
Chapter 16

Gravitational waves from rotating
compact stars

In this section we shall show that a rotating star emits gravitational waves only if its shape
deviates from axial symmetry.

16.1 Stars rigidly rotating around a symmetry axis

Consider an ellipsoid of uniform density ⇢. Its quadrupole moment is

qij =
Z

V
⇢ xixj dx

3, i = 1, 3

and it is related to the inertia tensor
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⌘

dx3

by the equation
qij = �Iij + �ij q ,

where q ⌘ qmm. Consequently, the reduced quadrupole moment can be written as
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Let us first consider a non rotating ellipsoid, with semiaxes a, b, c, volume V = 4

3

⇡abc, and
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where I
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, I
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are the principal moments of inertia.
Let us now consider an ellipsoid which rotates around one of its principal axes, for instance

x3, with angular velocity (0, 0,⌦). What is its inertia tensor in this case?
Be {xi} the coordinates of the inertial frame, and {x0

i} the coordinates of a co-rotating frame.
Then,

xi = Rijx
0
j,

where Rij is the rotation matrix
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, with ' = ⌦t .

For instance, a point at rest in the co-rotating frame, with coordinates x0
i = (1, 0, 0), has, in

the inertial frame, coordinates xi = (cos⌦t, sin⌦t, 0), i.e. it rotates in the x�y plane with
angular velocity ⌦.

Since in the co-rotating frame {x0
i}
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in the inertial frame {xi} it will be
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0
kl = (RI 0RT )ij

=

0

B

@

I
1

cos2 '+ I
2

sin2 ' � sin' cos'(I
2

� I
1

) 0
� sin' cos'(I

2

� I
1

) I
1

sin2 '+ I
2

cos2 ' 0
0 0 I

3

1

C

A

.



CHAPTER 16. GRAVITATIONAL WAVES FROM ROTATING COMPACT STARS 222

It is easy to check that Tr I = I
1

+ I
2

+ I
3

= constant.
The quadrupole moment therefore is

Qij = �
✓

Iij �
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3
�ijTr I

◆

= �Iij + constant

Using cos 2' = 2 cos2 '� 1, etc., the quadrupole moment can be written as
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Since

I
1

=
M

5
(b2 + c2), and I

2

=
M

5
(c2 + a2),

if a, b are equal, the quadrupole moment is constant and no gravitational wave is emitted.

This is a generic result: an axisymmetric object rigidly rotating around its symmetry axis
does not radiate gravitational waves.

In realistic cases, a 6= b, and I
1

6= I
2

; however the di↵erence is expected to be extremely small.
It is convenient to express the quadrupole moment of the star in terms of a dimensionless
parameter ✏, the oblateness, which expresses the deviation from axisymmetry

✏ ⌘ a� b

(a+ b)/2
.

It is easy to show that
I
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= ✏+O(✏3) .

Indeed,

a� b =
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2
✏(a+ b), (16.1)
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. (16.2)

On the other hand, from (16.1) we have

(a� b)2 = O(✏2) = a2 + b2 � 2ab, (16.3)

therefore
2ab = a2 + b2 +O(✏2) (16.4)
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Since ' = ⌦t, eq. (16.6) shows that GW are emitted at twice the rotation frequency.
From eq. (14.40) and (14.44), the waveform is

hTT
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i.e., using eq. (16.6),
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where

h
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=
4G ⌦2

c4r
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✏ =
16⇡2G

c4 r T 2

I
3

✏ , (16.8)

where T is the rotation period; the term in square brackets in eq. (16.7) depends on the
direction of the observer relative to the star axes. Eq. (16.7) shows that a triaxial star
rotating around a principal axis emits gravitational waves at twice the rotation frequency

⌫GW = 2⌫rot . (16.9)

Fastly rotating neutron stars have rotation period of the order of a few ms; a typical value
of a neutron star moment of inertia is ⇠ 1038Kgm2. For a galactic source the distance from
Earth is of a few kpc, thus, if we assume an oblateness as small as ⇠ 10�6 we find
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I
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16⇡2G

c4
· (1ms)�2 · (1Kpc)�1 · (1038Kgm2) · (10�6) = 4.21 · 10�24 .

This calculation indicates that the wave amplitude can be normalized as follows
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The rotation period and the star distance can be measured; the moment of inertia can be
estimated, if we choose an equation of state among those proposed in the literature to model
matter in the neutron star interior; conversely, ✏ is unknown. However, we shall now show
how astronomical observations allow to set an upper limit on this parameter. It is known
that the rotation period of observed pulsars increases with time, i.e. the star rotational
energy decreases. Pulsars slow down mainly because, having a time varying magnetic dipole
moment, they radiate electromagnetic waves. A further braking mechanism is provided by
gravitational wave emission. We shall now assume that the pulsar radiates its rotational
energy entirely in gravitational waves and, using this very strong assumption and the ex-
pression of the gravitational luminosity (14.102) in terms of the source quadrupole moment
(16.6), we shall show how to estimate the pulsar oblateness. This estimate will be an upper
bound for ✏ because we know that only a small fraction of the pulsar energy is dissipated in
gravitational waves.
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From eq (16.6) we find
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by replacing this expression in (14.102) we find

LGW =
32G

5c5
⌦6✏2I2

3

. (16.12)

The rotational energy, in the Newtonian approximation, is

Erot =
1

2
I
3

⌦2 , (16.13)

and its time derivative
Ėrot = I

3

⌦⌦̇ . (16.14)

Since LGW  �Ėrot (with equality if the spin-down is entirely due to gravitational emission),
then
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(note that |⌫̇| = �⌫̇), therefore the spin-down limit on ✏ gives

✏  ✏sd =
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For instance, in the case of the Crab pulsar, for which ⌫ = 30 Hz and r = 2 kpc, if we assume
that the momentum of inertia is I

3

= 1038 kg m2, eq. (16.16) gives

✏sd = 7.5 · 10�4 . (16.17)

This calculation has been done for a number of known pulsars (A. Giazotto, S. Bonazzola and
E. Gourgoulhon, On gravitational waves emitted by an ensenble of rotating neutron stars,
Phys. Rev. D55, 2014, 1997) and the results are shown in Table 16.1.
As we said, these numbers are only upper bounds. Recent studies which take into account
the maximum strain that the crust of a neutron star can support without breaking set a
further constraint on ✏

✏ ⇠< 5 · 10�6 (16.18)

(G. Ushomirsky, C. Cutler and L. Bildsten, Deformations of accreting neutron star crusts
and gravitational wave emission, Mon. Not. Roy. Astron. Soc. 319, 902, 2000).

The data collected during the past few years by the first generation of interferometric
gravitational antennas VIRGO and LIGO are being analyzed; altough waves have not been
detected yet, available data allow us to set more stringent constraints on the oblateness of
some known pulsars. For instance, the present detectors sensitivity would allow to detect the
gravitational signal emitted by the Crab pulsar if its amplitude would exceed h

0

= 2.0 ·10�25;
since no signal has been detected, it means that

h
0

< 2.0 · 10�25 , (16.19)
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Table 16.1: Upper limits for the oblateness of an ensemble of known pulsars, obtained from
spin-down measurements.

name ⌫GW (Hz) ✏sd
Vela 22 1.8 · 10�3

Crab 60 7.5 · 10�4

Geminga 8.4 2.3 · 10�3

PSR B 1509-68 13.2 1.4 · 10�2

PSR B 1706-44 20 1.9 · 10�3

PSR B 1957+20 1242 1.6 · 10�9

PSR J 0437-4715 348 2.9 · 10�8

and using eq. (16.10), this equation implies that the Crab oblateness satisfies the following
constraint

✏  1.1 · 10�4 . (16.20)

This limit is more restrictive than the spin-down limit (16.17), even though it is larger
than the theoretical value arising from the maximal strain sustainable by the crust, (16.18).
However, this result is very important, since data analysis from LIGO/VIRGO tells us
something which we did not know from astrophysical observation (Abbot et al., Astrophysical
Journal, 713, 671, 2010, “Searches for gravitational waves from known pulsars with S5 LIGO
data”).

16.2 Wobbling stars

Let us now consider the case in which the star rotates about an axis which forms an angle
with one of the principal axes, say, I

3

. The angle between the two axes is called “wobble
angle”. In this case, the angular velocity precedes around I

3

(see figure 16.1). For simplicity,
let us assume that I

3

is a symmetry axis of the ellipsoid, i.e.
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,

and that the wobble angle ✓ is small, i.e. ✓ ⌧ 1. Be {x0
i} the coordinates of the co-rotating

frame O0 and {xi} those of the inertial frame O. As usual xi = Rijx0
j, where Rij is the

rotation matrix.
The transformation from O0 to O is the composition of two rotations:

• A rotation of O0 around the x0 axis by a small angle ✓ (constant); the new frame O00

has the z00 axis coincident with the rotation axis. The corresponding rotation matrix
is
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Figure 16.1: From O0 to O00

• A time dependent rotation around the z00 axis, by an angle ' = ⌦t; the corresponding
rotation matrix is

Rz =

0
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. (16.22)

After this rotation, the symmetry axis of the ellipsoid precedes around the z axis, with
angular velocity ⌦.

The rotation matrix from O0 to O therefore is
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Since in the co-rotating frame O0
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in the inertial frame O it will be

Iij = RikRjlI
0
kl = (RI 0RT )ij (16.24)
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Figure 16.2: From O00 to O
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The quadrupole moment can then be written as
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and the wave amplitude therefore is

hTT

jk (t, r) =
2G

rc4
Pjklm

"

d2

dt2
Qlm(t� r

c
)

#

,

i.e., using eq. (16.26),
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where
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From eq. (16.27) we see that when the star rotates around an axis which does not coincide
with a principal axis gravitational waves are emitted at the rotation frequency

⌫GW = ⌫rot .

As the oblateness, the wobble angle is an unknown parameter.


