials for equatorial geodesics

V± =
2MLar ± Lr2

p
�

(r2 + a2)2 � a2�
. (22.35)

In principle we would have four possibilities, corresponding to L positive and negative and a
positive and negative. In practice, there are only two interesting cases: La > 0 and La < 0,
i.e. the test particle is either corotating or counterrotating with the black hole. If the signs of
L and a change simultaneously, the potentials V± interchange: V+ becomes V� and viceversa.
To avoid this, it is better to redefine the names of the potentials as follows

V± =
2MLar ± |L|r2

p
�

(r2 + a2)2 � a2�
, (22.36)

so that the following inequality is always true

V+ � V� . (22.37)

In general, we find that:
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• V+ and V� coincide for � = 0, i.e. for

r = r+ = M +
p
M2 � a2 (22.38)

while for r > r+, � > 0 and then V+ > V�. Furthermore,

V+(r+) = V�(r+) =
2Mr+La

(r2+ + a2)2
, (22.39)

which is positive if La > 0, negative if La < 0.

• In the limit r ! 1, V± ! 0.

• If La > 0 (corotating orbits), the potential V+ is definite positive; V� (which is positive
at r+) vanishes when

r
p
� = 2Ma ) r2(r2 � 2Mr + a2) = 4M2a2 (22.40)

which gives

r4 � 2Mr3 + a2r2 � 4M2a2 = (r � 2M)(r3 + a2r + 2Ma2) = 0; (22.41)

thus V� vanishes at r = 2M , which is the location of the ergosphere in the equatorial
plane.

• If La < 0 (counterrotating orbits), the potential V� is definite negative and V+ (which
is negative at r+) vanishes at r = 2M .

• The study of the derivatives of V±, which is too long to be reported here, shows that
both potentials, V+ and V�, have only one stationary point.

In summary, V+(r) and V�(r) have the shapes shown in Figure 22.1 where the upper and
lower panels refer, respectively, to the case La > 0 and La < 0 cases.

22.1.2 Null geodesics

In the case of null geodesics the radial equation (22.31) becomes

ṙ2 =
C

r2
(E � V+)(E � V�) =

(r2 + a2)2 � a2�

r4
(E � V+)(E � V�) (22.42)

Since ṙ2 must be positive, from eq. (22.42) we see that, and being (r2+ a2)2� a2� > 0, null
geodesics are possible for massless particle whose constant of motion E satisfies the following
inequalities

E < V� or E > V+ . (22.43)

Thus, the region V� < E < V+, corresponding to the dashed regions in Figure 22.1, is
forbidden.
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Figure 22.1: The potentials V+(r) and V�(r), for corotating (aL > 0) and counterrotating
(aL < 0) orbits. The shadowed region is not accessible to the motion of photons or other
massless particles.

In order to study the orbits, it is useful to compute the radial acceleration. By di↵eren-
tiating eq. (22.42) with respect to the a�ne parameter �, we find

2ṙr̈ =

"✓
C

r2

◆0
(E � V+)(E � V�)�

C

r2
V 0
+(E � V�)�

C

r2
V 0
�(E � V+)

#

ṙ (22.44)

i.e.

r̈ =
1

2

✓
C

r2

◆0
(E � V+)(E � V�)�

C

2r2

h
V 0
+(E � V�) + V 0

�(E � V+)
i
, (22.45)

where the prime indicates di↵erentiation with respect to r. Let us evaluate the radial accel-
eration in a point where the radial velocity ṙ is zero, i.e. when E = V+ or E = V�:

r̈ = � C

2r2
V 0
+(V+ � V�) if E = V+

r̈ = � C

2r2
V 0
�(V� � V+) if E = V� . (22.46)

Since

V+ � V� =
2|L|r2

p
�

(r2 + a2)2 � a2�
=

2|L|
p
�

C
, (22.47)
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we find

r̈ = ⌥ |L|
p
�

r2
V 0
± if E = V± . (22.48)

• Unstable circular orbits
If E = V+(rmax), where rmax is the stationary point of V+ (i.e. V 0

+(rmax) = 0), the
radial acceleration vanishes; since when E = V+(rmax) the radial velocity also vanishes,
a massless particle with that value of E can be captured on a circular orbit, but the
orbit is unstable, as it is the orbit at r = 3M for the Schwarzschild metric.
It is possible to show that rmax is solution of the equation

r(r � 3M)2 � 4Ma2 = 0 . (22.49)

Note that the value of rmax is independent of L. The solution of (22.49) is a decreasing
function of a, and, in particular,

rmax = 3M for a = 0

rmax = M for a = M

rmax = 4M for a = �M . (22.50)

Therefore, while for a Schwarzschild black hole the unstable circular orbit of a photon
is at r = 3M , for a Kerr black hole it can be much closer; in particular, in the extremal
case a = M , for corotating orbits rmax = M coincides with the outer horizon.

• Photon capture
A photon falling from infinity with constant of motion E > V+(rmax), crosses the
horizon and falls toward the singularity.

• Deflection
If 0 < E < V+(rmax), the particle reaches the turning point where E = V+(r) and
ṙ = 0; eq. (22.48) shows that at the turning point r̈ > 0, therefore the particle reverts
its motion and escapes free at infinity. In this case the particle is deflected.

In the above cases the constant of motion E associated to the timelike Killing vector is
assumed to be positive.

It remains to consider the case E < V�, and in particular to see whether negative values
of E, admitted in principle admitted by eq. (22.43), have a physical meaning.

22.1.3 How do we measure the energy of a particle

The energy of a particle is an observer-dependent quantity. In special relativity, the energy
of a particle with four-momentum P µ, measured by an observer with four-velocity uµ, is
defined as

E (u) = �⌘µ⌫u
µP ⌫ = �uµP⌫ . (22.51)

For instance, the energy measured by a static observer uµ
st = (1, 0, 0, 0) is

E (ust) = �P0 . (22.52)
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A negative energy would correspond to a particle moving backwards in time, and causality
would be violated. Thus, energy is always positive; if measured by a di↵erent observer it will
be di↵erent, but still positive. Eq. (22.51) is a tensor equation; it holds in a locally inertial
frame, where gµ⌫ ⌘ ⌘µ⌫ , therefore it can be written as

E (u) = �gµ⌫uµP ⌫ = �uµPµ . (22.53)

Thus, by the principle of general covariance, eq. (22.53), is the definition of energy valid in
any frame, and consequently E must be positive in any frame.

Let us now consider a static observer with uµ
st = (1, 0, 0, 0) , in Kerr spacetime, located at

radial infinity, where such observer can exist. According to the definition (22.53), the energy
measured by the static observer is E (ust) = �P0. Let us now compare this quantity with the
constant of motion E = �u0 given in eq. (22.8). If the particle is massless we can always
parametrize the geodesic in such a way that P0 ⌘ u0. Thus:

E (ust) = �P0 = E (22.54)

We conclude that for a particle starting (or ending) its motion at radial infinity with respect
to the black hole, the constant of motion E is the particle energy, as measured by a static
observer located at infinity 1. For such particles orbits with negative values of E are not
allowed. Thus, referring to Figure 22.1, orbits with E < V� and E negative impinging from
radial infinity are forbidden, even though for such values ṙ2 > 0 (see eq. (22.42)).

Let us now consider a massless particle which starts its motion in the egoregion, i.e.
between r+ and r0 (see Figure 22.1). In this region static observers cannot exist, therefore
we need to consider a di↵erent observer, for instance a stationary ZAMO (i.e. an observer
for which ṙ = 0 and L = u� = 0), whose four-velocity can be written as

uµ
ZAMO = const(1, 0, 0,⌦) (22.55)

where the ZAMO angular velocity ⌦ on the equatorial plane is (see eq. (21.27))

⌦ =
2Mar

(r2 + a2)2 � a2�
(22.56)

and the constant is found by imposing gµ⌫uµu⌫ = �1. The constant must be positive,
otherwise the ZAMO would move backwards in time.

The particle energy measured by the ZAMO is

EZAMO = �Pµu
µ
ZAMO = const(E � ⌦L) , (22.57)

where we have used eqs. (22.8) and (22.9). Thus, the requirement EZAMO > 0 is equivalent
to

E > ⌦L . (22.58)

1similarly, for massive particles E is the energy per unit mass as measured by a static observer at infinity.
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By comparing (22.56) with the expression of the potentials V± given by eq. (22.36) we find
that

V� < ⌦L < V+ . (22.59)

Therefore, geodesics with
E > V+ (22.60)

satisfy the positive energy condition (22.58), and are allowed, whereas those with E < V�
are forbidden, since do not satisfy eq. (22.58).

Thus, referring to Figure 22.36:

• a corotating particle (La > 0) can move within the ergoregion only if the costant of
motion E is positive and is in the range

V+(r+) < E < V+(rmax) . (22.61)

If E > V+(rmax) the particle can cross the ergosphere and escape at infinity.

• For counterrotating particles (La < 0), since in the ergoregion V+ is negative the
requirement E > V+ (necessary and su�cient to ensure that E > 0) allows negative
values of the constant of motion E. Thus, counterrotating particles moving in the
ergoregion can have negative E, provided

V+(r+)(= V�(r+)) < E < 0 . (22.62)

As we shall show in the next section, this possibility has an interesting consequence.

It should be stressed that this is not a contradiction, because it is only at infinity that
E represents the particle energy; the geodesics we are considering never reach infinity.

22.1.4 Penrose’s process

In this section we will use a slightly di↵erent notation for the constants of motion E, L,
which have been shown to be the energy and angular momentum per unit mass, for massive
particles, and the energy and angular momentum for massless particles, as measured by a
static observer at infinity. Here we define E and L to be the energy and angular momentum
at infinity, both for massive and massless particles, so that eqs. (22.8) and (22.9) become

E = �kµPµ , L = mµPµ . (22.63)

This simply means that, for massive particles, E and L have been multiplied by the particle
mass m.

We shall now show that since particles with negative E can exist in the ergoregion, we
can imagine a process through which it may be possible to extract rotational energy from a
Kerr black hole; this is named Penrose’s process.

In what follows we shall set a > 0. Assuming a < 0 would lead to the same conclusions.
Suppose that we shoot a massive particle with energy E and angular momentum L from
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infinity, so that it falls towards the black hole in the equatorial plane. Its four-momentum
covariant components are

Pµ = (�E,Pr, 0, L) . (22.64)

Along the geodesic the particle four-momentum changes, but the covariant components Pt =
kµPµ = �E, and P� = mµPµ = L remain constant, i.e.,

Pµ = (�E,Pr, 0, L) . (22.65)

When the particle enters the ergoregion, it decays in two photons, with momenta

P1µ = (�E1, P1 r, 0, L1) P2µ = (�E2, P2 r, 0, L2) . (22.66)

Since the four-momentum is conserved in this decay, we have

P µ = P 1µ + P 2µ or equivalently Pµ = P1µ + P2µ ,

from which it follows that

E = E1 + E2 , L = L1 + L2 . (22.67)

Let us assume that ṙ1 < 0, so that the photon 1 falls into the black hole, and that it has
negative constants of motion, i.e. E1 < 0 and L1 < 0, with (see eq. (22.62))

V+(r+)(= V�(r+)) < E1 < 0 .

We further assume that ṙ2 > 0, i.e. the photon 2 comes back to infinity. Note that, as
explained in section 22.1.3, this is possible only if

E2 > V+(rmax) .

Its energy and angular momentum are

E2 = E � E1 > E

L2 = L� L1 > L , (22.68)

thus, at the end of the process the particle we find at infinity is more energetic than the one
we sent in. It is possible to show that, since E1 < 0, L1 < 0, the capture of photon 1 by
the black hole reduces its mass-energy M and its angular momentum J = Ma; indeed their
values Mfin, Jfin are respectively:

Mfin = M + E1 < M (22.69)

Jfin = J + L1 < J . (22.70)

To prove the inequality (22.69), we note that, as shown in Chapter 17, the total mass-energy
of the system is

P 0
tot =

Z

V
d3x(�g)(T 00 + t00) , (22.71)
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where V is the volume of a t = const. three-surface. If we neglect the gravitational field
generated by the particle, t00 is due to the black hole only, thus

P 0
tot =

Z

V
d3x(�g)T 00

particle +M . (22.72)

Let us compute this integral when the process starts, i.e. at a time when the massive
particle is shoot into the black hole; the spacetime is flat, the particle energy is E, and the
00-component of the stress-energy tensor of a point particle with energy E, in Minkowskian
coordinates is

T 00
particle = E�3(x� x(t)) . (22.73)

Thus eq. (22.72) gives
P 0
tot in = E +Min . (22.74)

Repeating the computation at the end of the process, namely when the photon 2 reaches
infinity, we find

P 0
tot fin = E2 +Mfin . (22.75)

Due to the stationarity of the Kerr metric, if we neglect the outgoing gravitational flux
generated by the particle, P 0

tot is a conserved quantity; therefore by equating the initial and
final momentum we find

P 0
tot in = P 0

tot fin ! Mfin = Min + (E � E2) ! Mfin = Min + E1 < Min .
(22.76)

This proves the relation (22.69), and eq. (22.70) can be proved accordingly.
In conclusion, by this process we have extracted rotational energy from the black hole.

22.1.5 Innermost stable circular orbit for timelike geodesics

The study of timelike geodesics is much more complicate, because equation (22.30) which,
when  = �1, becomes

ṙ2 =
C

r2
(E � V+)(E � V�)�

�

r2
, (22.77)

does not allow a simple qualitative study as in the case of null geodesics. Therefore, here we
only report some results of a detailed study of geodesics equation in this general case.

A very relevant quantity (of astrophysical interest) is the location of the innermost stable
circular orbit (ISCO), which, in the Schwarzschild case, is at r = 6M . In Kerr spacetime,
the expression for rISCO is quite complicate, but its qualitative behaviour is simple: there
are two solutions

r±ISCO(a) , (22.78)

one corresponding to corotating and counterrotating orbits. For a = 0, the two solutions
coincide to 6M , as expected; by increasing |a|, the ISCO moves closer to the black hole for
corotating orbits, and farther for counterrotating orbits. When a = ±M , the corotating
ISCO coincides with the outer horizon, at r = r+ = M . This behaviour is very similar to
that we have already seen in the case of unstable circular orbits for null geodesics.

In Figure 22.1.5 we show (for a � 0) the locations of the last stable and unstable circular
orbits for timelike geodesics, and of the unstable circular orbit for null geodesics. This figure
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is taken from the article where these orbits have been studied (J. Bardeen, W. H. Press, S.
A. Teukolsky, Astrophys. J. 178, 347, 1972).

22.1.6 3rd Kepler’s law

Let us consider a circular timelike geodesic in the equatorial plane. We remind that the
Lagrangian (22.4) is

L =
1

2
gµ⌫ ẋ

µẋ⌫ (22.79)

and the r-component of the Euler-Lagrange equation is

d

d�

@L
@ṙ

=
@L
@r

. (22.80)
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Being grµ = 0 if µ 6= r, we have

d

d�
(grrṙ) =

1

2
gµ⌫,rẋ

µẋ⌫ . (22.81)

For circular geodesic, ṙ = r̈ = 0, and this equation reduces to

gtt,r ṫ
2 + 2gt�,r ṫ�̇+ g��,r�̇

2 = 0 . (22.82)

The angular velocity is ! = �̇/ṫ, thus

g��,r!
2 + 2gt�,r! + gtt,r = 0 . (22.83)

We remind that on the equatorial plane

gtt = �
✓
1� 2M

r

◆

gt� = �2Ma

r

g�� = r2 + a2 +
2Ma2

r
, (22.84)

then

2

 

r � Ma2

r2

!

!2 +
4Ma

r2
! � 2M

r2
= 0 . (22.85)

The equation
(r3 �Ma2)!2 + 2Ma! �M = 0 (22.86)

has discriminant
M2a2 +M(r3 �Ma2) = Mr3 (22.87)

and solutions

!± =
�Ma±

p
Mr3

r3 �Ma2
= ±

p
M

r3/2 ⌥ a
p
M

r3 �Ma2

= ±
p
M

r3/2 ⌥ a
p
M

(r3/2 + a
p
M)(r3/2 � a

p
M)

= ±
p
M

r3/2 ± a
p
M

. (22.88)

This is the relation between angular velocity and radius of circular orbits, and reduces, in
Schwarzschild limit a = 0, to

!± = ±
s
M

r3
, (22.89)

which is Kepler’s 3rd law.
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22.2 General geodesic motion: the Carter constant

To study geodesics in Kerr spacetime, it is convenient to use the Hamilton-Jacobi approach,
which allows to indentify a further constant of motion.

It should be stressed that this constant is not associated to a spacetime symmetry.
Given the Lagrangian of the system

L(xµ, ẋµ) =
1

2
gµ⌫ ẋ

µẋ⌫ (22.90)

and given the conjugate momenta2

pµ =
@L
@ẋµ

= gµ⌫ ẋ
⌫ , (22.91)

by inverting eq. (22.91), we can express ẋµ in terms of the conjugate momenta:

ẋµ = gµ⌫p⌫ . (22.92)

The Hamiltonian is a functional of the coordinate functions xµ(�) and of their conjugate
momenta pµ(�), defined as

H(xµ, p⌫) = pµ ẋ
µ(p⌫)� L (xµ, ẋµ(p⌫)) . (22.93)

Thus, in our case

H =
1

2
gµ⌫pµp⌫ . (22.94)

Geodesic equations are equivalent to the Euler-Lagrange equations for the Lagrangian func-
tional (22.90), which are equivalent to the Hamilton equations for the Hamiltonian functional:

ẋµ =
@H

@pµ

ṗµ = � @H

@xµ
. (22.95)

Solving eqs. (22.95) presents the same di�culties as solving Euler-Lagrange’s equations.
However, in the Hamilton-Jacobi approach, which we briefly recall, the further constant of
motion emerges quite naturally.

In the Hamilton-Jacobi approach, we look for a function of the coordinates and of the
curve parameter �,

S = S(xµ,�) (22.96)

which is solution of the Hamilton-Jacobi equation

H

 

xµ,
@S

@xµ

!

+
@S

@�
= 0 . (22.97)

In general such solution depends on four integration constants.

2Not to be confused with the four-momentum of the particle, which we denote with P
µ.
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It can be shown that, if S is a solution of the Hamilton-Jacobi equation, then

@S

@xµ
= pµ . (22.98)

Therefore, once eq. (22.97) is solved, the expressions of the conjugate momenta (and of ẋµ)
follows in terms of the four constants, and allows to write the solutions of geodesic equations
in a closed form, through integrals.

First of all, we can use what we already know, i.e.

H =
1

2
gµ⌫pµp⌫ =

1

2


pt = �E constant

p� = L constant . (22.99)

These conditions require that

S = �1

2
�� Et+ L�+ S(r✓)(r, ✓) (22.100)

where S(r✓) is a function of r and ✓ to be determined.
Furthermore, we look for a separable solution, by making the ansatz

S = �1

2
�� Et+ L�+ S(r)(r) + S(✓)(✓) . (22.101)

Substituting (22.101) into the Hamilton-Jacobi equation (22.97), and using the expression
(21.14) for the inverse metric, we find

�+
�

⌃

 
dS(r)

dr

!2

+
1

⌃

 
dS(✓)

d✓

!2

� 1

�

"

r2 + a2 +
2Mra2

⌃
sin2 ✓

#

E2 +
4Mra

⌃�
EL+

�� a2 sin2 ✓

⌃� sin2 ✓
L2 = 0 .

(22.102)

Using the relation (21.26)

(r2 + a2) +
2Mra2

⌃
sin2 ✓ =

1

⌃

h
(r2 + a2)2 � a2 sin2 ✓�

i
(22.103)

and multiplying by ⌃ = r2 + a2 cos2 ✓, we get

�(r2 + a2 cos2 ✓) +�

 
dS(r)

dr

!2

+

 
dS(✓)

d✓

!2

�
"
(r2 + a2)2

�
� a2 sin2 ✓

#

E2 +
4Mra

�
EL+

 
1

sin2 ✓
� a2

�

!

L2 = 0

(22.104)
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i.e.

�

 
dS(r)

dr

!2

� r2 � (r2 + a2)2

�
E2 +

4Mra

�
EL� a2

�
L2

= �
 
dS(✓)

d✓

!2

+ a2 cos2 ✓ � a2 sin2 ✓E2 � 1

sin2 ✓
L2 .

(22.105)

We rearrange equation (22.105) by adding to both sides the constant quantity a2E2 + L2:

�

 
dS(r)

dr

!2

� r2 � (r2 + a2)2

�
E2 +

4Mra

�
EL� a2

�
L2 + a2E2 + L2

= �
 
dS(✓)

d✓

!2

+ a2 cos2 ✓ + a2 cos2 ✓E2 � cos2 ✓

sin2 ✓
L2 .

(22.106)

In equation (22.106), the left-hand side does not depend on ✓, and is equal to the right-hand
side which does not depend on r; therefore, this quantity must be a constant C:

 
dS(✓)

d✓

!2

� cos2 ✓

(+ E2)a2 � 1

sin2 ✓
L2
�
= C

�

 
dS(r)

dr

!2

� r2 � (r2 + a2)2

�
E2 +

4Mra

�
EL� a2

�
L2 + E2a2 + L2

= �

 
dS(r)

dr

!2

� r2 + (L� aE)2 � 1

�

h
E(r2 + a2)� La

i2
= �C .

(22.107)

Note that in rearranging the terms in the last two lines, we have used the relation

�2aLE + 2aLE
r2 + a2

�
= �4aMr

�
LE . (22.108)

If we define the functions R(r) and ⇥(✓) as

⇥(✓) ⌘ C + cos2 ✓

(+ E2)a2 � 1

sin2 ✓
L2
�

R(r) ⌘ �
h
�C + r2 � (L� aE)2

i
+
h
E(r2 + a2)� La

i2
,

(22.109)

then
 
dS(✓)

d✓

!2

= ⇥

 
dS(r)

dr

!2

=
R

�2
(22.110)
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and the solution of the Hamilton-Jacobi equation has the form

S = �1

2
�� Et+ L�+

Z p
R

�
dr +

Z p
⇥d✓ . (22.111)

Thus, the constant C, which is called Carter’s constant, from its discoverer B. Carter,
emerges as a separation constant and characterize, together with E and L, geodetic motion
in Kerr spacetime. We stress again that, unlike E and L, it is not associated to a spacetime
symmetry.

Once we have the solution of the Hamilton-Jacobi equations, depending on four constants
(, E, L, C), it is possible to find the particle trajectory. Indeed, from (22.98) we know the
expressions of the conjugate momenta

p2✓ = (⌃✓̇)2 = ⇥(✓)

p2r =
✓
⌃

�
ṙ
◆2

=
R(r)

�2
(22.112)

therefore

✓̇ = ± 1

⌃

p
⇥

ṙ = ± 1

⌃

p
R (22.113)

which can be solved by numerical integration.


