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Introduction

The high frequency dynamics of many liquid systems is investigated experimentally by
inelastic neutron scattering (INS) and inelastic X-rays scattering (IXS), and numerically
by molecular dynamic simulations (MD). A big effort is devoted to understand how the
dynamic properties of different liquids depend on the characteristic inter-particle inter-
action potential of the system under study. In this respect particular attention has been
paid to noble gases and liquid metals. The inter-particle interactions for the former are
usually modeled by Lennard-Jones potentials whereas the latter are represented in terms
of pseudo-potentials. Another very important class of liquids to consider are the hydrogen
bonded (HB) liquids. The interest is found in the strong influence that hydrogen bond
has on the liquid microscopic properties. In fact they are characterized by a highly di-
rectional inter-particle interaction due to the hydrogen bond. In this respect one of the
most investigated HB liquid system is water which has been extensively studied by both
scattering experiments and molecular dynamic simulations. Besides water, many other
liquid systems of organic and inorganic nature are characterized by hydrogen bonding,
their structural and dynamic properties are strongly influenced by the strength and the
number of the hydrogen bonds between nearest neighbour molecules. Aiming to estab-
lish a connection between the dynamical properties of these systems and the specific HB
arrangement, in the present work we exploit the IXS technique to make a comparative
study of water and other HB liquids. We focus our attention on the relaxation phenom-
ena marking the dynamic of density fluctuations. In particular we deal with the structural
and microscopic relaxation processes: the first is related to the structural rearrangements
of the particles and takes place with a characteristic time scale 7, dictated by the local
inter-particle interaction and the thermodynamic state; the second is associated with the
interactions between an atom and the cage of its nearest neighbours and is dictated by

the topological disorder existing in both liquid and glassy phases.



Several open questions are related to the structural relaxation:

e The first concerns the time scale of the relaxation: it has been found that in water,
in the ~ 350 — 490 K temperature range [1], the relaxation time associated to
the structural process lies in the sub-picosecond region. This is the same order of
magnitude of the lifetime of the H-bond. Is the structural relaxation time in hydrogen
bonded liquid systems related to the lifetime of the H-bond ?

e The second question concerns the strength of the relaxation: it depends on the spe-
cific system and is related to the interaction potential between molecules. How does
the specific inter molecular interactions and local arrangements affect the strength

of the relaxation in HB liquids ?

e The third question concerns the activation energy of this process: is the activation

enerqy of the structural relaxzation related to the activation energy necessary to make

and break H-bonds?

Another important point concerns the presence of the microscopic relaxation process. In
simple monatomic liquids both kinetic and mode-coupling theories predict the existence
of two distinct relaxation processes [2]. In these theories, as shown both by numerical
simulations [3, 4] and by experiments [5], one of the two processes is the structural or
a—relaxation, and the other is the microscopic or p— relaxation. In glass-forming systems,
one also finds the same relaxation processes pattern. In this case, by driving the system
to the glassy state, where the structural arrest freezes the a-process and 7, becomes
extremely large, is still possible to clearly observe the microscopic process [6]. The outlined
scenario seems to point out that these two relaxation processes are universal features of
the liquid state even if information on the important class of hydrogen bonded liquids is

still missing. In this respect a question needs to be answered:

o Are both the structural and microscopic relazation process present also in hydrogen

bonded liquid systems?

Aiming to clarify all these aspects concerning the high frequency dynamics of hydrogen
bonded liquids, we have chosen pure hydrogen fluoride (HF), the inorganic system with

the strongest hydrogen bond and (H F),(H0),_; solutions. The main difference between



HF and H,0O is the uni-dimensional vs. three-dimensional nature of the HB network.
Consequently is of great interest to determine the evolution of the collective dynamics
from the phenomenology of one liquid to that of the other.

The thesis is structured as follow:

In Chapter 1 the inelastic x-ray scattering (IXS) with meV energy resolution and light
scattering techniques are introduced. They allow to determine experimentally the dynamic
structure factor S(Q,w), which is the time and space Fourier transform of the correlation
function for the particle density fluctuations of the investigated system. IXS is a powerful
method to investigate the high frequency collective dynamics in the mesoscopic region,
i.e. for distances comparable to those of first neighbours. Light scattering is a method
used to probe the dynamics of density fluctuations under quasi-macroscopic conditions.
It yields similar results to x-rays and neutrons scattering but in a substancially lower
momentum transfer and frequency regions. In particular we derive the expressions for the
inelastic x-ray and light scattering differential cross section, 8?0 /020w and its relation
to the dynamic structure factor S(Q,w). Finally a comparison between IXS and INS is
done, underlining similarities, differences and complementarities of the two technique.

In Chapter 2 we describe the very high resolution IXS spectrometer at the European
Synchrotron Radiation Facility (ESRF) in Grenoble. This is the beam-line ID16 which
provides a spectrometer with a meV energy. It is based on the principle of the triple
axis spectrometer and allows to perform experiments with an energy resolution down to
1.5 meV with incident photons of 21748 eV energy. The method used to obtain highly
monochromatic X-rays is discussed, it is based on the Bragg diffraction and requires: i) the
use of high orders Bragg reflections from perfect crystals; ii) the use of nearly backscat-
tering geometry for these reflections. The working principle of the spectrometer and the
fundamental concepts behind the beamline construction, as the intrinsic resolving power
for silicon crystals and the backscattering geometry are illustrated. The characteristics of
the main optical elements of ID16 are described together with the general performances
of this beamline.

Chapter 3 is devoted to the description of the collective dynamics in liquid systems Its
aim is to remind the basic concepts and the basic equations which will be exploited to
analyse and interpret the experimental data presented in this thesis. The basic analytical
tools used to describe the dynamics of density fluctuations are introduced. A discussion on

the main theoretical approaches to study the dynamics in different regions of the (Q,w)



plane are presented. In particular we consider: i) the macroscopic hydrodynamic region
where the system is viewed as a continuum isotropic medium and the excitation spectrum
is well described within the Navier-Stokes hydrodynamic equations; ii) the mesoscopic re-
gion in which the momentum transfer becomes comparable to the inter-particle distance
and the spectrum of density fluctuations is described within the framework of general-
ized hydrodynamics. Finally a qualitative and quantitative description of the relaxation
processes in a liquid is given and the models that are used to fit our data are introduced.
Chapter 4 is dedicated to the description of the collective dynamics in hydrogen bonded
liquid systems. In particular a general introduction to this class of systems together with
their main properties is reported. We start giving a brief report on the most studied HB
liquid system, water, summarizing the previous studies on its collective dynamics. We
introduce the two HB liquids subject of the investigations of this thesis work, hydrogen
fluoride (HF) and (H F),(H>0);_, solutions.

Chapter 5 is devoted to the description of all the experimental aspects related to
the measurements of the dynamic structure factor of pure hydrogen fluoride (HF) and
(HF);(H0),_, solutions. The design and development of the sample cells as well as
each part of the assembly and the sample preparation are described in details. The mea-
surements of the instrumental energy resolutions together with the ”empty cell” measure-
ments, namely, the contribution to the total scattered intensity due to the sample cells,
are presented.

In Chapter 6 the experimental results obtained by studying the dynamic structure factor
S(Q,w) of the two HB liquid systems subject of this thesis work: HF and (HF'),(H,0)1_,
solutions are reported. In order to characterize the transition from the hydrodynamic
macroscopic regime probed by Brillouin light scattering, to the mesoscopic regime probed
by inelastic X-rays scattering, the collective dynamics of HF is investigated with these
two different techniques. Aiming to shed light on the behaviour of the collective dynamics
of high associated liquids, we compare these results with the one existing on water. Then,
since the main difference between HF and H,O lies in the different HB arrangement, the
collective dynamics of (HF),(H20);_, solutions is investigated by IXS to describe the

passage from the behaviour of one liquid to the other.



Chapitre 1

Dans ce chapitre, nous introduisons la diffusion inélastique des rayons X et la diffusion
Brillouin de la lumiére. Avec ces deux techniques on peut accéder expérimentalement au
facteur de structure dynamique S(Q,w) associé auz fluctuations de densité des particules
du systeme exploré. Nous verrons comment la diffusion inélastique de rayons X, avec
une trés haute résolution en énergie, peut s’appliquer a [’étude de la région cinématique
correspondant auz fluctuations de densité atomique. La diffusion Brillouin de la lumiere
est utilisée pour explorer la dynamique des fluctuations de densité en condition quasi-
macroscopique. FElle donne des résultats tres similaires au rayons X mais dans une région
a plus bas moment échangé et a plus basses fréquences. Le chapitre est organisé comme
suit:

dans le Par. 1.2 nous décrivons les équations de base qui lient la section efficace de diffu-
ston de rayons X et de lumiére au facteur de structure dynamique.

Dans le Par 1.3 les différentes régions du plan (Q,w) accessible par les rayons X et les
neutrons seront illustrées afin de mettre en évidence la complémentarité de ces deuz tech-
niques pour ’étude de la dynamique aux hautes fréquences dans les systemes désordonnés.
Enfin nous discuterons les principauzr avantages et désavantages de cette nouvelle tech-

nique, et aussi les conditions particuliéres qui on permis son développement.



Chapter 1

Scattering methods to measure atomic density

fluctuations

1.1 Introduction

In this Chapter the inelastic x-ray scattering (IXS) with meV energy resolution and light
scattering are introduced. With these techniques it is possible to determine experimentally
the dynamic structure factor S(Q,w), which is the time and space Fourier transform of
the correlation function for the particle density fluctuations in the investigated system.
IXS is a powerful method to investigate the high frequency collective dynamics in
liquids and disordered systems. Traditionally the study of the atomic motion in condensed
matter in this high frequency region has been the domain of inelastic neutron scattering

(INS) in fact neutrons are particularly suited to these studies mainly for two reasons:

e neutrons with wavelengths comparable to the interparticle spacing have kinetic en-
ergy of = 100 meV, and therefore, with moderate relative energy resolution, it is

possible to study efficiently the collective atomic excitations.

e they scatter from the nuclei with an interaction strength sufficiently small to allow

a large penetration in most materials;

The INS technique has been successfully applied to the study of the density fluctuations
spectrum of crystalline solids and low density gases. In disordered systems, like liquids,

glasses and dense gases, very few neutrons studies have been performed so far. In fact,
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due to the kinematics of the scattering process, the neutron technique cannot be effi-
ciently applied to study sound modes in materials with a large speed of sound, typically
above 1500 m/s. These kinematics limitations do not apply to x-rays which are, therefore,
particularly well suited to study the small momentum and large energy transfer regions.
Light scattering is a method used to probe the dynamics of density fluctuations under
quasi-macroscopic conditions. It yields similar results to x-rays and neutrons scattering
but in the low momentum transfer and low frequency region. The chapter is structured
as follow:
in Sec. 1.2 we derive the expressions for the inelastic x-ray and light scattering differential
cross section, 8?0 /0Q0w. It is shown how they are related to the dynamic structure factor
S(Q,w).
In Sec. 1.3 a comparison between IXS and INS is done, underlining similarities and
main differences. i) The coherent and incoherent cross sections in the cases of INS and
IXS are compared. ii) The kinematics of the scattering process, that determine different
accessible regions of the (Q,w) plane in the case of neutrons or x-rays, is illustrated. The
complementarity between the two techniques is also highlighted. iii) The peculiarities of
the IXS technique with meV energy resolution are summarized together with the particular

conditions that have allowed the development of IXS.

1.2 X-rays and light scattering cross sections

The kinematics of an inelastic x-ray scattering process is illustrated in Figure 1.1. A
photon with an initial energy hwy, a wave vector ky, and a polarization ¢;, impinging
upon a target, S, is scattered in the solid angle df2, centered on the scattering angle 6.
The scattered photon will have a final energy hw;, a wave vector k;, and a polarization
€1. From the energy-momentum conservation law, the energy, hw, and momentum, Q,
transfered to the scattering system are hw = hwy — hiw; and Q = kg — k;.

When w << wy the wave vectors ky and k; have basically the same modulus and, as a
consequence, the momentum transfer is simply connected to the scattering angle 6 by the
relation @ = 2kgsin(6/2). The scattered intensity is determined by the scattering double
differential cross section 0?0 /0Q0w;, which determines the number of scattered photons
into a solid angle d2 around the direction defined by k;, with a frequency w; in the range
ds)y.
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Figure 1.1. Principle of an inelastic x-ray and light scattering experiment.

Inelastic X-rays scattering cross section

The cross section, function of the energy and momentum transfer to the scattering sys-
tem, can be calculated by considering the interaction Hamiltonian H; which couples the
electromagnetic field of the photon to the scattering electrons of the target. In the weak

relativistic limit, H; can be written as the sum of 4 terms [7].

i VXArJ’))

XAl ) A0~ T A0 p

2mec2 m

2

- 2m2ct ZSJ A(rj, t) x A(r;, 1)) (1.1)

Here the sum is over the electrons of the scattering system, e and m, are respectively the
charge and the mass of the electron, ¢ is the speed of light, p is the momentum operator
of the scattering electron, s is the electron spin operator, and A is the vector potential
of the electromagnetic field. The first two terms of 1.1 do not depend on the electron
spin and are respectively the Thomson term and the absorption term. They describe
the coupling between the electron current and the electric photon field. The other two
describe the coupling of the electron spin with the magnetic photon field, and the spin-
orbit interaction in presence of the electromagnetic field. These last two terms are much
weaker than the first two for photon energies lower than the rest energy of the electron
(mec?). Assuming the validity of the linear response theory, in which a weak coupling

between the beam and the system is considered, the scattering double differential cross
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section does not depend on the intensity of the incident flux, and the intrinsic properties

of the sample are probed as if it was unperturbed [2].

e Using the lowest-order perturbation theory, in the hypothesis that the initial and

final photon states are represented by plane waves,

e (Calculating the transition probability per unit of time by the Ferm: golden rule

the cross section can be expressed as [7]:

%o w O . hw O 1
000 r?(w—;> Do (@r 3T (o 1) — i (@ 3B (e x o) + -

J ¢ J Me

Z{ (Pr| X ler - py — (ks X €1) - sle ™™ DN ) (Pn| X5[(€0 - Py) + i(ko X €o) - s5]e™ 0| D)

N EI—EN+th—iFN/2

2
+

(Pr| 3 [€0 - Pj + (Ko X €o) - sie” ™| @) (D] 35[ex - Py — i(Ka X €1) - s5le” ™1™ |y)
EI — EN — hw1

x8(Ep — By — hw) (1.2)

where 7, = e*/mec? = 2.818 - 107°m is the classical electron radius, |®y > is the wave-
function which describes a general (intermediate) state for the scattering electron system
with energy Ey , and I'y takes into account the level width, it is proportional to the
inverse of the lifetime of the state |®y >, €g and ¢; are the unit polarization vectors, E;
is the energy of the initial state. Using the closure relation }y |y >< ®y| = I and
considering that if the incident energy hAwq is much larger than Ej it is possible to neglect

Ex — Ey in the two denominators and the expression 1.2 is reduced to [7]:

2

hw

MeC2

(@r| €9 |@r)(o0er)—i
;

. QxP:
(Op| 3 " ( Qkoz J-C+sj-D) )
J

820' o[ W1
900w, ¢ (w_o) IZ;

Xé(EF—E[—hCU) (13)

where



Chapter 1: Scattering methods to measure atomic density fluctuations 13

C =¢€Xe

D = (o x €1) + (K1 X €1)(ko X €0) — (Ko X €1)(Ky X €1) x (Ko X €)

Q=ki -k

Here ko and k; represent the unit vectors of the incident and scattered photon respectively.
The first term of 1.3 is due to pure charge Thomson scattering, and the latter is due to the
the magnetic scattering. This latter one is reduced by a factor (Aiw/m.c*)? in amplitude
with respect to the Thomson term. Being m.c? ~ 0.5MeV, at photon energies of the
order of 10 keV, (hw/mc?)? ~ 10~ and the magnetic scattering is strongly suppressed.
For x-rays in the energy range of 10 —20 keV, neglecting the magnetic term and away from

absorption edge, the scattering cross section reduces to the following simple expression:

2

820' 92 w1 2
398w1 =T <_> (60 ) 61) pr

Wo IF

(®r| ) ' ¥mi|®r)
J

where py is the statistical weight of the initial state |®; > .Using the integral representation

of the ¢ function, the Van Hove transformation [8, 9]and the relation [8]:

<Z_g>h =re <:_> SR (1.5)

the double differential cross section can be rewritten as:

0%c do 1 . . .
—_ | = T —iQ-r(t) ,1Q-1(0) —zwtdt 1.
0Q0w, <d9>m2w /; = ¢ > e (1.6)

The integral representation is used to highlight that the cross section can be expressed as
the time evolution of ground state properties and in fact, it corresponds to the Fourier
transform in space and time of the electron-electron pair correlation function. This quan-

tity is by definition the dynamic structure factor of the electron density, S(Q,w) :

S(Q,w) = /Z < 7R giQm(0) » g=iwt (1.7)

L
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The quantity (g—g)th represents the coupling of the beam to the scattering system and does
not depend on the detailed properties of the scattering system. It is possible to reduce
further the expression 1.4, and to derive a relation where, instead of the electron-electron
pair correlation function, one has directly the dynamic structure factor associated to the

atomic motion. This is possible within the validity of the following two assumptions:

e The validity of the adiabatic or Born-Oppenheimer approximation. It assumes that
electronic velocities are much greater than ionic velocities; one therefore assumes
that because ions move so slowly compared to electrons, at any moment electrons
are in their ground state for that particular instantaneous ionic configuration. This
allows to separate the electronic and the ionic motion. This means that the wave-
function ® that describes the ensemble ions plus electrons of our target can be
factorized in the product of a wavefunction ¢ describing the ions states depending
on the nuclear coordinates and a wavefunction 1 describing the electrons states
which depend only parametrically from the nuclear coordinates. For a monoatomic

system we then assume that the initial and final states can be written as:

®; = ¢y (Re,...,RN) - (1, ... rh ... el D)

®r = ¢py(Ra,...,Rn) -¥p (vl ... ekl oo D) (1.8)

where R and r are respectively the ions and electrons position vectors, N and Z the

ions and the electrons numbers, ¢, (R1,...,Rn), ¢ry (R1,..., Rn) the ions wave-
. 1 1 N N 1 1 N N
functions, and finally ¢y, (r1,...,rL...v7, ..., 1), ¥p,(r], ..., Th...T], ..., L ) are

the wavefunctions of the electrons on the nth atom. This approximation neglects any
interaction between electrons of different atoms, and between electrons of one atom
with the nucleus of another atom. This approximation is particularly good as far as
the energy transfers are small with respect to the electron excitation energies, and
therefore it assumes implicitly that the valence electrons with small binding energies

are few compared to the core electrons, assumption valid in most cases.

e The scattering process does not lead to electronic excitations; this means that the
difference between initial and final state concerns only excitations related to atomic

density fluctuations.
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The double differential scattering cross section, under these hypotheses, can be written

as:

2

< Ory| D Q)T g, > | 6(Ep — E; — w)
!

(e0-€1)* Y pry

FnIy

%o _ 2w
898w1 S Wo

N——

Y N2 2ii/ —iwt —iQRy(t) ,—iQRy (0)
=7’ (w())(eo e1)’|f(Q)| 5 N dte z <e e >

LU

b =22 - aPIFQPS@Qw) (19)

where f;(Q) corresponds to the integral on the electron coordinates of the [ atom. This
quantity is the Fourier transform of the electronic charge spatial distribution on the con-

sidered atom. It is in fact given by:

Q) = /wl(rl )Y (. 1y) i eQTidry .. . dr, (1.10)
i=1

and is called the atomic scattering amplitude or atomic form factor of the I** atom. The
quantity |¢;, > denotes the ground state of the ions system, and the S(Q,w) in 1.9 is
the dynamic structure factor of the ions, i.e. it refers to the atomic density fluctuations
only. In the limit Q@ — 0, f;(Q) is the number of electrons, Z, of the [** atom, and when
Q increases f;(Q)) decreases almost exponentially, thus strongly reducing the inelastic
scattering intensity: its decay is determined at large (Q predominantly by the Fourier
transform of the inner shell atomic wave function which have an exponential envelope. If Q
is comparable to the inverse of the interparticle separation, and w is in the range of phonon
excitations energies, it is possible, as shown by Eq. 1.9, to get information concerning
the scattering by collective atomic excitations. The Eq. 1.9, derived for a monoatomic
system, can be generalized to molecular or crystalline systems. Beside the hypothesis that
one can neglect the electronic excitations, if one can neglect also the excitations of other
characteristic internal degrees of freedom in the molecule or in the unit cell, (molecular
vibrations, for example) because they are at energies much larger than those associated

to the considered atomic collective density fluctuations, it is possible to substitute the
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atomic scattering amplitude with the molecular or unit cell form factor. In the case of
polyatomic non crystalline samples the procedure to determine the scattering cross section
is obviously more complicated. The formalism introduced can be easily generalized in the
hypothesis of a random distribution of scattering units. In this case one can show that the
cross section is splitted into two components: one coherent and the other one incoherent.
They are weighted respectively by the average and by the variance of the fluctuations
of the average form factor. In the approximation of a random atomic distribution, the

inelastic x-ray cross section can then be re-written as:

2
aga(;l =" (%) (€0 - €1)°[065(Q, w) + 0:55(Q, )] (1.11)

where 0, =< f(Q) >2, 0; =< f(Q)* > — < f(Q) >2. Here the calculation of the mean
values of < f(Q) > and < f(Q) >? are made over the whole system. Sg(Q,w) is the
spectrum of the single particle correlation dynamics and concerns the incoherent part of

the scattering cross section. It is defined by:

1 , : :
Ss(Quw) = oy /dte_“"t 3 < emi@nle=iQn0) (1.12)
!

The equation 1.11 is the basic expression to be used in the inelastic x-ray scattering from
atomic density fluctuations. As we will see in the next paragraph, this expression is for-
mally identical to the inelastic neutron scattering cross-section. The parameters o, and o;
, however, have slightly different origin, and therefore different values and Q-dependence.

From these differences arises the complementarity between these two techniques.

Light scattering cross section

While x-rays interact with electrons, light is sensitive to those collective excitations which
are correlated with a change of polarizability. Also in this case the double differential cross
section is achieved by applying the time dependent perturbation theory to the interaction
hamiltonian H; of equation 1.1. In this case the time dependent perturbation theory
together with the application of the dipole approximation (valid when the wavelength of
the incident radiation is much bigger than the interatomic distance A >> [) yields the

following expression [2]:
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820- W w +o0o i "
Owdw 21\?7;4 Z g Ch /_oo < Pap(Q, 1) P5(Q, 0) > 'dt (1.13)

where c is the speed of light, Q = k; — kg, its modulus is

d7n 0
@ = —sing

n is the refractive index and A the wavelength of the incident radiation, P,3(Q, 1) is the

space Fourier transform of the total polarizability tensor P,s(r,t) :

PalQ.0) = [ Pastr. 1 ir = [ (32 (0t - Ra) )4

N
= 3" abs (Ry(t))e~ @0
=1

here ozfl/j (Ry(%))1=1..~ is the effective polarizability tensor of the Ith molecule. It depends

on the position R;(t) of the molecules in the target and can be written as:

afm = adap + ﬁéﬁ + (Aoz)flﬂ (1.14)
where « is called the isotropic part of the polarizability tensor since it is independent of
molecular orientation, ﬁflﬂ is the anisotropic part, traceless (zero trace) which changes as
the molecule rotates, (Aa)laﬁ comes from the local electromagnetic fields produced by the
dipoles of the other molecules of the system and induced by the field of the probe. The
scattering cross section coming from the first term of the 1.14 is the isotropic part:

820' w ws i Y
000w 21\3@4 (o 61)2/ <p(Q.1),p"(Q,0) > e ™dt (1.15)

It is proportional to the dynamic structure factor through

Lo = 2902 (e - €)25(Q, w) (1.16)
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1.3 X-rays and neutrons: a comparison

Both inelastic x-ray and neutron scattering can provide important information on the
study of the high frequency collective dynamics in condensed matter and, in both cases,
one can measure directly the S(Q,w) associated to atomic density fluctuations. In this

section we discuss the main differences and analogies between the two techniques.

1.3.1 Inelastic X-rays (IXS) and neutrons (INS) cross sections

The neutrons interact directly with the nuclei, and not with the electrons around them
and, similarly to the x-ray case, the interaction Hamiltonian has different terms that
describe the coupling between the neutron and the nuclear and electronic operators. In
the non relativistic limit, the principal interaction is with the nuclear density and it can

be expressed with the Fermi pseudopotential:

_ omh?

H,=——
mp

ijé(R] —T’) (117)

where my is the neutron mass, b; is the scattering length, characteristic of the interaction
between the neutron and the j%* nucleus at R;, and the sum runs over all nuclei of
the scattering system. Considering this interaction Hamiltonian, and following the same
procedure as in the case of x-rays, it is possible to obtain the following expression for the

scattering cross section:

e neutrons

25(EF _Ei—hw)  (1.18)

< byl D b @ H G >

820' kl
000w, <k_0) 2 i

FnIy l
® x-rays
0%c w 2
= 2 _1 _Z'Q.Rl E _ E _ 1.1
900w, Te<w0>F§Np1N <¢FN|;fz(Q)e (b1, >| 6(Ep — E; — hw) (1.19)

The neutron scattering length b; of the 1.18 formally plays the same role of the atomic
form factor f;(Q) in 1.19 but it is not Q-dependent in the Q-range of interest to atomic

density fluctuations. This is because the dimensions of the nuclei are much smaller than the
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inverse values of the momentum transfer () typically considered in the study of the atomic
dynamics, and therefore the scattering length is not expected to show any Q-dependence
up to Q values of the order of the inverse of the nuclear size. As a consequence, the double
differential scattering cross section in a neutron scattering processes does not decay for
high Q values as it does for x-rays. In general, it is possible to have different scattering
length b; not only for each atom type but also for each isotope. Furthermore, for nuclei with
a magnetic moment, the scattering length depends on the relative orientation between the
spin of the incoming neutron and that of the considered nucleus. This characteristic makes
very difficult the factorization of the scattering lengths. With the assumption of a random
distribution of the nuclear spin orientation [2], however, in analogy with the x-ray case,

the neutron double differential scattering cross section can be expressed as:

o ky
~\ ko i 1.2
000FE, (ko)[acS(Q,w)+ozSS(Qaw)] neutrons (1.20)
920 _ 2w (€0 - )2[ S(Q,w) + 0:S5(Q, w)] X — ravs (1.21)
5008, "<\ ) (0 ) 1o w) +oi5s (@ y _
where

=<b>?
{ 7e neutrons  (1.22)

o, =<b>>—<b>?

{ 0. =< f(Q) >* X — rays (1.23)

0 =< f(Q)* > - < f(@) >’

The Eq. 1.20, 1.21 show the formal similarity between neutrons and x-rays scattering cross
sections.

It is important to underline that for neutrons the incoherent term in the total cross section
depends on the specific investigated system, and it is present even for mono isotopic
samples, whereas in the case of x-rays it is completely absent for monoatomic, molecular
and crystalline systems. In Fig. 1.2, it is shown the different behaviour of the coherent
cross section versus the atomic number Z for x-rays and neutrons. In the case of x-rays,

the @ = 0 limit is considered where o, = r3Z?. This shows that the coupling of the
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Figure 1.2. Coherent scattering cross section for neutrons and x-rays versus the atomic
number. The coherent cross section for x-rays, i.e. o, = rgZ? is calculated assuming f(Q)
= 7.

two probes is very similar in the low Z-region, and increases for x-rays as Z2 at high
7 values. The advantage, shown in Fig. 1.2, on studying systems with high Z for x-ray
can be misleading in practice. In fact, the optimal scattering volume in the x-ray case,
especially in high Z materials, is strongly limited by the photoelectric absorption process.
To better appreciate this point, one must consider that the signal effectively measured in
a scattering process must take into account the scattering volume and N. The scattered

photon flux is given by

%o
020w
where Ny is the incident photon flux, A} the solid angle and in the energy interval Aw,

N =N, AQAwpLe - (1.24)

p is the density of the sample, L is the sample length, and p is the linear attenuation
coefficient. Eq. 1.24 is valid both for x-rays and neutrons and at the largest value for
N is obtained when the sample length L = 1/p, i.e. the linear attenuation coefficient
determines the effective scattering volume. For x-rays energies on the order of 10+ 30 keV
and atoms with Z > 3, p is basically determined by the photoelectric absorption process.
In fact, while the atomic form factor increases as Z2, the photoelectric linear attenuation

coefficient increases roughly as Z*. As a consequence, the effective scattering volume is
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Figure 1.3. Ratio between coherent scattering and the total scattering cross section st for

x-rays of incident energy 22 keV versus the atomic number.

rapidly reduced in materials with high Z atoms, making very difficult their study with
x-rays. The ratio between the coherent (o.) and the total (o;) scattering cross section as
a function of Z is reported in Figure 1.3 for an incident photon energy of 22 keV. Here
0. = e*Z%/(moc?) and oy = p/p.

As we have seen, in the x-rays case, the photoelectric absorption determines the scattering
volume, and this has the consequence that the multiple scattering processes associated to
the Thomson scattering term are strongly suppressed and always almost negligible. This
is not true for neutrons where the principal source of attenuation is the scattering process
itself, and multiple scattering gives a large contribution to the scattered signal whenever

the sample length is of the order of 1/p.

1.3.2 Kinematics in the (Q,w) plane for X-rays and neutrons

An important difference between neutrons and x-rays is connected to the kinematics of
the scattering process that determines the different accessible regions of the plane (Q,w)
to the two techniques. In the neutrons case, the energy and momentum conservation

laws impose the following relations:
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Q=ky—k
Q? = k2 + k? — 2kok,cosb
where 6 is the scattering angle. For a neutron, the relation which connects energy and

momentum is:

E(k) = h*k?*/(2my) (1.26)

where my is the neutron mass. Using the equations 1.25, one obtains:

Q\° E E
—| =2—-——=-=2 1—— 1.2
<k0) E cost E (1.27)

As can be observed in Fig. 1.4, for a fixed incident neutron energy there are kinematics
regions in the plane (Q,w) not accessible by any scattering angle q. In these regions,
the energy transfer is comparable or larger than the energy of the incident neutron and,
here, one would have acoustic excitations propagating with a speed of sound larger than
the velocity of the incident neutron. The thermal neutrons have an average energy of
~ 25meV and corresponding total momentum of ~ 35nm~!: This correspond to a speed
of & 2200m/s. This condition, together with the energy and momentum resolution of the
neutron spectrometers, make very difficult, even using faster neutrons, to cover efficiently
the kinematics region associated to acoustic excitations with sound velocities larger than
~ 1500m/s. In crystalline systems, this limitation is overcame by the periodicity of the
lattice, which allows to use the neutrons to study these dynamical properties in high order
Brillouin zones. In disordered materials, where there is no translation invariance, i.e. no
Brillouin zones, the propagation of collective excitations can be studied only at momentum
transfer smaller than the inverse of the interatomic distances, i.e. in the analogous of the
first zone where, indeed, the kinematic limits are the most severe. This explains the very
few neutron studies in these systems. In the case of x-rays, the relation between energy

and momentum is:

E(k) = hek (1.28)

and the analogous of 1.27 is given by:
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Figure 1.4. Kinematics regions accessible by neutron scattering experiments as function of
the scattering angle q, for energy gain (F < 0) and energy loss (E > 0) of the scattered

neutron.

Q\’ E E
=] =1+(1-—=)"—2cos0(1 — — 1.29
(2) =1+ a- - 2eomv- 4 (129)
In the typical limit of small energies transfers, i.e. when E < E0, this expression reduces

to

Q . 0
he 282712 (1.30)

We observe that the momentum transfer is completely determined by the scattering angle,
and this show that there are basically no limitations in energy transfer for any accessible
momentum transfer in the energy region typically spanned by phonon like excitations.
The different accessibility to zones of the plane (Q,w) determines the most interesting
complementarity between the two techniques: unlimited energy transfer at small momen-
tum transfer for x-rays, very large momentum transfer capabilities at very small energy

transfer for neutrons.
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1.3.3 Summary on the peculiarity of the IXS method

The x-rays couple to the electrons with a cross-section of the order of the square of the
classical electron radius, and therefore with a strength comparable to that of the neutrons
with nuclei. Within the adiabatic approximation, as far as the electronic state of the system
is not modified by the scattering process, the ion dynamic structure factor, and therefore
the collective ion excitations, becomes detectable by inelastic x-ray scattering through the
electron density variations associated to the atomic density fluctuations. As a consequence,
inelastic x-ray scattering, in principle, is a powerful spectroscopic technique for the study
of the high frequency atomic dynamics of condensed matter and it is complementary to
the inelastic neutron scattering technique in those specific cases where the neutrons are

difficult to apply. The principal differences of the x-rays respect to the neutrons are:

e The IXS technique allows unlimited energy transfers in the accessible Q transfer
range, namely in the ~ 0.5 + 150nm~" region. At larger Q-transfers, the signal is
strongly reduced by the decay of the atomic form factor. This situation makes the
IXS technique particularly suited in the study of collective excitations in liquids and
disordered materials. In these systems, in fact, the lack of translation invariance
requires that the collective excitations must be studied in a momentum transfer
region comparable or smaller than that corresponding to @,,, the inverse of the
intermolecular distances. This is the Q region of major interest, i.e. the one below
the first maximum of the static structure factor S(Q). This region is very difficult
to reach in most materials with neutrons and this explains why, so far, the studies

on the high frequency dynamics of disordered systems have been very few.

e The inelastic x-ray scattering cross-section is almost completely coherent and isotope
independent, contrary to the neutron case, where often the incoherent contribution

may dominate, or it is difficult to be separated from the coherent one.

e With x-rays, it is possible to have a very good Q-resolution and a very small spot
size on the sample. This may offer the possibility to study materials available only
in small quantities, and samples under extreme thermodynamics conditions (which

is the case of this thesis).

¢ Finally, the absence of multiple scattering processes allows the direct measurement
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of the dynamic structure factor without need of sophisticated procedures for the

data reduction and analysis.

The development of the inelastic x-rays scattering technique to study collective excitations

has been, so far, very difficult for the following reasons:

e An x-ray with a wavelength A = 0.1nm has an energy E, ~ 12keV, and therefore
the study of excitations in condensed matter with energies of the order of few meV
requires a very good relative energy resolution, i.e. AE/E ~ 10°7 = 108 . This
poses severe constraints on the monochromator and analyzer optics, as well as on

the divergence and flux of the incident and scattered photons beams.

e The fast decay of the form factors with increasing Q) is responsible for important
signal losses already at relatively small (Q, and, therefore this limits the efficient use

of the IXS technique to Q-values well below 150nm=!.

e At the considered x-ray energies, the photoelectric cross section is in general larger
than the Thomson one. Considering that the increase of the photoelectric cross
section with the atomic number Z goes roughly as Z* , the applications of the

inelastic x-ray scattering technique are most effective in the study of low Z materials.



Chapitre 2

Ce chapitre est consacré a la description du spectrométre de diffusion inélastique de rayons
X a trés haut pouvoir de résolution, installé o ’ESRF de Grenoble dans la ligne de lumiére
ID16. Nous montrerons les principes générauz qui ont inspiré la construction de cette ligne
de lumiére. Ses éléments principaux et ses caractéristiques seront aussi illustrés dans le
détail. Il est basé sur le principe du spectrométre a trois azxes et perme de réaliser des
expériences de diffusion inélastique des rayons X avec une résolution en énergie de 1.5
meV en utilisant une énergie incidente de 21747 eV. Dans ce chapitre on discutera la
méthode utilisée pour obtenir des rayons X trés monochromatiques. FElle est basée sur la

diffraction de Bragg et demande
e [utilisation des réflexions de Bragq d’ordre élevé de cristaux parfaits,
e [utilisation de la géométrie en ’backscattering’ pour ces réflexions.

Le chapitre est organisé comme suit:

dans le Par 2.2 nous illustrons le principe de fonctionnement du spectromeétre et les con-
cepts fondamentaur sur lesquels se base la ligne de lumieére.

Le Par 2.3 est dédié a la description des caractéristiques des éléments principaux de ID16

et a ses performances principales.
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Chapter 2

The inelastic X-rays scattering method

2.1 Introduction

Thanks to the development of the third generation synchrotron radiation source with
very high brilliance, collimation and polarization, it has been possible to construct very
high resolution IXS spectrometers. A big contribution in this direction has been made
by the European Synchrotron Radiation Facility (ESRF) in Grenoble with a meV energy
resolution IXS spectrometer. It has been working by now for eight years. It is based on
the principle of the triple axis spectrometer and allows to perform experiments with an
energy resolution up to 1.5 meV with incident photons of 21748 eV energy. An energy
resolution of the order of meV is achieved by the IXS method for very small values of the
ratio AE/E. This requires very high photons fluxes. In this chapter we will discuss the
method used to obtain highly monochromatic X-rays exploited at the beam-line ID16 at
the ESRF. It is based on the Bragg diffraction and requires i) the use of high orders Bragg
reflections from perfect crystals; ii) the use of nearly backscattering geometry for these
reflections. It is possible to perform energy scans either by changing the monochromator
or analysers crystal Bragg angles or by varying the relative lattice parameter of the two
crystals through the change of their relative temperature. In order to avoid to drastically
affect the resolution with geometrical contributions due to the change of the Bragg angle,
at ID16 the problem has been overcome by exploiting the second strategy and in particular
by keeping fix the temperature of the analyser crystal and by varying the one of the
monochromator. Aiming to obtain resolving power of the order of (AE/E) ~ 1077 +1078,

the temperature stability of the two crystals has to be maintained within the mK range,
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while the typical temperature step in a scan has to be of the order of 5 + 10 mK. This
chapter is structured as follow:

Sec. 2.2 is dedicated to illustrate the working principle of the spectrometer and the
fundamental concepts behind the beamline construction, as the intrinsic resolving power
for silicon crystals and the backscattering geometry.

Sec. 2.3 is devoted to the description the characteristics of the main optical elements
of ID16. In the last part, the general performances of this beamline will be discussed. In

particular the energy and momentum resolution will be reviewed.

2.2 Basic ideas

This section is devoted to present the basic ideas to develop a spectrometer for inelastic
X-rays scattering with meV energy resolution. It is based on the working principle of a
triple axis spectrometer which exploits high order Bragg reflection from perfect crystals

and the backscattering geometry. We describe it in the following.

2.2.1 The triple axis spectrometer

The general principle of a triple axis spectrometer is schematized in Figure 2.1

The first axis corresponds to the backscattering crystal monochromator, here the energy
E; of the incident beam is selected by an elastic Bragg scattering process. The second axis,
corresponds to the sample which scatters inelastically at an angle 6. This angle determines
the geometry (Figure 1.1) and the moment transfer Q. The scattered energy Ej is finally
analyzed by the backscattering crystal analyser through an elastic Bragg scattering pro-
cess, as in the case of the first axis. This analayzer defines the third axis. According to the
Bragg’s law, the energy difference between incident and analyzed beam can be achieved
either by varying the Bragg angles 6z either by varying the lattice parameter d, of one
of the two crystals by changing its temperature. As we will see, the latter method is
well suited for high resolution inelastic x-rays scattering to perform energy scan at fixed
momentum transfer; this allows in fact to keep always constant the geometrical contri-
butions of the total resolving power of the instrument. To obtain high energy resolution,

two conditions are necessary:

e use of high order reflections from perfect crystals
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Figure 2.1. General principle of a triple axis spectrometer.

e use of backscattering geometry

We derive the energy resolution starting from the Bragg’s law:

2dypsenfp = hA (2.1)

where dj is the spacing of the crystal lattice planes of the reflection with Miller index
h; fp is the Bragg angle between the incident x-ray and the diffraction planes; A is the

wavelength of the diffracted x-ray; exploiting the following relations:

_ o
)\_k

2

Th — i

sinflp = cos(5 — 0p)
-

6—2—93

equation 2.1 can be rewritten as:

2kcose = Ty, (2.2)

where 7, = 27 /d}, is the reciprocal lattice vector; k = 2w /) is the photon wave-vector and

the angle € expresses the deviation from perfect backscattering g = /2. The wave-vector
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given by Eq. 2.2 depends from the two parameters € and 7
k = k(e )

variations in € and 7, produce variations in k, this allows to write 0k/k as the sum of two

() (5).

The energy resolution can be achieved by exploiting the relation between the energy and

contributions:

the wave-vector of an x-ray beam E = hck, which leads to:

OE ok
E k
Exploiting this expression, the energy resolution can be written as:

F(F). (5) o

In the next two subsections we describe in detail the origin of these two terms.

2.2.2 High order reflections from perfect crystals

The term (%)h represents the contribution due to the intrinsic properties of the crystal.
(1)
E
the framework of the Dynamical Theory of x-ray diffraction [10]. An efficient experimental

The best relative energy resolution (%), at a given diffraction order h, can be derived in
method to obtain a very high resolving power for X-rays is based on Bragg diffraction
from perfect crystal. A Bragg reflection is characterized by an angular width, customarily

called Darwin width wp. In the conventional dynamical theory [10] wp can be written as:

. 4T0dl21
7VvVb

where 7( is the classical electron radius, V the unit-cell volume, C the polarization factor,

C|Fh‘€_wtg03 (25)

Wp

b the asymmetry factor!, Fj, the crystal structure factor and e " the temperature factor,

!The asymmetry factor is defined as: b = sin(6p — a)/sin(fp + ), where « is the asymmetry angle
between the crystal surface and the family of the h diffracting planes. It is worthwhile to observe that,in
backscattering geometry, the intrinsic energy resolution of a perfect crystal cannot be changed by varying

the asymmetry angle «, because b — 1 when g — pi/2
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generally referred to as the Debye-Waller factor. By using the conventional dynamical
theory [10] it is also possible to calculate the extinction length t.,; defined as the distance
of penetration of the beam into a perfect crystal in the direction perpendicular to the

diffraction planes after which the intensity of the incident beam has decreased by 1/e:

. 4
et = throC\Fh|

At a given diffraction order h, the best relative energy resolution is an intrinsic property

(2.6)

of the crystal. This quantity is inversely proportional to the number of lattice planes effec-
tively involved in the reflection process. From the dynamical theory of x-ray diffraction [10]

this quantity is derived as

0E 4rod2
<_> = 2% o Fy e (2.7)
E ),  avyvb
It can be related either to the Darwin width or to the extinction length through the
relations: 5B
<f>h = wpcotglp (2.8)

(5—E> _ L 2d (2.9)
E ), Vbrte

The intrinsic energy resolution of a Bragg reflection varies with the square of the d-spacing
dp, and is proportional to the structure factor Fj,. Most important, it is independent of the
Bragg angle 6. This is a very important point, which underlines the fact that the resolving
power is determined by the number of planes participating in the diffraction process. This
number of planes is determined by the transmission and reflection probabilities of a single
plane, a quantity that again, cannot depend on the scattering geometry but only on the
intrinsic properties of the reflection, i.e. the unit cell form factor F} (calculated at the
Q-value corresponding to the considered reflection @y, = 27/dy), and the d-spacing dp,.
This accounts for the decrease of (AE/FE), with increasing the order of the reflection. In
fact, both F} and dj, decrease as the order is increased. The structure factor Fj, is strictly
connected to the atomic form factor f(Q) through the relation Fj, = YN, fi(Q)e'@rTi
The behaviour of the atomic form factor of silicon crystals, as a function of @)y, is shown
in Figure 2.2 it decreases with Q, or equivalently with increasing the reflection order.

As a consequence increasing the reflection order one decreases the number of reflected
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Figure 2.2. Atomic form factor of Silicon derived from the experimental determination, at

room temperature, of the structure factor [11, 12]

photons by each plane. This allows the photons a deeper penetration inside the crystal.
This picture is true as soon as the crystal is perfect and the penetration length due to the
photoelectric absorption %,;, is larger then the extinction length ;.

In Figure 2.3 the evolution of the absorption length t,,s and the one of the extinction
length for a silicon crystal are shown as a function of Q) = 27/d},. It can be noted that,
for low order Bragg reflections, the extinction length is always much shorter than the
absorption length. In a perfect silicon crystal, indeed, for Bragg reflection of low order
one is always in conditions where the Bragg reflection is described successfully by the
dynamical theory of a perfect non absorbing crystal. The situation is not as satisfactory
approaching Q, = 30 A~', here in fact the two lengths become equal. At even larger
Qn values, the ideal resolving power cannot be any longer achieved because the needed
theoretical penetration depth into the crystal is limited by the photo-absorption length.
The ideal penetration depth can also be reduced by crystal defects or imperfections which
limit the maximum size of the grain that one considers to be the perfect crystal. In our
specific context, therefore, the definition of perfect crystal is related to the considered

reflection order, and the required crystal perfection implies that the relative variation of
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Figure 2.3. Absorption length ¢, (full circles) and extinction length .. (open circles) for

a perfect silicon crystal as a function of Q)},.

the lattice constant in the diffraction volume, Ad/d , is smaller than the intrinsic relative
energy resolution of the considered reflection. In our case we aim to AE/E ~ 1078. At

high reflection orders, actually, this ”perfection” definition is obtained only with silicon.

2.2.3 Backscattering geometry

The term (0E/E). of equation 2.11 represents the geometrical contribution to the energy
resolution, it is due to the angular divergence of the beam. To minimize this contribution,
the backscattering geometry is introduced. The backscattering geometry is necessary to

our purposes essentially for two interconnected reasons:
i) it allows to use efficiently the photon flux at the high order reflections
ii) it allows to minimize the geometrical contributions to the total resolving power

In order to demonstrate these two statements, we will remind few basic concepts of the
dynamical theory of the x-rays diffraction. A given reflection order has a characteristic
angular acceptance, called Darwin width wp. This quantity is a direct consequence of the

finite energy resolution of the considered reflection, and corresponds to the angular range
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in which a photon of wavelength X is efficiently Bragg-reflected by the crystal (reflectivity
R =1 in absence of photoelectric absorption). For symmetric crystals the relation between
wp and the intrinsic resolving power is given by Eq. 2.5. The geometrical contribution
to the total resolving power, considering an incident white beam with divergence Je , is

obtained from the differentiation of the Bragg’s law 2.1.

(%) = Aecotglp (2.10)

This geometrical contribution and the intrinsic contribution give a total energy resolution:

() (- (] e

h €
It is clear from Eq. 2.11 that, in order to have a total resolving power (AE/E) ~ (AE/E),,

the Darwin width (intrinsic width of a Bragg reflection) has to be much larger than
the angular divergence of the incident beam. However, in general, the Darwin width of
an high order reflection is very small. For reflections with an intrinsic resolving power
AFE/E =~ 107® and for angle such that tanfz ~ 1, the angular acceptance wp is of the
order of few tenths of nrad, a value much smaller than the typical collimation values of
x-ray beams. In this situation the number of reflected photons from a perfect crystal in
the desired energy bandwidth is drastically reduced. The quantity wp is dependent of the
scattering geometry via the term tanflg and we note that it increases by increasing the
Bragg angle. In particular we note that it becomes very large close to 90°. The extreme
backscattering geometry has been proposed since 1965, where this solution was though to
provide a good method for very high precision diffraction work [13, 14]. With respect to its
use for inelastic x-rays scattering, one notes that using 2.5 as an indication of the actual
value of wp , with an angle 5 ~ 89.95° one has tanf ~ 1000. Consequently, for reflections
with an intrinsic resolving power AE/FE = 1078 we have wp = 1075rad, and therefore one
can work with an incident beam of 10 urad divergence. This divergence is comparable to
that obtained recently from an undulator on a third generation light source, and therefore,
using this backscattering geometry one uses all the available photons in the considered
energy bandwidth, without a sensible deterioration of the intrinsic energy resolution of
the reflection. In Table ?? we report, as an example, the Darwin widths calculated using
the relation 2.5 for the most used Si(h,h,h) reflections on the beamline ID16 (ESRF) with

an operative Bragg angle p = 89.98°. This Bragg angle corresponds to a deviation e



Chapter 2: The inelastic scattering method 35

Reflection | AE/E | wp [urad]
(5,5,5) | 1.5.107° 4297
(7,7,7) | 3.6.1077 1031
(8,8,8) | 2.4.1077 688
(9,9,9) | 1.0.10°7 286
(11,11,11) | 3.6.1078 103
(12,12,12) | 2.8.1078 80
(13,13,13) | 2.0.1078 57

Table 2.1. Darwin widths of the most used Si(h,hh) reflections at the beamline ID16
(ESRF) calculated with the relation 2.5 for an operating Bragg angle 65 = 89.98° and
exploiting AE/E values from reference [15]

from perfect backscattering of 350 urad, while the vertical angular divergence from an
undulator at the ESRF is in average de ~ 13 prad Full Width Half Maximum (FWHM),
i.e. we are in the condition that € is still much larger than Je. It is easy to observe that
the calculated angular acceptance wp is always much larger than the angular divergence
of the X-ray beam, and, as a consequence, the geometrical contributions to the relative
energy resolution are always very small. However, as already pointed out, Eq. 2.5 looses its
validity when 5 — 7/2 and, therefore, the wp values of Table 2.1 are only an indication
of the exact values that, nevertheless helps us to have an idea of the order of magnitude
of wp.

In the Bragg angle region near g = 7/2 the dynamical theory of x-rays diffraction needs
some corrections and such reformulation is analyzed in ref. [16, 17, 18]. They show that,
as long as wp ~ €, wp is even larger than the prediction based on 2.5. Working with
nearly backscattered reflections the contribution to the relative energy resolution, due to
the finite divergence of the beam, can be evaluated from 2.2 using the Taylor expansion

in the variable ¢
AFE A 1
<?> = (%) = tanede + (2tan’e + 1)5562 (2.12)

where de corresponds to the angular divergence of the x-rays beam. For ¢ < 1 and

neglecting high order terms the 2.12 becomes:
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AE 1,
(f)e = ede + 556 (213)

which shows that to minimize this additive contribution one has to reduce both the an-
gular divergence and the deviation from backscattering. From 2.13 we can envisage two
different situations: a value of € smaller than e leads to a parabolic variation of the energy
resolution, while larger angular deviation, while larger angular deviations lead to a linear
change. This is true as long as the incident beam divergence is small compared to the
angular acceptance of the crystal. In the case of ID16 at ESRF the condition € > de is
always satisfied and the geometrical contribution to the relative energy resolution can be
evaluated as (§E/F). ~ 7- 107 with deviation from backscattering ¢ = 350 urad and
divergence de = 10 prad. This value (§E/FE), is always smaller than the energy resolu-
tions (0E/E), for a silicon crystal. In conclusion, the extreme backscattering geometry
is important in order to exploit efficiently the incident photon flux, and to minimize the

geometrical contribution to the total resolving power coming from the scattering process.

2.3 Characteristics of the beamline ID16 at the ESRF

This section is devoted to illustrate the characteristics of the beamline. In particular we
will review the working principle, the layout, and the general performances of this very
high energy resolution spectrometer. As described in previous section an energy scan is
possible either by varying the Bragg angles either by varying the lattice parameter dj
of one of the two crystals by changing its temperature. In the case of backscattering
geometry it is not possible to change the relative energy between monochromator and
analyser by changing the Bragg angles because, the energy variation is small and the loss
in energy resolution, due to the geometrical contributions, becomes very large for small
angle variations (= tanfp). In order to overcome this difficulty the energy scans can be
performed by varying the other parameter entering in the Bragg law: this is the lattice
parameter d. A variation of dj is obtained by changing the temperature of the crystal.

In fact, a change AT induces a relative variation in the lattice constant given by:

Ad_
M

where «(T) is the coefficient of thermal expansion (o = 2.56 - 107K ! in silicon at 294

a(T)AT (2.14)
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K [19]). According to the Bragg’s law A = 2dsinfp at fixed 0p:

AN AFE Ad
= F =g = emar (219)

This shows that a scan Ad/d is analogous to a scan AE/E. Therefore, the energy scans
between monochromator and analyser are obtained by changing the temperature of one of
the two crystals, in our case the monochromator, keeping the other crystal (the analyser) at
constant temperature. Under these experimental conditions the geometrical contributions
to the energy resolution are constant because the scattering geometry of the first and
third axis is the same for any energy transfers. To obtain a sufficiently small energy step
size for reflections with a resolving power AE/E ~ 107 + 108, the temperature of the
monochromator and analyser crystals has to be controlled with m K precision, considering
that o ~ 107%. A schematic side view of the main optical elements of the beamline and
of the horizontal spectrometer is shown in Figure 2.4.

Starting form the source and following the x-rays path down to the detector, the main
characteristics of each element will be discussed in some detail. The vertical scale is

expanded with respect to the horizontal one to better show the different components.

Undulator source: The x-rays source is composed of three linear undulators with a
magnetic period of 35 mm and length 1.6 m, which are located on a high-3 straight-
section of the storage ring. An undulator is a periodic array of magnets disposed in a
way to impose many oscillations to the motion of the electrons beam [20]. Crossing this
magnetic structure, the electron beam emits radiation at each individual wiggle. which
interferes coherently with the ones emitted by the others producing sharp peaks in the
energy spectrum, called harmonics. The photon energy of these harmonics can be changed
by varying the distance between the upper and the lower magnets of the undulator. Such
a distance, determining the magnetic gap, can vary from 16 to 35 mm. The undulators are
normally used from the 3rd to the 7th harmonic in order to cover an the energy range from
7 to 30 keV. The angular divergence of the central cone of the X-ray beam coming from
the undulators is roughly 15 vertical x 40 horizontal urad®> (FWHM), with a bandwidth
dE/E =102 and an integrated power of roughly 200 W.

Double-Crystal Premonochromator: The white x-rays beam coming from the undula-
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Figure 2.4. Schematic layout of the horizontal spectrometer of the inelastic x-rays scat-
tering beamline at ESRF. The vertical displacements, determined by the double-crystal
pre-monochromator, by the backscattering angle of the monochromator, by the toroidal
mirror and by the analyser crystal, are not shown on the same scale as those along the
beam path. In order to give an idea, at the sample position, the height difference between

the white and monochromatic x-rays beam is roughly 15 cm.

tors is premonochromatized by a Si(1,1,1) double crystal monochromator to a bandwidth
of E/E = 2-1072. The premonochromator is cryogenically cooled with a closed-loop
circuit of nitrogen in order to absorb the unwanted power and to reduce thermal de-
formations. The premonochromator crystal works in nearly fixed-exit conditions in the
Bragg-angles range of 4° = 5° and diffracts the beam vertically 22 mm above the white
beam. In the used energy range (7 — 28KeV') the angular acceptance of the Si(1,1,1)
crystal is either larger or pretty well matched to the vertical divergence of the undulator

source.

High Energy Resolution crystal Monochromator: The photons coming from the

premonochromator impinge on the very high resolution monochromator constituted by a
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flat Si(1,1,1) crystal symmetrically cut and temperature controlled with a precision in the
mK range. The specific Si(h,h,h) reflection is chosen by simply tuning the premonochro-
mator Bragg angle at the correct energy and adjusting the undulator gap accordingly. The
Bragg angle of the Si(1,1,1) matching the energy of a Si(h,h,h) reflection with 5 = 90°

is given by the relation:

2d 1
2d,sinfp = 2d;, = 71 — sinfg = 5 (2.16)

where h is the desired reflection order. The monochromator crystal has an operative Bragg
angle of 89.98° in the vertical plane and the diffracted x-ray beam is monochromatized
to a bandwidth AE/E =~ 107% = 1078 . This extreme backscattering angle, as already
explained in previous section, is chosen to insure that the divergence of the incoming
beam is always much smaller than the Darwin width of the considered reflection, while
the deviation from perfect backscattering is still large compared to the beam divergence.
The design and the performances of this very high energy resolution monochromator are

described in details in reference [15].

Toroidal mirror: The very high energy resolution x-ray beam is focused on the sample by
a grazing incidence (3 mrad) toroidal mirror to a spot size of 150 vertical x 350 horizontal
pm? (FWHM). The mirror has a platinum coating deposited on the optically polished
surface obtained from a Zerodur glass substrate. The mirror has an entrance arm of 78 m
and an exit arm of 24 m. This gives approximately 3:1 demagnification of the source in
the image plane at the sample position. We want to underline that the traveled distance

by the X-ray beam from the undulator source to the sample is 102 m.

High Energy Resolution Spherical Crystal analyser: The photons scattered by the
sample are collected by a spherical silicon crystal analyser positioned at the tip of an
arm able to rotate around the scattering sample in order to select the desired Q-value.
This analyser crystal is operating at the same Si(h,h,h) as the monochromator crystal
and at a Bragg angle very close to backscattering (5 = 89.98°%). This spherical analyser
crystal is also temperature controlled with a precision in the mK range, and is desired to
have the same energy resolution as the monochromator crystal but whit a much larger

angular acceptance. This angular acceptance is chosen by moving a set of apertures in
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front of the analyser crystal, and it is typically determined by the desired Q-resolution.
An angular acceptance up to 4x10 mrad? is an adequate compromise of Q-resolution
(AQ = 0.5nm — 1) and signal maximization. Such a large angular acceptance, larger
than the deviation € = 350urad from perfect backscattering, can be only obtained by
using a focusing optics and by keeping, at the same time, the characteristic of a perfect
crystal analyser. This excludes the possibility to elastically bend a crystal because such a
procedure introduces important deformations which degrade the energy resolution [15, 21].
A possible solution to the problem is to position small flat crystals, squares of side length
¢, on a focusing substrate of radius R, where ¢ < R. Providing that this focusing substrate
is a sphere in 1:1 Rowland geometry, the Bragg angle variation on these small crystals will
be ¢/R. If the size c is chosen in a way that the ratio ¢/R is comparable or smaller than
the Darwin width, the spherical analyser will reflect the X-rays with almost the intrinsic
energy resolution of the considered reflection. Following this idea, within the Inelastic X-
ray Scattering Group at the ESRF a new method has been developed that allows to glue
12000 independent silicon crystals on a spherical substrate with radius R. The spherical
substrates are obtained from silicon disks with a diameter of 100 mm. The size c of these
small crystals is ~ 0.7 x 0.7 mm?, and their thickness is 3 mm [22, 23]. At the moment
at the beamline ID16 there are five analysers simultaneously working during an IXS
experiment. They are fixed at the end of an arm able to rotate in the horizontal plane and
are located one next to the other with an angular offset of 1.56°. This allows to measure
five IXS energy spectra at five different QQ-values simultaneously. The arm, 6.5 m long,
is able to cover an angular range between 0° and 13°. Such a considerable length, offers
to reduce the geometrical contribution to the energy resolution. The spherical analysers
with a radius R = 6150 mm are equipped with analyser slits. The most used reflections
at the beamline are the Si(h,h;h) with h =5, 7, 8, 9, 11, 12, 13. More informations on

their construction can be found in reference [21]

Detector: The detector is a silicon diode of equivalent thickness 2.5 mm and with a
background signal of the order of 1 count/min. The detector is sitting on the same arm of
the analyser crystal. On this arm are also mounted an entrance pinhole placed just after
the sample and a detector pinhole placed before the detector (see Figure 2.4). Due to the
extreme backscattering geometry the detector is basically on top of the entrance pinhole

at a distance ranging between 3 + 4 mm.
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Beamline performances

Momentum resolution: The momentum resolution is basically determined by the open-
ing of the analyser’s slits at the selected Si(h,h,h) reflection. As an example using the
horizontal spectrometer and the Si(9,9,9) reflection the momentum resolution can vary
between 0 <+ 1.2 nm !, while using the Si(11,11,11) reflection the momentum resolution
can vary between 0 <+ 1.6 nm~!. The maximum momentum transfer allowed by using
the horizontal spectrometer is 26.5 nm™! at the Si(9,9,9) reflection and 32 nm™' at the
Si(11,11,11) reflection. The minimum momentum transfer is roughly 0.5 nm~*. This value
is related to the minimum scattering angle that allows to avoid that the direct beam trans-
mitted by the sample enters in the spectrometer vacuum chamber by the spectrometer
entrance pin-hole.

Energy resolution: The energy resolution is measured by looking at the elastic scattering
from a 5 mm thick polymethylmethacrylate (PMMA) sample at Q@ = 10 nm~'. At this
Q value the spectrum of PMMA is dominated by the extremely narrow quasi-elastic
component, namely the incident beam can be assumed as a delta function of the energy.
The inelastic scattering contribution has been further reduced by keeping the PMMA at
10 K. At this temperature the inelastic signal is drastically reduced in the whole Q range,
allowing to measure the energy resolution even at Q values lower than Q = 10 nm™!
and excluding the presence of any unwanted Q-dependence. The measured experimental
resolutions are presented in Chapter 5. Using the horizontal harm analyser with R =
6450 mm we measure an energy resolution of 1.5+ 0.2 meV at the Si(11,11,11) reflection
and 3.0 + 0.2 meV at the Si(9,9,9) reflection with an angular acceptance of 100 mrad®.
More information on the ID16 beamline construction and on its performances can be
found in [24, 25, 15, 21].



Chapitre 3

L’objet de ce chapitre est de donner une vue d’ensemble des principales approches théoriques
de I’ étude de la dynamique collective des systé mes désordonnés dans les différentes

régions du plan (Q,w). Dans ce contexte, on peut distinguer trois situations limites différentes

e la région hydrodynamique macroscopique, ou le systée me est considéré comme un

milieu isotrope continu,

e la région mésoscopique, correspondant a la gamme de transfert d’impulsion de [’ordre

de ['tnverse des distances interatomiques,

e la région de particule isolée, ou le mouvement de la particule est considéré comme

libre entre deuz collisions successives.

Une attention particulié re sera portée a la région mésoscopique ot la diffusion inélastique
de rayons X est particulie rement convenable pour explorer la dynamique microscopique.
Le but de ce chapitre est donc de rappeler les concepts et les équations de base que nous
utiliserons pour analyser et interpréter les données expérimentales présentées dans la the
se. 1l est organisé comme suit :

dans le Par 3.2 nous introduisons les instruments analytiques pour décrire la dynamique
des fluctuations de densité ainsi que les principales approches théoriques pour étudier la
dynamique dans différentes régions du plan :

dans le Par. 3.3 nous considérons I’hydrodynamique macroscopique ot le spectre de fluctu-

ation de densité est bien décrit a partir des équations hydrodynamiques de Navier-Stokes

42
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dans le Par 3.4 nous considérons la région mésoscopique ot le spectre de fluctuation de
densité est décrit dans le cadre de I’Hydrodynamique Généralisée. Cette théorie est obtenue
en exploitant 'approche de la Fonction Mémoire expliquée dans le Par. 8.5. Grace a cette
approche, on arrive a décrire de faon analytique les processus de relazation dans un liquide

et a dériver les principaur modeé les utilisés pour analyser nos données.



Chapter 3

Collective dynamics of liquid systems

3.1 Introduction

An essential distinction among liquids, gases and crystals is drawn with respect to the
nature of the microscopic motion of the atoms in the system. In a crystal the atoms are
fixed in a well defined structure except for the vibrational motion around their equilib-
rium positions; in a gas the atoms are free to make long translational movements. A liquid
constitutes an intermediate situation: the translational movements are an essential char-
acteristic of the atomic motion and, at the same time, since the atoms are surrounded
by nearby atoms, their motion is also partially oscillatory. The translational motion is,
by the way, the principal feature of the liquid and is such that each atom moves through
the material changing continually neighbours. A quantitative measure of the correlation
between atoms in different points in space and time, is provided by the density-density
correlation function which furnishes the probability to find a particle in a certain point
R and time t given that there was another particle in the origin at t=0. Information on
this function and on the microscopic dynamic behaviour of a liquid can be gained from
inelastic scattering experiments. A scattering process is marked by the presence of waves
scattered with frequencies and in directions different from the ones of the incident beam.
Depending on the wavelength and frequency at which the structure is explored, the system

shows peculiar dynamic behaviours:

e the hydrodynamic regime is investigated when A > [ where A is the wavelength of

the incident beam and 1 is the interatomic distance.

44
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e the molecular dynamic region or mesoscopic regime is investigated when \ ~ [.
e the single-particle region is investigated when \ <[

The study of the intermediate region, namely the mesoscopic regime, in which the mo-
mentum transfer becomes comparable to the inverse of the interparticle distances, is more
difficult to interpret because the system cannot be treated neither as a continuum nor
as composed of independent particles. This implies the development of a theory which
is an extension of the hydrodynamic one and which is called Generalized hydrodynamics.
Experimentally, inelastic x-rays (IXS) and neutrons scattering (INS) are particularly well
suited to asses the microscopic dynamics at the atomic scale and then to investigate the
Imesoscopic region.

The aim of the following chapter is to remind the basic concepts and the basic equations
which we will exploit to analyze and interpret the experimental data presented in this
thesis. It is organized as follow:

in Sec. 3.2 the basic analytical tools used to describe the dynamics of density fluctuations
are introduced. Then we present a discussion on the main theoretical approaches to study
the dynamics in different regions of the (@, w) plane, in particular:

in Sec. 3.3 we consider the macroscopic hydrodynamic region where the system is viewed
as a continuum isotropic medium and the excitation spectrum is well described within
the Navier-Stokes hydrodynamic equations;

in Sec. 3.4 we describe the mesoscopic region in which the momentum transfer becomes
comparable to the interparticle distance. The spectrum of density fluctuations is described
within the framework of generalized hydrodynamics whose formal results are obtained in
terms of a memory function approach.

Sec. 3.5 is devoted to the presentation of this "memory function” based formalism. We
provide both a qualitative and quantitative description of the relaxation processes in a
liquid in terms of the memory functions, this allows us to derive those model functions
that we will use to fit the IXS data.

3.2 Basic definitions

A great deal of information about static and dynamic properties of fluid systems are

contained in the correlation function of the microscopic number density p(r,t) at the
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point r defined as:

p(r, ) = 3 6(r = r(1)

it counts the number of particles in the neighbourhood of the point r at time t. Its auto-

correlation function, the van Hove correlation function G(r,t) is:

G(r,t) =< p*(r,0)p(r,t) >

This represents the probability of finding a particle at position r at time t given that there
was a particle at the origin at time t = 0.

The Fourier transform of p(r,t) is:

p(Q,1) = e Qn®), (3.1)

Using this expression, the intermediate scattering function F(Q,t), which is a measure of
the correlation between the Fourier components of the number density at two different

times, is given by:

F(Q,t) =< p(Q,0),p(Q, 1) > (3.2)

The time Fourier transform of the intermediate scattering function F(Q,t), is the spectral

function

S(Quw) = & % F(Q. t)e~dr, (3.3)

generally referred to as dynamic structure factor. This is the function of main interest
because it can be measured directly by scattering experiments. The time expansion of
the intermediate scattering function F(Q,t) allows to obtain a description of the density
correlation function. In particular the knowledge of the derivatives of static correlation
functions is useful to get information on the dynamic correlation function F(Q,t) at short-
times.

OF(Q,1) 10°F(Q,1)

F(Qat) = F(an) + T‘tzot'i‘ ETh:otQ + -
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Since
FQ1) = [ S(Qu)e'dw,
one has:
FQ.0) = [~ S@Qw)dw=SQ)
F(Q,t 00
Mhzo = 2/ wS(Q,w)dw =0
ot —o0
82F(Q7t) o 2 KBT 2
o2 =0 = _/_oow S(Q, w)dw = m Q
where % = ¢Z is the thermal speed. The integrals in the previous expressions represent
the frequency moments Q*"(Q) of S(Q,w) defined as:
Q2(Q) = (—1)" Ty = [, WS (Q, w)dw (34)

In the classical limit (7" — o) all odd moments are zero because of the even character in
frequency of S(Q,w) (S(Q,w) = S(Q, —w)). Thus

3.5
72(Q) = 8¢ 9
These frequency moments or sum rules enable to write F(Q,t) as:
1 1
F(Q.1) = 8(Q) - %@ + %@t +- -
and to define the normalized frequency moments w**(Q):
wi(Q) = TP (3.6)

The subscript g indicates that w?"(Q) are the normalized frequency moments of S(Q,w).

In next chapters the second frequency moment is indicated as follow:
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Q) =6i(Q) = g

where K g is the Boltzman constant and m is the mass of the molecule. Using this approach,

the expression of F(Q,t) transforms into:

F(Q.1) = S@Q1 ~ 1 (QF + 1@ +--

an important property can be extract from this expansion, which enables to formally write

F(Q,t) in an exponential form as:

_ 9@
2

F(Q,1) = 5(Q)e
Consequently, its Fourier transform in frequency S(Q,w) can be expressed as:
S(Q,w) _ 1 e—%

5(Q) 21w (Q)

which allows to extract an approximative measure of the spectral width of S(Q,w) from:

KgT
mS(Q)
(Full Width at Half Maximum=FWHM) This behaviour is particularly interesting in the

FWHM o (w(Q))* = Q

surrounding of the maxima of S(Q), because it explains the observed width reductions
of S(Q,w) when one approaches @ =~ @, the maxima of the static structure factor (de
Gennes narrowing)

Another important dynamical variable is the current density:

§(Q, 1) = Y vi(t)e’?m®

where v;(t) is the velocity of the the particle i. This variable is related to the general
motion of the particles and the associated correlation function describing the flow of the
particles in the direction of the wave-vector Q, is the longitudinal current correlation

function defined as:

JL(Q: t) =< jL(Qa 0)*ajL(Qat) > -
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This quantity is connected to the dynamic structure factor through the relation:

S(Q,w) = & 70(Q, 1) (3.7)

This is an obvious consequence of the continuity equation. The study of the maxima of this
function enables to get information about the position of the inelastic peaks of S(Q,w).
The dynamic structure factor S(Q,w) considered until now arises from Fourier transforms
of the correlation function of a dynamical variable, the density, which has been considered
as classical. For this reason we define the subscript cl, S;(Q,w), to refer to the classical
limit (/T — 0). In this case Sy (Q,w) satisfies the relation [26]

Scl(Qa (.d) = Scl(_Qv _w)

The generalization to the quantum mechanical (q subscript) case, which is relevant when-
ever one considers excitations comparable or larger than the sample temperature, [2]
requires that the S,(Q,w) fulfills the basic condition

S(Q,w) = e_h“”BSq(Q, —w).

This relation is referred to as the detailed balance condition, and is responsible for the
asymmetry in w of S,(Q,w) whenever hw > KpgT. Since S,(Q,w) is the spectral dis-
tribution of the scattered radiation, positive frequencies describe a process in which the
incident beam transfered energy to the fluid while negative frequencies describe a process
in which the beam picked up energy from the system. The fulfillment of this relation is a
check to test the validity of experimental data, the asymmetry of the scattered intensity
is pronounced at low temperature and is negligible for hydrodynamic modes ( Brillouin
scattering ) for which the frequencies are so small that the factor e "“# is about unity.

The quantum and classical dynamic structure factors are related through the relation

hwp
1— e B

S‘I(Qaw) = Scl(Qaw)

This is the expression we will use in the following chapters to fit experimental data.
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3.3 Hydrodynamics

In a liquid the hydrodynamic region is investigated when the wavelength of the incident
radiation is much larger than the intermolecular distance (A < [) and on time scales that
are very longer than the interatomic motion, and therefore () — 0,w — 0. The details of
the microscopic structure can be ignored and the liquid is regarded as a continuum. On
this long-wavelength scale, the fluctuations involve the collective motion of large number
of molecules and can be described by the laws of macroscopic physics. In this regime
the variation of density fluctuations occurs very slowly in space and in time and the
liquid is considered to be in local thermodynamic equilibrium. This is the central idea of
hydrodynamics and allows writing macroscopic equations for local variables. In the region
of visible light ( A ~ 5000) one fulfills the requirements for hydrodynamics to be valid ,
and therefore, a very useful technique to probe the longitudinal acoustic dynamics in this
hydrodynamic region is Brillouin light scattering. In the hydrodynamic approximation,
the line-shape of S(Q,w) shows a characteristic triplet- the Brillouin triplet. To derive its
origin we remind the classical treatment to understand the spectrum of scattered light.
The aim is to determine a theoretical expression for S(Q,w), i.e. < dp(Q, 1), 6p(0,0) >,
which is the quantity one obtains experimentally. In the case of a liquid in the hydrody-
namic regime, a macroscopic treatment allow to get dp(r,t) applying the conservation

laws of density p, momentum p and energy e:

p(r’t) +Vv: p(r,t) =0
p(r,t) + < -o(r,t) =0

é(r,t) + v - J(r,t) =0

where o is the momentum current or stress tensor and J is the energy current. This equa-
tions are solved by exploiting the macroscopic expressions for the stress tensor (Navier-
Stokes) and energy current (Landau and Lifshitz 1963) and applying the Laplace-Fourier
transform technique to solve a set of coupled equations. One achieves [27] the following

expression for the dynamic structure factor in the hydrodynamic regime:
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8@ -1 2D,Q7 1 rQ? rQ?
Sl@w) = %[fywu4MQw+v%ww@V+@@V+W—@@Lumgg
Q w— cs@Q W+ ¢ Q
+%[F + (,Y - 1)DT][( (w + CsQ)2 + (FQQ)Q + (w — CsQ)2 + (FQQ)Q)] (39)
where:

v is the ratio of the specific heats at constant pressure and volume

y="2
Cy
Dr is the thermal diffusivity
A
DT -
PCyY

A is the thermal conductivity, I" is the sound attenuation coefficient

L= o Dy~ 1) + i)

vy, is the kinematic longitudinal viscosity

ne _ 4/3ns + s

vy =
P P
¢s is the adiabatic sound velocity
v Op
Co = —( —
s p( 5 p)

The development of this theory is based on two assumptions used to simplify the calcu-

lations:

e the fluctuations of the density, energy, temperature and velocity around the equi-
librium values are expected to be very small to allow the use of linearized equations
of the fluid mechanics. This means that terms higher than the first order one (like
§p?) are neglected in the theory.

e the quantities yD7Q? and I'Q? are considered much smaller than ¢,Q. This means

that the widths of the Lorentzians are small compared to the shifts.
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The spectrum is composed by three Lorentzian lines and two non-Lorentzian contributions
whose amplitude is much smaller compared to the other terms. The Lorentzian peak
centered at w = 0 is called Rayleigh line, the two centered at w = +c¢,;Q called Brillouin-
Mandelshtam lines These three Lorentzian lines reflect the presence of three longitudinal

modes, they represent two kinds of fluctuations:

e adiabatic pressure fluctuations which propagate in the liquid like sound waves with
a sound velocity ¢, (the reason because we call it adiabatic sound velocity), to them
is associated the Brillouin-Mandelshtam doublet. These are propagating modes with
a lifetime given by (I'Q?%)™!;

e isobar entropy fluctuations which do not propagate in the liquid, but are damped
because of the thermal conduction. They are diffusive modes and are give rise to

the Rayleigh lines.

In the case of Brillouin-Mandelshtam doublet or pressure fluctuations, two dissipative pro-
cesses are involved due to viscosity and thermal conductivity. In the case of the Rayleigh
line, the adiabatic fluctuations at constant pressure are damped only because of the ther-
mal conductivity.

Although the two non-Lorentzian terms induce a slight asymmetry in the Brillouin peaks
not appreciable experimentally, they are fundamental for the preservation of the sum rule
Q'(Q) = 0 calculated using the relation 3.5

3.4 Generalized hydrodynamics

The hydrodynamics description of a fluid is particularly effective at small wave-vectors
and frequencies (@ — 0,w — 0). At decreasing wavelengths, namely, when they become
comparable to the intermolecular distances, the hydrodynamic approach is no longer valid.
This is a consequence of the fact that the derivation of the hydrodynamic theory is based
on the assumption that the fluid is a continuous medium and each point in space and
time is in thermodynamic equilibrium. An extension of the hydrodynamic theory is there-
fore necessary to study the fluctuations of hydrodynamic variables in a wider range of
wave-vectors and frequencies. In particular, in the length-scale and timescale regions that

are characteristic of the motion of a limited number of particles, the basic assumptions
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of the hydrodynamic theory starts to fail. An attempt to extend the validity of the basic
hydrodynamics theory at high frequencies and wave-vector is provided by the general-
wzed hydrodynamics. The generalized hydrodynamics approach exploits the structure of
hydrodynamic equations and extends them introducing a space and time dependence of
the transport coefficients or, in the Fourier transformed space, a wave-vector (Q) and
frequency (w) dependence of the corresponding Fourier Transformed quantities. This phe-
nomenological approach enables to achieve a generalized expression for S(Q,w) valid in
the high (Q, w) region, and which reduces to the hydrodynamics theory expression in the
@ — 0 and w — 0 limits. Given that the experimental techniques used to investigate the
longitudinal acoustic dynamics in this region are inelastic x-rays scattering (IXS) and in-
elastic neutron scattering (INS), this generalized theory is important for us because it will
allow to have analytical expression for the S(Q,w) to fit our data. This in turn provides a
test for the Generalized hydrodynamic theory and a mean to derive the high (Q,w) limit
of transport properties of the investigated fluid. An efficient approach to the generaliza-
tion of the hydrodynamics is obtained by introducing a memory effect in the damping
mechanisms of the longitudinal modes in the liquid. This requires the introduction of the

memory function formalism.

3.5 Memory function formalism

The memory function approach, introduced by R. Zwanzig and H. Mori in 1960’s, is used
to describe time dependent phenomena in dense fluids. It has been initially introduced
to extend the Brownian theory of self diffusion. We will use it here in order to show
the results of generalized hydrodynamics. The aim is to calculate the spectrum of the
correlation function of the density fluctuations. For this reason we start deriving the
spectrum of the correlation function of a generic variable. In a system of N interacting
particles the time evolution of a generic variable A(t) is expressed by the equation of
motion [27]:
dA(t)

= = (A H} (1) = iLA() (3.10)

where H is the Hamiltonian of the system, the symbol {,} denotes the Poisson bracket

and L is the Liouville operator associated to the Hamiltonian
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NOH 0 OH 0
L=— —_— =
Z;(api 0q; 0g; apz')

where ¢; and p; are the generalized coordinates and conjugates momenta of the N particles.

The formal solution of the equation 3.10 gives the time evolution of the variable A:

At) = e A(0)

The operator e is called propagator. The introduction of a projection operator P which

projects an arbitrary vector onto A

(AOF, ) 0

P= Ty, a0)

and the application of the properties of the projection operators [27], allow to write the

expression 3.10 as:

4O — iQA(L) — Jo' K (r)A(t — 7)dT + F(t) (3.11)

at

known with the name of generalized Langevin equation : the term 22 accounts for possible
existence of a propagation process associated with the time evolution of the dynamical
variable A(t), while the integral plays the role of a systematic force and F'(t) represents a

random force. The functions , F (1), K(7) are defined as follow:

_ (A(0)", LA(0)) -
Q= A A(0) frequency function (3.12)

F(t) = W PL(1 — PYLA(0) random  force (3.13)

(F(0), F(t))
(4(0)*, A(0))
1 — P is a projection operator which projects a generic variable onto a space orthogonal
to A and i(1 — P)LA = F(0). It is possible to show [27] that the random force F(t) is
orthogonal to A(0). This property means that (A(0)*, F'(t)) = 0 and points out a lack of
correlation between A(0) and F(t).

=
—
=

Il

memory function (3.14)
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Our interest here is to derive an equation describing the time evolution of the correlation
function C(t) = (A(0)*, A(t)) of the dynamical variable A(¢). This is easily obtained from
equation 3.11 exploiting the fact that (A(0)*, F'(¢)) = 0:

9w —Q0(t) — f,' K (1)C(t — 7)dr (3.15)

This is called memory function equation . Both 3.11 and 3.15 are derived from 3.10 without
any approximation.
These considerations made for a single property of the system can be generalized to the
case of more variables by means of a vector
Ay
A= :

Am

such that at equilibrium (A) = 0 and its components A; cannot be expressed as linear
combination of the others, namely, they are linearly independent. In this more general
case the theory is reformulated in terms of column vectors and matrices. A formal solution
to equation 3.15 is obtained by using the continued fraction representation. This useful

method is presented in next section.

3.5.1 Continued fraction representation

The continued fraction representation is an important property of the memory function
which enables to get an expression for the correlation function C(t) of a generic dynamical

variable A(t). A more accurate analysis of the memory function equation :

d(;i —iQC(t / K(r)C(t — r)dr (3.16)

allows to extract a solution using the Laplace transform technique:

) =1iQC(2) + K(2)C(z) (3.17)

which yields
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c(0)
z— i+ K(z)
here C(z) and K (z) are respectively the Laplace transforms of C(¢) and K (¢) and z = iw.

C(z) =

(3.18)

As a matter of fact, the memory function K (z) is generally unknown. According to 3.14,

= % is itself an autocorrelation function of the random

force F'(t). This means that the same treatment applied for C(t) can be repeated for K (t)

the memory function K (¢)

simply rewriting a memory function equation for it:
dK(t)
dt

where M (t) is the second order memory function. In this way the problem is shifted to the

=i K (1) - | " M(F)C(t — 1) (3.19)

research of a new unknown memory function. The solution in terms of Laplace transform

is identical to equation 3.18:

K(0)

K(z) = 3.20
B = i+ M) (3.20)
The substitution of this relation in 3.18 yields
C(z) 1
- 3.21)
; %0 (
CO0)  2—i - 0%

The process, iteratively repeated, gives an expression for C(z) in terms of Continued
Fraction Representation (CFR)

C(z) 1

the coefficients K(0), M(0) can be expressed in terms of the normalized frequency moments
w2 of C(w) (appendix A)

S o w?C (w)dw

wa = 7fo—ooooo C@)da (3.23)
K(0) = % = wg

M@0)=—= = 3 T we (3.24)
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At increasing of order it becomes more and more arduous to calculate the frequency
moments and in addition the physical meaning of the considered correlation function
starts to be lost. If we consider autocorrelation functions C'(¢) even in time [27], the
frequency functions €2, vanish because of time reverse symmetry and the 3.21 reduces to

the following simplified expression:

0) — ;- K@ (3.25)

Thanks to the CFR it is possible to obtain a description of the correlation function C(t)

introducing simple models for the memory function. The spectrum C(w)

1
o7

is finally obtained from C(z) through the relation

C(w) /_ °:O e~ O (1) dt (3.26)

Cw) = %ReC(z) (3.27)

where Re represents the real part (see appendix B). In next section we will see an appli-

cation of this formalism.

3.5.2 Memory function and density fluctuations

Let us apply the continued fraction representation to describe the density fluctuation
dynamics of liquids. We consider as dynamical variable the density p(r,t) and we apply
the memory function formalism to its autocorrelation function. The previous equations

are retained simply doing the following replacements

A(t) = p(@Q,1)
C(t) —» F(Q,1)
Cw) = S(Q,w)

C(t) corresponds to the intermediate scattering function F(Q,t) defined by 3.28 and C(w)
corresponds to the dynamic structure factor defined by 3.3. In this specific case the equa-

tion 3.25 becomes:
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F(Q,2) 1
= (3.28)

where K(0) is the normalized second frequency moment of S(Q,w), namely w2(Q) =
[KsT/mS(Q)]Q? Kp is the Boltzmann constant, m is the mass of the molecule. Here
only the second order memory function expansion has been considered. The spectrum 3.27
of F(Q,t) corresponds to the dynamic structure factor:
1
S(Q,w) = —ReF(Q, 2) (3.29)
™
Since F(Q,t = 0) = S(Q), the substitution of 3.28 in 3.29 gives the expression of the

dynamic structure factor as a function of the memory function M(Q),z)

S(Q,w) 1 1
=—Re————— (3.30)
S (%)
(Q) 4 < z+M(Q,z)
which yields:
_ 1 wo(Q)2M'(Quw)
S(Q7 w) —_ ES(Q) [w2*w0(Q)2*ZM”(Q,UJ)]Q-F[MM’(Q,UJ)]2 (3-31)

where M'(Q,w), M"(Q,w) are respectively the real and the imaginary part of the Laplace

transform of the memory function M (Q,t)
M(Q,2) = / T M(Q, t)etdt = / " M(Q, t)cos(wt)dt — i /  M(Q, £)sin(wt)dt
0 0 0

= M(Q,w) — iM"(Q,w)

The experimental determination of the dynamic structure factor gives information on the
memory function contributing to the general understanding of the dynamics of density
fluctuations. The choice of simple models for the memory function is the result of a
compromise between physical intuition and mathematical simplicity of the calculations.

The main requirements about the model for the memory function M(Q,t) are:

1. analytical simplicity;
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2. least violation of the sum rules 3.5

3. easy interpretation of the physical meaning of the analytical results.

3.5.3 Memory function and relaxation processes

A marked characteristic of the liquid state is that the dynamics of the density fluctu-
ations is controlled by relaxation processes. For example, in liquids, the structural re-
arrangement, of the particles takes place with a characteristic time-scale, 7,, dictated by
the local inter-particles interaction and the actual thermodynamic state. The presence of
these re-arrangements affects the dynamics of the density fluctuations as it allows energy
exchanges between different density fluctuation modes. In this context, one calls relazation
process the mechanism governing these energy flows, and, in this specific example, we have
described the well known structural- or a-relazation process [28] we will illustrate better
in the following. Other relaxation processes may be active, each one characterized by a
specific underlying physical mechanism. One of the open problems in the physics of the
liquid state is to understand on a general ground the common features of these relaxation
processes. In simple monatomic liquids both kinetic and mode-coupling theories predict
the existence of two distinct relaxation processes [2] and, this prediction has been demon-
strated both by numerical simulations [3, 4] and by experiments [5]. In these theories, one
of the two processes is the a-relaxation, and the other is a faster process (microscopic or
instantaneous process) which is thought to be associated with the interactions between
an atom and the ”cage” of its nearest neighbours. Other relaxation processes, beyond
the o and the instantaneous processes, associated with the internal molecular degrees of
freedom may be observed in molecular liquids. In glass-forming systems, one also finds the
same relaxation processes pattern. In this case, by driving the system to the glassy state,
where the structural arrest freezes the a-process and 7, becomes extremely large, is still
possible to clearly observe the microscopic process [6]. An effective experimental method
to study and identify relaxation processes is the determination of the dynamic structure
factor, S(Q,w), and, in particular its inelastic features due to collective excitations which,
at momentum transfer @), are observed at energy i€(Q). The dispersion relation of Q(Q)
allows to define an ”apparent” sound velocity, ¢(Q) = Q(Q)/Q, which is a constant in
the low Q-limit, and decreases with ) approaching the inverse of the inter-particle dis-

tance d. Whenever a relaxation process with characteristic time 7 is active, ¢(Q) has a
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further ()-dependence which shows up as a transition from a low frequency value, c,, to
a high frequency one, c. This transition takes place when the condition Q(Q) ~ 1/7 is
fulfilled. The amplitude of the jump between c,, and ¢, is related to the strength, A, of
the coupling between the density fluctuations and the degrees of freedom involved in the
relaxation process. Multiple relaxation processes will give rise to multiple ”jumps” in ¢(Q)
(Figure 3.1 ). We describe in the following the thermal, the structural and the microscopic
relaxation processes and the analytical way to take them into account in the description

of the dynamic structure factor.

Thermal relaxation

The propagation of a compressional wave in a liquid generates a periodic variation of
pressure at any point and thus very rapid oscillations of the local temperature. This
happens because in all pure liquids, the specific heat at constant pressure c, exceeds that
at constant volume ¢, (v = ¢,/¢, > 1) hence heat flows from an hotter and compressed
region to a cooler and less dense one. The passage of a wave determines therefore an energy
transfer from the wave packet to the energy of the liquid, ¢.e. the compressional wave at
some point is absorbed. The two properties of the liquid governing this energy absorption
are the viscosity and the thermal conductivity. Viscous losses take place because of the
shearing motion of the propagating longitudinal plane wave and thermal absorption is
due to the heat flow since all liquids are thermally conductive. The combined effect of
viscosity and heat conduction is generally referred to as classical absorption. Except for
liquid metals, which have high heat conductivity, the role played by heat conductivity
is small compared to that played by viscosity [?]. However measurements of this kind
of absorption in many liquids showed that the experimental value is higher than the
classical absorption, the difference is called excess absorption and is related to the bulk
viscosity associated with the compression of the liquid. This excess absorption or npg
implies further mechanisms of energy losses which have been thought to be of relaxational
nature. Thermal relaxation effects are observed in a liquid in which exchanges between
external and internal degrees of freedom require a finite time characteristic of the nature
of the process. Thermal relaxation occurs when the acoustic energy is taken up by one
of the internal modes. For liquids in which thermal relaxation plays the important role

there is no obvious correlation between the temperature dependence of np and ng and the



Chapter 3: Collective dynamics of liquid systems 61

ratio np/ng is often very high (> 20) [?]. In addition, in the case of thermal relaxation a
velocity dispersion is observed in the relaxation region with a difference between the high
and low-frequency sound speed of the order of 5-10% [29]. Since to reveal a relaxation
the frequency domain investigated has to be of the same order of magnitude of 1/7 (best
coupling-see below), and since the thermal relaxation time for several liquids is of the
order of 1071%s (GHz range in the frequency domain), the light scattering is probably the
best probe to study thermal relaxations. This relaxation manifests in the Brillouin light
scattering spectrum with a further contribution centered at zero energy transfer in addition
to the central elastic line (Rayleigh) and the inelastic doublet (Brillouin-Mandelstam). It
is referred to as Mountain peak because it was initially predicted by Mountain [30](1966)

Structural relaxation

The structure of the liquid state is characterized by the lack of long-range order and
changes in pressure and temperature correspond to changes in its local of order. If a vari-
ation of the structural state takes place, changes in the interactions between the molecules,
due to structural rearrangements, implies lost or gain of energy. As a consequence, the
specific heat ¢, of the liquid is higher compared to the one of the solid because of the pres-
ence of these structural contributions. The same happens for the compressibility x and
the expansion coefficient . To study how structural effects influence the properties of a
liquid, it is necessary to probe the system in a time scale slower compared to the relaxation
time of the structural process. There are two operational methods to proceed: the first
corresponds to make a systematic study of the system by changing the temperature, the
second is to investigate the system response in different frequency domains and therefore
using radiation probes of different energies. In the first case in fact a decrease in temper-
ature induces an increase of the relaxation time. The relaxation can be classified on the
base of the relationship between the period (T") of the sound wave and the relaxation time
7 characteristic of the process. The so-called viscous regime is probed whenever T > 7. In
this regime, the rearrangements (relaxation) can be regarded as instantaneous processes.
Consequently the acoustic propagation takes place along different states of equilibrium
(adiabatic approximation). If on the contrary 7" < 7, the rearrangement process is very
slow and the fluid response turns out to be ”frozen”. Within this short time scale the per-

turbation induced by the sound wave propagates elastically. This is the so-called elastic
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C

Q= l/CTu(T)

Sound velocity C

Figure 3.1. behaviour of the sound velocity as a function of Q the doted lines are the zero

and infinite frequency limiting value.

regime. In the intermediate region the dynamical behaviour is usually called wviscoelastic
. Here the dynamics of sound propagation strongly depends on the (Q,w) of the probed
density wave. In a fluid perturbed by an acoustic propagation, local changes in pressure
make the particles to move from high-density regions to low density ones to restore an
equilibrium configuration. The structural relaxation is therefore the result of structural
rearrangements of the system because of local changes in density and temperature. It is
typical of highly viscous fluids and is strongly temperature dependent. The ”structural”
rearrangement of the system is not achieved instantaneously but in the simplest case, in

an exponential way.

Microscopic relaxation

The relaxation processes introduced above are respectively of thermal and viscous nature:
the thermal relaxation is due to the coupling of density fluctuation with the internal
degrees of freedom, the structural relaxation is due to structural rearrangement of the

particles. Besides the structural relaxation another viscous relaxation process has to be
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taken into account. This is the microscopic relaxation process known also as instantaneous
or p-process. It is thought to be associated with the interaction of an atom and the cage
of its neighbours. It represents the relaxation of the oscillatory motion of a tagged particle
in its first solvation shell. When the cage particles move, they allow the tagged (in-cage)
particle to diffuse. This additional viscosity relaxation is not cooperative, is temperature
independent and is faster compared to the structural one. It lies in the 1073 s time-scale.
As already described at the beginning of this section we are able to identify a relaxation
process looking to the jumps of the sound velocity. In the case of a- and u- relaxation
processes, one expects that ¢(Q) goes from ¢, to cyq because of the a-process, and then
from ¢, = Cooa 10 € because of the p-process, being this order based on the observation
that 7, is always larger than 7, (Figure 3.1).

The analytical way to take into account a relaxation process is to introduce memory
function ansatzs able to describe the different decay channels. In particular the three
relaxation processes: thermal, structural and microscopic are introduced in the theory
by considering the memory function as composed of three contributions. We indicate the
thermal part with the subscript 75 , the structural part with o and the microscopic part

with u as follow:

M(Q7 t) = Ma(Q7 t) + MM(Q: t) + MTH(Q7 t)

These contributions can be further divided into two subgroups which emphasize two dif-
ferent relaxation mechanisms: the first of viscous nature, including the a: and the u process
and the second of thermal character describing the coupling of the density fluctuation to

the thermal modes. This allow to write the previous memory function as:

M(Q’ t) = ML(Qa t) + MTH(Q: t)

where the subscripts ;, refers to longitudinal and My (Q,t) = M,(Q,t) + M,(Q,t). An
expression for the memory functions can be obtained by imposing that in the low Q limit,
Q — 0, F(Q,s) or S(Q,w) in 3.28 and 3.31 reduces to the hydrodynamic expressions.
This yields for the thermal contribution M7y (Q, 1)

Mrp(Q,t) = (v — Dwi(Q)e Pr?”
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M(Q:1) = Ma(@:1) + Mu(Q,) + (v = D (Q)e™ <
where v = ¢,/c, is the specific heat ratio, w?(Q) = [KpT/mS(Q)]Q? is the normalized

second frequency moment defined in 3.5 Dy is the thermal diffusivity. If v ~ 1, which is

the physical case we analyze in next chapters, this term can be neglected.

3.5.4 Damped Harmonic Oscillator (DHO) model

In the one relaxation process scenario, the simplest model for My (Q,t) is the J-function

behaviour or Markovian approrimation:

ML(@Q,t) = 2I'(Q)4 (1) (3.32)
It takes into account all the fast processes which characterize the dynamics at short times.

Its Laplace transform:
ML(@Q,2) =T(Q)
allows to extract the real M} (Q,w) = I'(Q) and the imaginary part M} (Q,w) = 0 to be

inserted in the equation 3.31 which transforms in:

_S@  2Qr@
R P () R N ()2

this expression is referred to as the damped harmonic oscillator (DHO) for S(Q,w). It

(3.33)

shows inelastic side peaks at

wpeak = :I:u)() 1-—

To understand the physical meaning of the parameters (@) and I'(Q)) entering in the
DHO model, we compare 3.33 with

S = 5@ QU0+ T
’ [w? = (€:Q)* — (FQ?)*]* + [2MQ*w]?
which is the inelastic part of the hydrodynamic S(Q,w) 3.9 with v &~ 1. Eq. 3.33 and 3.34

match only if the following requirements are satisfied:

{ I'(Q) =2IQ? = v,Q?
Q*(Q) = (¢;Q)* + (TQR?)?

(3.34)

(3.35)
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This shows that the parameter I'(Q)) provides informations on the kinematic longitudinal
viscosity vz, and the parameter (@) provides informations on the adiabatic sound velocity
in the limit

rQ* < c,Q

This also point out that the results of hydrodynamics can be formally deduced by a

microscopic memory function approach with a memory function M, (Q,t) such that:

My (Q,t) = 2vLQ*(t)

This simple model, valid in the low Q limit, will be used in part, to extract the values of

the parameters for the spectra presented in next two chapters.

3.5.5 Viscoelastic model

Aiming to describe the dynamics of density fluctuations at increasing wave-vectors the
further step is the introduction of a memory function with a finite characteristic decay

time. The simplest approximation is an exponential decay or Debye ansatz:

ML(Q,t) = A*(Q)e™"/7(@) (3.36)

where, according to relation 3.24, A?(Q) is defined by

ws(Q) W2 = 2 2

The equation 3.36 is generally referred to as viscoelastic model for S(Q,w). This simple

A Q) = M(Q,t=0)=

model accounts for the analitical semplicity in the calculation of S(Q,w) and preserves
the fourth frequency moment wg of S(Q,w). It is expected to give a resonable description
of the dynamical behaviour of the system when Q approaches the first maximum @, of
the static structure factor S(Q).

The expression for the dynamic structure factor is achieved by introducing the real
M} (Q,w) and the imaginary M} (Q,w) part of the Laplace transform of the memory
function 3.36 in 3.31:
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M (Q,w) = AQ(Q)W

w

The low wave-vectors and low frequencies ( Q@ — 0, w — 0) limits of M(Q,z) gives

Mi(Q,w) = A*(Q)

M(Q — 0,z — 0) = A*(0)7(0). A comparison with the hydrodynamic expression of the
memory function M(Q — 0,2) = T'(Q — 0) = v, @Q?, allows to extract a finite value for
the relaxation time 7(0)

VLQ2

The values of 7 evaluated with this relation lies in the subpicosend time scale for simple
liquids. Although for Q values such that @Q = @, the viscoelastic model is in good
agreement with the experimental results [31, 32|, it starts to fail for smaller wave-vectors
as shown for liquid alkali metals [2, 5]. The failure has been attributed to the neglect of
additional relaxation processes which make the single time description break down.

This is the case, for example, of simple monatomic liquids in which the presence of two
distinct relaxation processes is predicted [2, 3, 4, 5]: one of the two processes is the
structural or a-relaxation, and the other is the faster process, the microscopic or p whose
physical meaning has previously been described. In the two relaxation processes scenario,

we model M,(Q,t) by the sum of two exponential decay contributions:

ML(Q,t) = AL(Q)e ™=@ 4+ A2(Q)e /(@) (3.37)

where A2(Q) = [coa(@)® — c0(Q)%]Q%, and A2(Q) = [co(Q)® — Co0a(@)’]Q* are the
strengths of the two processes. When the p-process is very fast with respect to the in-
vestigated timescale, like it happens for example in liquid water [1], one expects that the

second term of 3.37 is approximated by a J-function and the My (Q,t) transforms in:
ML(Q,t) = A2(Q)e /=@ 4 T,(Q)d(t) (3.38)

with T',(Q) = A27,(Q). Tts Laplace transform:

A? r
Mi(@2) == (Qé; * 522622)
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allows to obtain the expression for S(Q,w) In the the low Q, low w hydrodynamic region,

we have M(Q — 0,2z — 0) = (w%(0) — w2(0))7.(0) + %—2) which compared with the

hydrodynamic one M(Q — 0,2) = I'(Q — 0) = v,Q?, enables to extract an expression

for the relaxation time in the two relaxation processes scenario:

F;ég)
3.39
200 = A0) (3.39)

vy, and ¢y are respectively the kinematic longitudinal viscosity and the adiabatic sound

vy —

To(0) =

velocity. We will use this last model to analyze the experimental spectra presented in the

following chapters.



Chapitre 4

La dynamique aux hautes fré quences de beaucoup de systé mes liquides a € té € tudié e soit
expé rimentalement par diffusion iné lastique des rayons X (IXS) et par diffusion Brillouin
de la lumié re (BLS) soit numé riquement par des simulations de dynamique molé culaire
(MD). Un grand effort a € té fourni pour comprendre comment les proprié té s dynamiques
des diffé rents liquides dé pendent du potentiel d’interaction caracté ristique des systé mes
¢ tudié s. Une attention particulié re a € té porté e aur gaz nobles et auzr liquides mé
talliques : pour les premiers les interactions entre les particules sont habituellement modé
lisé es avec les potentiels Lennard-Jones, alors que pour les seconds elles sont modé lisé
es avec des pseudo-potentiels. Une autre classe tré s importante de liquides a considé rer
sont les systé mes a liaison hydrogé ne. Ils sont d’un é norme inté rt a cause de la forte
influence de la liaison hydrogé ne sur leurs proprié té s microscopiques. En effet ils sont
caracté risé s par une interaction entre les particules hautement directionnelle due a la pré
sence de cette liaison. Il serait tré s inté ressant d’é tablir une connexion entre les proprié
té s dynamiques de ces syste mes et le type d’agré gat a liaison hydroge ne spé cifique
du syste me. Afin d’introduire ces syste mes nous pré sentons dans ce chapitre un bref
ré sumé de notre connaissance actuelle de leur comportement. Le chapitre est organisé
comme suit :

dans le Par. 4.2 est donné e une description gé né rale des systé mes a liaison hydrogé ne
et de leurs principales proprié té s.

Le Par. 4.3 est dé dié au systé me a liaison hydroge ne le plus € tudié : [’eau.

Dans le Par 4.4 afin de caracté riser la dynamique & hautes fré quences des systé mes
a liaison hydrogé ne, nous introduisons les deux liquides sujets de cette the se : 'acide
fluorhydrique (HF) et les solutions (HF)z(Hy0)1_g.
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Chapter 4

Collective dynamics in hydrogen bonded liquid

systems

4.1 Introduction

The collective dynamics of many liquid systems has been investigated both experimentally
by inelastic neutron scattering (INS), inelastic X-rays scattering (IXS) and Brillouin light
scattering (BLS) and numerically by molecular dynamic simulations (MD). A big effort
has been done to understand how the dynamic properties of different liquids depend on the
characteristic interparticle interaction potential of the system under study. In this respect
particular attention has been payed to noble gases and liquid metals. The interparticle
interaction for the former are usually modeled by Lennard-Jones potentials whereas the
latter are represented in terms of pseudo-potentials. Another very important class of
liquids to consider are the hydrogen bonded (HB) liquid systems. The enormous interest
is found in the strong influence of hydrogen bond on their microscopic properties. In fact
they are characterized by a highly directional interparticle interaction due to the HB. It is
intriguing to establish a connection between the dynamical properties of these systems and
the specific HB arrangement. In order to give a basic insight into the collective dynamics
of hydrogen bonded liquids we present in this chapter a brief summary on our actual
understanding on their behaviour. It is organized as follow:

in Sec. 4.2 a general description of the HB systems together with their main properties
is reported.

Sec 4.3 is devoted to the most studied HB liquid system: water.
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In Sec 4.4, aiming to characterize the high frequency dynamics of HB liquid systems, we
introduce the two HB liquids subject of the investigations of this thesis work, hydrogen
fluoride (HF) and (HF),(H20)1—, solutions. We illustrate the general open questions

related to the relaxation phenomena in highly associated liquids.

4.2 Hydrogen bonded systems

The physical and chemical properties of a system are largely determined by the character
and strength of the intermolecular interactions. For instance, the very specific properties of
liquid water find their origin in the very strong hydrogen-bond interactions between water
molecules. For this reason, many studies have been devoted to the structure and dynamics
of the hydrogen-bond network in highly associated liquids. The concept of hydrogen bond is
based on the fact that electronegative atoms such as N, O, F and Cl, pull the distribution
of electrons away from other less electronegative atoms bound to them through covalent
bonds. This creates slightly positive polar atoms which are attracted to the slightly neg-
ative ones. This dipolar attraction forms the basis of hydrogen bonding. In 1920 W. M.
Latimer and W. H. Rodebush [33] recognized the importance of the hydrogen bond and
of its extensive occurrence. They used this concept to discuss the properties of highly
associated liquids such as water and hydrogen fluoride. They attributed to it the cause of
association of water and of its unique chemical and physical properties. ” Water...shows
tendencies both to add and give up hydrogen, which are nearly balanced. Then...a free
pair of electrons on one water molecule, might be able to exert sufficient force on a hy-
drogen held by a pair of electrons on another water molecule to bind the two molecules
together... Indeed the liquid may be made up of large aggregates of molecules, continually
breaking up and reforming under the influence of thermal agitation. Such an explanation
amounts to saying that the hydrogen proton, held between 2 octets, constitutes a weak
bond”. According to L. Pauling [34] ”...under certain conditions an atom of hydrogen is
attracted by rather strong forces to two atoms, instead of only one, so that it may be
considered to be acting as a bond between them”. The result is the formation of a hydro-
gen bridge between two neighbour molecules, for that also the name hydrogen bridge has
been used. The hydrogen bond is a weak bond, its strength is about 20 times lower than
a covalent bond and its energy lies in the range of 2 + 10K cal/mole. Because of its small

bond energy and the small activation energy involved in its formation and rupture, it plays
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Figure 4.1. Boiling point of hydrides of elements of the same Group of the periodic ta-
ble [35].

an important role in reactions at room temperature. An increasing electronegative atom,
has an increase capacity to form hydrogen bonds. Even if the H-bond involves association
of two molecules, the resulting H-bonded complexes are not limited to dimeric linkages;
in liquid water and hydrogen fluoride (HF), for instance, multiple bonded arrangements
occur. In general the formation of hydrogen bonds in a compound or in a solution may
produce chains, rings or three dimensional networks with a consequent alteration of the
mass, size, shape and arrangements of the aggregates.

In Figure 4.1 the boiling point of hAydrides (elements which form compounds with hydro-
gen) is plotted to show how the presence of the H-bond affects this property in compounds
of the most electronegative atoms (NHj, H,O, HF).

In addition to inorganic compounds also all the organic molecules containing the group
O-H (hydroxyl group) (like methanol, ethanol, formic acid, acetic acid) and the group
N-H (like methylamine) are capable of hydrogen bonding. In this thesis one of the most
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strongly associated liquids has been considered: hydrogen fluoride (HF). It is one of the
simplest model system and apart from its importance as prototype system, it plays an
important role in many technical applications as solvent for chemical reactions and etching
processes. Because of its high reactivity, the structural and dynamic properties of HF, are
much less known than those of water. In the following table we resume the main features

of this two systems in terms of H-bond

hydrogen fluoride (HF) water (H,0)

1 H-bond for each molecule 2 H-bonds for each molecule

linear chain like arrangement | three dimensional arrangement
H-bond energy = 28 K.J/mole | H-bond energy ~ 20K J/mole

4.3 The water case: a recall

In the framework of hydrogen bonded liquids, water has been extensively investigated;
we give here a brief report on previous studies and on the current understanding of its
collective dynamics. One of the peculiarity of this liquid is the phenomenon of fast sound:
the existence of high frequency collective excitations which propagate with a velocity
much higher than that of the ordinary sound up to momentum transfers comparable with
the inverse of the intermolecular average distance. This finding, highly controversial at
the time of its discovery, as we will see, is in fact the fingerprint of a very strong relax-
ation process active in water and associated with the HB. It was observed for the first
time by Rahman and Stillinger in 1974 [36] who studied the dynamic structure factor
S(Q,w) of this liquid by molecular dynamic simulations. They found the existence of two
propagating modes with sound velocity of 1500 m/s and 3000 m/s respectively. The first
experimental evidence of fast sound in water came out from inelastic neutron scattering
(INS) experiments [37] which found a sound excitation propagating with a velocity of

!, The main disadvantage of

~ 3300m/s in a momentum transfer range of 3.5 + 6nm™
this experiment was the reduced (Q,w) region explored because of the kinematic lim-
itations of the neutron scattering technique. This didn’t allow to observe the mode at
lower energy. An important contribution in this direction came from the development of
the inelastic x-ray scattering (IXS) technique [24, 25, 39]. It gave the possibility to study
the dynamic structure factor of water exploiting some very important advantages: first

among all the possibility to investigate a much wider (Q,w) region. This measurements
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Figure 4.2. Dispersion curve for water at the indicated temperature obtained by IXS [38].

The upper dotted line is the linear fit to the data in the 4 + 10nm ™' Q range [38], the

lower dashed lines indicated the adiabatic sound velocity.

confirmed those previously done with INS and demonstrated the presence of fast sound
in a wider momentum transfer region 4 + 10nm~". It also showed (Figure 4.2) that in the
Q region comprised between 1nm ! and 4nm ™ the velocity of sound of the longitudinal
acoustic excitations undergoes a characteristic dispersion, similar to that pictorially re-
ported in Figure 3.1. This accounted for the highly discussed difference between the low
frequency and high frequency sound velocities in liquid water. A similar behaviour was
already observed in many glass forming liquids [| in which such transition is observed in
presence of an a-relaxation (see Section 3.5.3) and takes place at a Q-value such that the
condition wt, &~ 1 is fulfilled, where w is the frequency of the sound excitation and 7, is
the structural relaxation time.

To better understand the origin of this phenomenon in water, further studies as a function
of temperature, density and pressure were done [40]. They showed that the transition
from the hydrodynamic sound velocity to the high frequency limit takes place at a Q

value which is temperature dependent. In particular increasing temperature, the transition
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Figure 4.3. Q dependence of experimental and theoretical velocities of sound in water.

Open circles, MD simulations [42]; full squares, circles and diamonds, IXS data [38]; solid
(dashed) line, zero (infinite) frequency limit [43].

takes place at increasing Q. This demonstrate the presence of a relaxation process whose
phenomenology is consistent with the one of the structural or a—relaxation typic of glass-
forming systems [41]. At variance with them, for which the structural relaxation time
To 18 typically studied at temperatures such that its value is of the order of nanosecond
(107° s5), in water 7, lies in the sub-picosecond (107! s) region and lower values are
prevented by the nucleation of the crystalline state upon cooling. This small values for
7 make the condition wr =~ 1 to be met at tera-hertz frequencies and therefore it can
be studied experimentally with the IXS method. It has been found that 7, follows an
Arrhenius behaviour and the derived activation energy is comparable to the energy of
the hydrogen bond in water. This has led to think that this relaxation is associated to
the rearrangements of the molecular structure and in particular of the hydrogen bonded
clusters in the liquid.

A summary of our current understanding of the collective dynamics in terms of apparent

sound velocity is reported in Figure 4.3 . Experimental and numerical simulation data
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points for ambient conditions fall between the ¢,(Q) and c.(Q) curves determined by
computer simulations. We observe a positive dispersion of ¢(Q) from ¢,(Q) (=1500 m/s
at @ = 0) to a value of ~ 3200 m/s in the @ region Q=24 nm~!. Extensive temperature
and density dependent studies have shown that this positive dispersion is associated to
the structural relaxation process [28]. It is then tempting to cast the water case in the

general relaxation frame introduced in the previous chapter. In particular:

1. it is important to better understand the relation between a network of hydrogen

bonds in presence of structural relaxation (a—process);

2. In the case of water, there is still a large difference between cooo(Q) = 3200m/s and
Co (@) = 5000m/s at @=6 nm~'. Can this difference be interpreted as due to the
microscopic relaxation (u-process)? This observation, evident in the low @) region, is

less obvious at large (Q where the difference between ¢y, and coo(Q) is much smaller.

4.4 The hydrogen fluoride (HF') case: open questions

Besides water, many other liquid systems of organic and inorganic nature are characterized
by hydrogen bond. The structural and dynamic properties of these liquids are strongly in-
fluenced by the strength and the number of the hydrogen bonds between nearest neighbour
molecules. Aiming to characterize the relaxation phenomena of the associated liquids, the
present work has been devoted to make a comparative study of water and other hydrogen
bond liquids. In this respect we have chosen pure hydrogen fluoride (HF), the inorganic
system with the strongest hydrogen bond and (HF),(H>0);_, solutions. The main dif-
ference between HF' and H,O is the uni-dimensional vs. three-dimensional nature of the
HB network. Consequently is of great interest to determine the evolution of the collec-
tive dynamics from the phenomenology of one liquid to that of the other. As in water in
fact, one may expect to observe the phenomenon of fast sound probably associated with
the structural rearrangement of the hydrogen bond network characteristic of the liquid.

Several open questions are related to this structural relaxation:

e The first concerns the time scale of the relaxation: in water in fact, the relaxation
time associated to the structural process lies in the sub-picosecond region. This is the
same order of magnitude of the lifetime of the H-bond. Is the structural relazation

time in hydrogen bonded liquid systems related to the lifetime of the H-bond ?
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e The second question concerns the strength of the relaxation: it depends on the spe-
cific system and is related to the interaction potential between molecules. How does

the specific molecular arrangement affect the strength of the relazation in HB liquids

e The third question concerns the activation energy of the process: is the activation
energy of the structural relazation related to the activation energy necessary to make
and break H-bonds?

One of the objectives of this thesis is therefore to asses the relevance of the hydrogen
bond on the dynamics of associated liquids by using BLS and IXS methods. Another
important point concerns the presence of the microscopic relaxation process. In sim-
ple monatomic liquids both kinetic and mode-coupling theories predict the existence of
two distinct relaxation processes [2] and, this prediction has been demonstrated both by
numerical simulations [3, 4] and by experiments [5]. In these theories, one of the two pro-
cesses is the structural relaxation, and the other is the microscopic one both described in
Chapter 3. The outlined scenario seems to point that the a— and p— relaxation processes
are universal features of the liquid state. In this context, however, no attempt has been
made so far to include the important class of hydrogen bonded liquids. A question awaits

clarification:

e Are both the structural and microscopic relaxation process present also in hydrogen

bonded liquid systems?

With the aim to shed light on all these aspects concerning the high frequency dynamics
of hydrogen bonded liquids, we will present in next chapter the IXS experimental study
of HF and (HF),(H20)1_, solutions.



Chapitre 5

Ce chapitre est dédié a la description de tous les aspects expérimentaur liés a les mesures
du facteur de structure dynamique S(Q,w) de l'acide fluorhydrique (HF) et des solutions
(HF)(H30)1_ . A cause de la haute réactivité de ces systémes, le développement du
montage expérimental est d’une importance primordiale pour la réussite de l’expérience.
Le chapitre est organisé comme en suit :

Dans le Par. 5.2 nous discutons les principaux problémes concernant l'laboration d’une
cellule pour [’échantillon, et nous arrivons a la conclusion qu’une cellule spécifique est
nécessaire pour chaque échantillon; puis nous décrivons en détail chaque partie de l’assemblage
et la préparation de [’échantillon.

Dans le Par. 5.3 sont présentées les mesures de la résolution en nergie des cing analyseurs.
Ces résolutions seront convoluées avec les modéles théoriques dans le prochain chapitre
afin de faire les ajustements des données expérimentales.

Dans le Par. 5.4 nous présentons les mesures de la cellule vide, c’est-a-dire la contribution
a lintensité totale diffusée due a la cellule: on verra que cette contribution peut tre négligée
dans le cas de I’HF alors qu’elle doit tre prise en considération pour l’analyse des spectres
des solutions (HF'),(H20)1—, -

7



Chapter 5

Sample environment and experimental set-up

5.1 Introduction

This chapter is devoted to the description of all the experimental aspects related to
the measurements of the dynamic structure factor of pure hydrogen fluoride (HF) and
(HF),(H0)1_, solutions. Due to the high reactivity of these two systems, in fact, the
design and development of an appropriate experimental set-up is mandatory to succeed
in the experiment. The chapter is organized as follow:

in Sec. 5.2 we discuss the main problems concerning the design and development of a
sample cell ending that a specific cell is necessary for each sample; then we describe in
details each part of the assembly and the sample preparation.

In Sec. 5.3 the measurements of the energy resolutions of the five analyzers are shown.
This resolutions will be convoluted with the theoretical models in order to fit the experi-
mental data, as we will see in next chapter.

In Sec. 5.4 we report the "empty cell” measurements, namely, the contribution to the
total scattered intensity due to the sample cells: we will see that this contribution can be
neglected in the case of HF whereas it has to be taken into account for (HF),(H50);_,

analysis of the spectra.

5.2 Sample environment

We present here a specific apparatus developed to study the dynamic structure factor of

hydrogen fluoride (HF) and (HF),(H20),_, solutions by inelastic x-rays scattering. We

78
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start discussing some aspects that have to be taken into account for the design and the

construction of the cell.

e Choice of materials. Only fluoride containing plastic, like Teflon and stainless steel
resist to the chemical reactivity of HF whereas the choice is limited to the Teflon
in the case of (HF);(H50); . The behaviour of metals, alloys and plastics in pres-
ence of hydrogen fluoride and one (HF),(H0);—, solution (x=0.35) is reported in
Figure 5.1.

Metals | Alluminium
and and Copper | Nickel | Monel | Inconel | Tantalum | Titanium | Tin| Zinc | Silver | Platinun | Gold
alloys | itsalloys

A:

HF D C | raode A A D D D| A A A A

A Goodresistance B Fairly goodresistance  C Fairly goodresistance D Poor resistance
depending onservice in absence of oxygen
condtions

Plastics ‘ LDPE ‘ HDPE‘ PP ‘ PMP‘ PVC ‘ PC PS SAN ‘ ABS | ACECRYLIQUE | PTFE ‘ PFA ‘ CEI-:E‘

TemperatureC | 20|50 | 20[50 | 20{50 | 20[50 | 20|50 | 20|50 | 20|50 | 20|50 | 20|50 20[S0 | 20[50 | 20[50 | 20]50 |
(
(HHO,SS(HZO)O.GS. o 06 00 06 6§ 0O O O|0OO OO0 Ol 60 o 0 o0 0 o0 o

A A A

HF T<60°C A ¢ T20°C T<250C

o Excelent resistance o Goodresistance o Limited resistance o Minor resistance
Nno corrosion minor corrosion moderate crrosion not recmmended

Figure 5.1. Behaviour of metals, alloys and plastics in presence of hydrogen fluoride and
one (HF),(H>0);_; solution (x=0.35).

e Choice of the windows for the passage of the incident and scattered x-rays beam.
They have to be chosen in such a way as to minimize their contribution to the total
scattering and to be resistant to the corrosion of HF and (HF'),(H20);_,. In order
to satisfy both these conditions we opted for sapphire windows (Al,O3) in the case of
HF'. Their measured contribution to the total scattered intensity is in fact negligible.
Unfortunately this material cannot be used for (H F'),(H0); _, because it does not
resist to the chemical etching of the solutions, we had therefore to resort to Teflon

again.
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e Sample length. This is the distance between the windows for the incoming and
scattered beam of the cell. This length is established in order to have the better
compromise between the attenuation of the signal due to the absorption of the

sample and the scattering volume.

Because of what mentioned above two different cells based on similar schemes but devel-

oped with different materials and some structural variations have been made: one for pure
HF and another for (HF),(H20);_, solutions.

HF and (HF),(H20),_, solutions physical properties

We resume here the main physical properties for HF and (HF),(H20)1—; solutions. In
Figure 5.2 the melting point, the boiling point and the density of the (HF),(H0);_,
solutions are plotted as a function of concentration, while the same properties for the two

limiting case, HF and H,0 are reported in Table 5.2
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Figure 5.2. (a) Melting point, boiling point [44] and (b) density [45] for (HF),(H20)1_4

solutions as a function of concentration.
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Molecular weight | p (g/cm?®) | Melting point | Boiling point | v = ¢,/c,
(T =273 K) (K) (K) (T=273K)
HF 20 1.04 193 292 1.14
H,0O 18 1.002 273 373 1.006

HF sample cell
It is suited to study the sample in the liquid phase, namely in a temperature range between
19°C and —80°C.

In Figure. 5.3 the drawing of the cell is reported: the body has been realized in stain-
less steel; its length, L = 1lem, has been established considering the linear attenuation
coefficient p of liquid HF at 21748 eV and choosing L = 1/u as discussed in Sec.1.3.1 Two
sapphire windows of 250um thickness and 6mm diameter, have been applied to allow the
passage of the incident and scattered beam. They have been glued on a holder plate which
has then been screwed to the body cell. An o-ring of parofluor has been applied between
the holder and the cell to guarantee a good tightness of the windows. A stainless steel 316

angle valve at the entrance of the cell enables to feel the cell and to confine the sample.

stainless seel
316 walve

coadlingtube

body of the cll

windows holder

Figure 5.3. Sample cell used to measure the dynamic structure factor of hydrogen fluoride

(HF) by inelastic x-ray scattering and Brillouin light scattering.
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Figure 5.4. Stainless steel vacuum chamber to isolate the sample cell from the external

environment [46].

Two stainless steel tubes, passing through the body of the cell, allow the passage of the
refrigerator liquid used to cool down the sample. The cell has been fixed on a stainless
steel flange (diameter 11.5 ¢m) (Figure 5.6) through an insulating Teflon plate to reduce

thermal exchanges.

(HF), (H,0),_, sample cell

This cell is very similar in shape to the one used for pure HF. (HF'),(H30);_, solutions
are liquid at room temperature and this fact simplifies the operations related to the filling
procedure avoiding the necessity of using any valve. The cell has been designed to study
the sample at room pressure, at fixed temperature 7= 283 K and in a momentum transfer
range of 1 =+ 15 nm~!. In Figure 5.5 the drawing of the cell is reported. The main body
is done in copper it has two apertures: the first, on the top, of cylindrical shape with a
diameter of ~ lecm embodies the sample container; the second, on the lateral walls, is
necessary to allow the x-rays beam to pass through the sample, its width is calculated so
as to avoid cuts to the scattered beam at the analyzed angles. The sample container is
a cylinder in Teflon with a diameter of ~ 1lcm, length comparable to the x-rays photo-
absorption of (HF),(H>0);_, solutions at E ~ 21KeV. In this case the windows are the

walls of the cell themselves. For this reason they have been chosen as thin as possible (
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Figure 5.5. Sample cell used to study the dynamic structure factor of (HF),(H20); 4

solutions by inelastic x-ray scattering.

0.5 mm thick ) to reduce the absorption of the incoming and scattered radiation and to
decrease the scattering contribution due to the Teflon. In the upper part of the cylinder, a
groove for the o-ring in parofluor is present, it guarantees the tight when the lid in Teflon
is screw closing the container. To better fix the screws, a second lid in stainless steel has
been used since the softness of Teflon does not allow to shut tightly without breaking
the cell. The tubes in copper, which pass through the body of the cell, are used to allow
the cooling liquid to pass and to thermalize with the sample. The temperature is read by
means of a TYPE K thermocouple. The rest of the assembly, chamber, cooling system

and L-shape holder, is the same for HF and (HF),(H>0);_, solutions.

Chamber

A stainless steel chamber (Figure 5.4) of the same diameter of the flange has been applied
to isolate the cell from the external environment. It is connected to a vacuum line to
better cool down the sample, to avoid the scattering of the air surrounding the cell and to
reduce the risk of contamination of the environment in case of leaks. Two kapton windows,
100 pum thick, glued on the chamber, allow the passage of the beam. Their width is such
that the radiation scattered by the sample does not suffer any cut at the higher scattering

angle investigated.
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gorniomet:

thermal insulating ~ L-Shape holder
teflon plate

Conredionto the moaling system

Figure 5.6. Sample set-up mounted on the goniometer of the sample stage of the beam-line
ID16.

Cell plus chamber have been screwed on an L-shape holder (Figure 5.6) adapted to the
sample stage goniometer of the spectrometer which is used to align the cell with respect

to the beam.

All the drawings concerning the HF and (HF),(H>0);_, solutions sample cells are re-
ported in Appendixl and Appendix2.

Cooling system

To cool down the sample a liquid flux cryostat DC50-K75 Haake has been used. The bath
was filled with methanol, liquid recommended in the temperature range —75° + —10°C.
Thanks to some tricks we reduced the thermal dispersion improving the performances of
the cooling system: the section and the length of the tubes connecting the bath with the
cell has been chosen as small as possible to decrease the exchange surface with the air;
the tubes have been wrapped with a protective layer of thermal insulating poliuretan; the

vacuum level in the chamber has been pushed up to ~ 1 - 10~%mbar. All this enabled to
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reach a minimum sample temperature of —60°C.

Filling apparatus

The line to fill the cell was composed of a Teflon tube connecting directly the main body
of the sample cell to the HF bottle (pure gas 99.9% from Air Products). On this tube
three valves were present: the first between the experimental set-up and the external
nitrogen line, the second connected to the vacuum pump and the third linked to the
safety absorption cartridge (soda-lime). The tightness of the cell and of each part of the
filling line was successfully tested by doing a detailed leak check with a helium detector.
In order to avoid any the contamination of the sample with air and water, the cell was

evacuated before the filling.

(HF), (H,0),_, preparation

We analysed four different mixtures of water and hydrogen fluoride (HF'),(H50);_, with
x = 0, 0.2, 0.4, 0.73. The samples were prepared starting from solutions of hydrogen
fluoride, 40% and 73% nominal value, from Fluka. To verify the accuracy of these values
we did volumetric measurements using flasks in Teflon with a volume of 25 ml and 50 ml

and a precision balance (+1mg). We proceeded in the following way:

e we weighted the empty flask of 50 ml,
e we filled the flask with 50 ml of hydrogen fluoride 40% and weighted the flask+solution,
e we calculated the weight of the solution by simple subtraction (flask+solution-flask)

e we calculated the density p of the solution by dividing its weight by the volume(50
ml) of the flask.

e we compared the obtained value of p with the one of Figure 5.2 (b) [45] which allows

to extract the right concentration.

We applied the described procedure to verify the face values of the 40% 73% solutions,
while we prepared the 20% by diluting with demineralised water the mixture hydrogen
fluoride 40%.
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5.3 Experimental resolutions

The S(Q,w) of HF has been studied as a function of the wave vector Q by rotating
the 6.5 m horizontal arm on which the five independent analyzers (described in chapter
2) are held one next to each other with a constant angular offset. This imply that each
spectrum is affected by the resolution of the corresponding analyzer with whom it has been
acquired (Figure 5.7). The spectra have been collected using the Si(11,11,11) configuration
which corresponds to an incident beam of E = 21748 eV energy and to a resolution of
~ 1.5 meV. The resolution of each analyzer, has been measured by using a sample of
PMMA (plexiglass) with a thickness of 5 mm and rotating the horizontal arm in such

1
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Figure 5.7. Energy resolution of the five analyzers
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structure factor S(Q) of the PMMA. In this way the elastic contribution is dominant
compared to the inelastic one and the effective size source introduces a small geometric

contribution to the energy resolution.

HF empty cdl measurements (HF) (H,0), , empty cell measurements
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Figure 5.8. A sample of the empty cell measurements at the indicated QQ value and tem-

perature for the two different sample cells used in the experiment.

5.4 Empty cell measurements

We report in this section the empty cell scans at selected Q for the two different cells
previously described. In Figure 5.8 the intensity scattered by the empty cell used for HF
is shown. This contribution is due to the two sapphire windows of total thickness is 0.5

mm. As we will see in the next section, this intensity is negligible compared to the signal
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Figure 5.9. Ratio Ig;¢/I¢ for (HF),(H20),_, as a function of concentration. Ig, ¢ is the
intensity transmitted by the cell filled with the sample and I is the intensity transmitted
by the empty cell.

scattered by the sample. The transmission of HF has also been measured Is,¢/Ic = 0.45
where Ig, ¢ is the intensity transmitted by the cell filled with the sample and I is the
intensity transmitted by the empty cell. Similar measurements are reported in Figure 5.8
for the empty cell used for (HF'),(H>0);_, solutions at some selected Q values and at T
= 283 K. At difference with sapphire, this contribution, due to 1 mm of Teflon, cannot
be neglected with respect to the signal scattered by the sample. In order to take it into
account we measured the ratio Is,¢/Ic for each solution and we exploited it to subtract
the empty cell contribution to the total scattered intensity. In Figure 5.9 the values of

this ratio have been reported as a function of concentration.



Chapitre 6

Dans ce chapitre nous présentons les résultats expérimentaux obtenus en étudiant le fac-
teur de structure dynamique S(Q,w) de deux systémes a liaison hydrogéne, sujet de ce tra-
vail de thése : lacide fluorhydrique (HF) et les solutions (HF),(H20)1_y. La dynamique
collective de I’HF a été étudiée avec deux techniques différentes: la diffusion Brillouin de la
lumiére (BLS) et la diffusion inélastique des rayons X (IXS), pour caractériser la transi-
tion du régime hydrodynamique et macroscopique sondé par BLS au régime mesoscopique
exploré par IXS. Afin d’éclaircir le comportement dynamique des liquides associés, nous
avons comparé nos résultats avec ceux de ’eau. FEnsuite, puisque la principale différence
entre l'acide fluorhydrique et l’eau concerne la nature des agrégats a liaison hydrogéne,
nous avons exploré la dynamique des solutions (HF),(H20)1—, par IXS afin de décrire le
passage du comportement dynamique d’un liquide a ’autre. Nous essayons de donner une
réponse a toutes les principales questions présentées dans le Chapitre 4 concernant les
phénomenes de relaxation dans les liquides a liaison hydrogéne. Le chapitre est organisé
comme de suit:

le Par. 6.2 est dédié¢ a la présentation des mesures BLS sur U’HF. Les donnée sont
analysées avec le model DHO décrit dans le Chapitre 3, pour obtenir la vélocité adia-
batique du son et la viscosité cinétique longitudinale de I’HF' a partir de la position et la
largeur des pics inélastiques.

Dans le Par 6.3 nous présentons les expériences sur I’HF faites avec 1XS. Les courbes
de dispersions a différentes températures sont obtenues a partir de l’analyse DHO et
sont comparées avec les résultats hydrodynamiques BLS. La transition de la vélocité du
son ¢(Q) de la valeur adiabatique (obtenu avec BLS) d la valeur auz hautes fréquences,

souligne la présence d’ un processus de relazation actif. Une étude plus approfondie avec le
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modeéle viscoélastique, présenté dans le Chapitre 3, permet de caractériser cette relaxation
avec le temps de relazation et l'intensité du processus ainsi que de démontrer son orig-
wne structurelle. Une comparaison avec des simulations de dynamique moléculaire donne
les informations nécessaires pour discuter nos résultats expérimentauzr en termes de deux
processus de relaxation. Finalement nous résumons et discutons les principaux résultats
sur I’HF.

Dans le Par. 6.4 les mesures IXS sur les solutions (HF),(H20),_, sont présentées en
fonction de la concentration a température fizée. Les courbes de dispersion sont également
présentées. Comme dans le cas de I’HF une analyse viscoélastique des données confirme

la présence du processus de relazation structurale aux hautes concentrations de HF.



Chapter 6

Study of the collective dynamics in HF and
(HF)z (H90O) 1_, solutions

6.1 Introduction

In the following chapter we present the experimental results obtained by measuring the
dynamic structure factor S(Q,w) of the two hydrogen bonded (HB) liquid systems con-
sidered in this thesis work: hydrogen fluoride (HF) and (HF),(H30);_, solutions. The
collective dynamics of HF is investigated with two different techniques: Brillouin light
scattering (BLS) and inelastic X-rays scattering (IXS) to characterize the transition from
the hydrodynamic macroscopic regime (BLS), to the mesoscopic regime (IXS). Aiming
to shed light on the behaviour of the collective dynamics of high associated liquids, we
compare these results with those existing on water. Then, since the main difference be-
tween HF and H>O lies in the different HB arrangement and properties, the collective
dynamics of (HF),(H20),_, solutions is investigated by IXS with the aim to describe
the passage from the behaviour of one liquid to the other. We try to provide an answer
to the main open questions presented in Chapter 4 concerning the relaxation phenomena
in HB liquids.

The chapter is organized as follow:

Sec. 6.2 is devoted to the presentation of the BLS measurements on HF. The data are
analysed in term of the DHO model in order to extract the adiabatic sound velocity and
the kinematic longitudinal viscosity of HF from the position and the width of the inelastic

peaks respectively.
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In Sec. 6.3 we present the IXS experiments on HF. The dispersion curves at different
temperatures are derived from a DHO analysis and compared with the hydrodynamic
BLS results. The transition of the sound velocity ¢(Q) from the adiabatic value (obtained
with BLS) to the high frequency limit, highlights the presence of an active relaxation
process. A more refined study in terms of the viscoelastic model, allows to characterize this
relaxation by extracting relaxation time and strength of the process and to demonstrate
its structural origin. A comparison with existing molecular dynamic simulations provides
the necessary information to discuss the experimental results in the framework of a two
relaxation processes scenario. We finally summarize and discuss the main results on HF'.
In Sec. 6.4 the IXS measurements on (HF'),(H20);_, solutions are reported as a function
of concentration at fixed temperature. The dispersion curves determined with the DHO
model are presented. As in the case of HF a viscoelastic analysis of the data confirms
the presence of the structural relaxation at higher concentrations of HF. A scaling mass
model is proposed which allows to give an estimation of the sound velocity at different

concentrations of HF.

6.2 Study of the dynamic structure factor of HF' by
Brillouin light scattering

The dynamic structure factor of HF in the hydrodynamic regime has been studied by
Brillouin light scattering using a Sandercock-type multi-pass tandem Fabry-Perot interfer-
ometer in Perugia (Italy) characterized by high contrast (> 5-10'%), resolution (FWHM
~ 0.1 GHz) and a finesse of about 100. The wavelength of the incident radiation was
A = 514.5nm and the light scattered by the sample was collected in the back-scattering
geometry (6 = 180°%). The free spectral range (FSR) was set to 10 GHz, the integration
time was approximately 2.5 s/channel. The polarization of the incident light was vertical
while the light scattered by the sample was collected in the unpolarized configuration. The
aim of the present measurement is to determine the energy position of the Brillouin dou-
blets due to the propagation of sound modes and their width. From this two experimental
observations, it is possible to extract information about the adiabatic sound velocity cg

and the longitudinal kinematic viscosity vy,.
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Figure 6.1. Unpolarized Brillouin light scattering spectra at the indicated temperatures in

logarithmic scale. They are shifted on the y-axis one respect to the other.

6.2.1 Experimental data

Brillouin spectra have been collected in the 213 — 283 K temperature range, being Tg =
292 K the boiling point of HF and T, = 193 K its melting point. We used the sample cell
and conditions as previously described in Chapter 5. The collected unpolarized spectra
are shown in Figure 6.1 in logarithmic scale. The central part represents the cut of the
pinhole used to avoid that the spectra are affected by elastic stray light coming from

spurious reflections. In Figure 6.2 we report a selection of the measured spectra in linear
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Figure 6.2. Unpolarized Brillouin light scattering spectra in linear scale at the lowest and

highest investigated temperature .

scale, at the lowest (T = 213 K) and highest (T = 283 K) investigated temperatures.
The spectrum at T = 213K, shows a prominent background between the central unshifted
component and the Brillouin peaks, it extends symmetrically on either side of the central
component to the Brillouin doublets.

This is the Mountain contribution [30], a quite broad background compared to the
central line that becomes increasingly broad at decreasing temperatures, where it starts
to affect the shape of the inelastic peaks. We do not take into account this contribution

in the analysis of the spectra presented in the following.

6.2.2 Data reduction: adiabatic sound velocity and kinematic

longitudinal viscosity

The quantities of interest are the width and the position of the Brillouin peaks because
they are directly related to the sound velocity ¢, and to the kinematic longitudinal viscosity
vy, of HF. To this purpose the experimental data have been fitted in a limited region around
the inelastic peaks with a fitting function obtained by the convolution of the instrumental

resolution R(w) with the damped harmonic oscillator (DHO) described in Chapter 3.
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Figure 6.3. Stokes part of the unpolarized Brillouin light scattering spectra of HF in log-
arithmic scale at the indicated temperatures. The data (open symbols) are superimposed
to the fit (solid line) .
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The curves resulting from the fitting procedure are reported in Figure. 6.3 superimposed

I(w) = Rw)® A (6.1)

to the data. The two relevant independent parameters are {2 = 271y and 2I', namely, the
position and the full width half maximum (FWHM) of the longitudinal-acoustic modes.
By exploiting the relations Q = ¢,@Q and v;, = 2I"/2r, the adiabatic sound velocity ¢; and

the kinematic longitudinal viscosity v are obtained. To this purpose it is necessary to
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Figure 6.4. Sound velocity values from Table 6.1 as calculated from the position of the
Brillouin light scattering peak in backscattering geometry (6 = 180°) (full circles). The

linear fit has been done excluding the point at lower temperature as discussed in the text.

know Q:

4mn 0

Q= Tsm(g) (6.2)

where n is the refractive index and § = 180° represents the scattering geometry. The
temperature dependence of the refractive index n(7") has been obtained by exploiting the
Clausius-Mossotti relation:
2
% - %Wp(T)a (6.3)
where « is the optical polarizability and p the density of HF. By using the values of
n(T ~ 293K) [47] and p(T =~ 293K) [45] we calculated a temperature independent value
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Figure 6.5. Kinematic longitudinal viscosity obtained from the width of the Brillouin peak
according to the DHO model (full circles). The linear fit has been obtained excluding the
point at T=213 K as discussed in the text.

of a. The data for n(T") have been extrapolated for each temperature by using the same
relation once known the temperature dependence of p(T). Its expression obtained from

the literature [45] is given by:

p(T) = —0.002- T + 1.616 (6.4)

with p in g/em® and T in K. The calculated values of the sound velocity ¢, and the
kinematic longitudinal viscosity v; are shown in Figure 6.4 and Figure 6.5 respectively.
As previously discussed, the fit function used is a simple DHO convoluted with the in-
strumental resolution. No further contributions have been included to take into account
the Mountain mode which affects clearly the shape of the Brillouin peak at the lowest
temperature (T = 213 K). For this reason the point at 7" = 213K has been excluded in
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T (K) | vo (GHz) | 2T/27 (GHz) | Q(nm™) | ¢s (m/s) | v, cm?/s
213 3.37 0.56 0.029 730 0.0133
234 2.74 0.24 0.029 600 0.0058
243 2.51 0.20 0.029 950 0.0049
253 2.39 0.14 0.029 530 0.0034
265 2.27 0.10 0.029 500 0.0026
269 2.21 0.09 0.028 490 0.0023
273 2.15 0.07 0.028 480 0.0017
278 2.05 0.05 0.028 450 0.0011
283 1.97 0.06 0.028 440 0.0014

Table 6.1. Values of the frequency position vy and of the width 2I" of the Brillouin peaks as
obtained by the fit with the function 6.1. QQ values from the expression 6.2 are also reported

together with the calculated sound velocity ¢, and kinematic longitudinal viscosity v,.

the linear fits of Figure 6.4 and 6.5. The ¢,(7") follows a linear behaviour characterized by

a temperature dependence well represented by the equation:

¢s(T) = =3 -T + 1290 (6.5)

where ¢, is in m/s and T in K. The same as been done for the kinematic longitudinal
viscosity vy, for which the linear fit provides a temperature behaviour described by the

relation:

v (T) = —0.0943 - 1073 - T + 0.0276 (6.6)

where vy, (T) is in cm?/s and T in K. All the values of Q, of the fit parameters and of the

calculated vy, and cg, are reported in Table 6.1.

6.3 Study of the high frequency collective dynamics

of HF' by inelastic x-ray scattering

In this section we report the IXS measurements done to probe the dynamics of HF in

the mesoscopic regime. We compare these data with the BLS results to characterize
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the transition from the hydrodynamic regime to the mesoscopic and with existing MD

simulations on liquid hydrogen fluoride (HF).

6.3.1 Experimental data as a function of Q and T

The S(Q,w) has been studied at four temperatures in the range 214-283 K and exactly at
T=283K,T=254K,T=239 Kand T = 214 K as a function of the wave vector in the
ranges 2 + 31nm~" for the spectra at T = 239 K and 1 + 15nm™! for the spectra at the
other temperatures. Each scan took 180 min and each spectrum at fixed (Q was obtained
by summing up to 6 scans. We used the experimental set-up described in Chapter 5.

We report in Figure 6.6 a sample of the measured spectra at the investigated temper-
ature and at increasing momentum transfer, they are compared with the instrumental
resolution. The peak centered around zero energy transfer shows a strong ( dependence,
becoming increasingly broader with increasing (Q and narrower in the region where one
also finds the first sharp diffraction peak (FSDP) in the static structure factor (de Gennes

narrowing [48]), the characteristic asymmetry is due to the detailed balance.

6.3.2 DHO analysis

A first raw analysis of the spectra has been done in terms of the damped harmonic
oscillator (DHO) model [49]. As described in Chapter 3, in the memory function approach,
this model is obtained from a Markovian approximation and implies a ¢ function for the
central line in the energy domain. To take into account a finite width for the quasi-elastic
central peak of our spectra, we used a Lorentzian.

The resulting fitting function is composed by a DHO for the inelastic signal, a Lorentzian

for the central peak and a non constant background B(w) = A + Buw:

L(Q)
w? +T2(Q)

N(Q)2(Q)
(w? = 22(Q))* + (wi(Q))

where 7P,(Q)) and wP;(Q) are the areas of the elastic and inelastic contribution respec-
tively, I'c(Q) is the FWHM of the central line, I';(Q) is the inelastic damping, Q(Q) is the

propagation frequency of the collective modes.

S(Qw) = F(Q) + P(Q)

_+Bw)  (67)

The detailed balance has been taken into account during the fitting procedure by multi-
plying the classical S(Q,w) by AiwB/(1 —e™?) as discussed in section 3.2. The final fitting
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Figure 6.6. a) IXS spectra of HF at fixed temperatures 7' = 214 K, 239 K, 254 K,283 K
and at some selected Q. The raw data (lines + symbol) are plotted together with the

corresponding experimental resolutions (dashed lines).
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function was obtained by convolution with the instrumental resolution R(w):

hwp

I(Q,w) = R(w) ® m

S(Q,w) (6.8)

where 3 = KgT. An example of the fit, done using a standard x? minimization routine, is
reported in Figure 6.7(a) at T = 239 K in the low Q region (1+7nm™"). The de-convoluted
inelastic part of the current spectra, w?/Q?S;(Q,w) -whose maxima correspond to the
parameter Q(Q)- is also plotted in Figure 6.7(b). The parameter we are interested in is
Q(Q), which corresponds to the frequency of the sound modes. The dispersion curve Q(Q)
vs. () is shown in Figure 6.9 for the low () region data at the four analysed temperatures.
For () between 4-5 and 7 nm~!, they show a linear dependence with a slope corresponding

to sound speed values substantially higher than the adiabatic sound speeds ¢, measured
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Figure 6.7. a) IXS spectra of HF at fixed temperature 7" = 239K and at the indicated mo-
ment transfer Q plotted together with the corresponding experimental resolutions (solid
lines). b) Resolution de-convoluted inelastic part (DHO) of the longitudinal spectral cur-

rent.
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Figure 6.8. (a) Behaviour of the sound velocity in HF as a function of the temperature :

co (full squares), cooq (full circles). (b) Sound velocities ratio Ceoq/co-

with the BLS technique (Section 6.2).

Moreover, in the 2 to 4 nm~!, the IXS data are compatible with a transition of ¢(Q) from
its low frequency value ¢, to the higher value. This increase of ¢(Q) is then interpreted as
due to the a—relaxation discussed in Section 3.5.3, and it comes out to be quite similar
to that of water previously shown in Figure 4.2. As in the case of water, also here, in fact,
the ratio cuoa/C, is close to two. In Table 6.2 an Figure 6.8, the values of ¢g, Cxq, and

Cooa/Co at the four investigated temperatures are reported.
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T (K) [ o (m/3) | oon (m/3) | Cova/o
214 650 1220 1.9
239 600 1080 1.9
254 530 1010 1.9
283 460 980 2.2

Table 6.2. Values of the adiabatic sound velocity ¢y as measured with BLS technique
(Section 6.2) for HF at the four investigated temperatures. It is compared with the high

frequency limit ¢, obtained with IXS. The values of the ratio cua/c, are also reported.

6.3.3 Viscoelastic analysis

A more formal procedure to describe the effect of a relaxation process in the S(Q,w)
is based on the viscoelastic model. As described in Section 3.5.5, in this approach the

S(Q,w) is expressed as:

B wo(Q)°M'(Q,w)
9@ =1 QP = oM@ )P + I, )P

where wy(Q)? = (KgT/mS(Q))Q? is the normalized second frequency moment of S(Q, w),

Kp is the Boltzmann constant, m is the mass of the molecule and M'(Q,w), M"(Q,w)

(6.9)

are respectively the real and the imaginary part of the Laplace transform of the memory
function M (Q,t). As discussed previously, we model M (@, t) by the sum of an exponential

decay contribution and a d-function :

M(Q,t) = A%(Q)e ™=@ + T,(Q)5(t) (6.10)
where A2(Q) = [coa(Q)? — c(Q)?]Q?, is the strength of the a process and I',(Q) =

AzTM(Q). As, similarly to water in fact, one expects that the microscopic relaxation pro-
cess or p-process, described in Section 3.5.3 is very fast with respect to the investigated
timescale [1]. The experimental data were fitted to the convolution of the experimental
resolution function with the dynamic structure factor model given by Eq. 3.36.

The relevant independent parameters are coo0(Q), ¢o(Q), 7o(Q) and I',(Q). In Figure 6.10
we show the values obtained for ¢, (Q) and ¢(Q), together with those for ¢(Q) as deduced
from the data of Figure 6.9 applying the relation ¢(Q) = Q(Q)/Q. We observe that the
positive dispersion found for ¢(Q) by the DHO analysis takes place between the values of
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Figure 6.9. Dispersion curve at the indicated temperatures. The upper full lines are the
linear fits to the high-Q data. The lower dashed lines indicate the adiabatic sound velocity

as measured by Brillouin light scattering as shown in Section 6.2.

¢o(Q) and €50 (Q), derived from the viscoelastic analysis. Therefore, this finding confirms
the hypothesis that the transition of ¢(@Q) is governed by the a- process. In particular, for

@ larger than 4 nm™', the coincidence of ¢(Q) and cqq(Q) tells us that the a- process is



Chapter 6: Study of the collective dynamics in HF and (HF),(H20);_, solutions 105

T=214K

peists _

* oae, , .

© L% o 4o Sos

T © Cos o @%g_

0.0 ) | ) | ) | ) | ) | ) | ) | )

20 | _

sl T=239K 1

i Hiiﬁi '

I= ;éééoéé*ﬁ§$85ﬁ_

& n O eSS o o M

\¢ <

VOO ) | ) | ) | ) | ) | ) | ) | )

AZO_ ]

T=254K

O ]
S
&)

" o ]

° 2 L Y-

¢ o063 29 4

| ) | ) | )

20 |- _

- T=283K .

15 -

L 5 e ]

1.0-§ . ig o o . .

i & i u e N i

05=_§ o ¢ o s o o o

0.0- ) | ) | ) | ) | ) | ) | ) | |-

0o 2 10 12 14

6 8
-1
Q (nm”)
Figure 6.10. Q-dependence of the sound velocities ¢y(@Q) (open diamonds) and cyq(Q)

(open circles) from a viscoelastic analysis, together with ¢(Q) (full symbols) from Fig. 6.9.

The value of the adiabatic sound velocity cq is indicated by the arrow [50].

not observed at time scales shorter than 0.2 ps i.e. at excitation frequencies for () larger
than 4 nm~!. In the explored () region, there is no evidence for a further dispersion of

¢(Q) that could be associated to the p- process. However, this two relaxation scenario,
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Figure 6.11. a)Q-dependence of the sound velocities at T = 239 K from this thesis: ¢(Q)
(open diamonds) and ¢, (Q) (open circles), ¢(Q) (full circles) and at T = 203 K from
MD results [51]: ¢(Q) (solid line), ¢, (dashed line), ¢(Q) (stars). b) Q-dependence of
experimental and theoretical velocities of sound in water. Open circles, MD simulations
[42]; full squares, circles and diamonds, IXS data [38]; solid (dashed) line, zero (infinite)
frequency limit [43].

where both o and p- process are active in HF | is supported by recent molecular dynamics
simulation studies on HF [51, 52, 53].

Similarly to Figure 4.3 for liquid water, reported again here for completeness in Figure 6.11
b), in Figure 6.11 a) we compare the sound velocities at 7" = 239 K with numerical
simulation results [51]: i) ¢,(Q) as derived from the simulated static structure factor (as
explained in Section 3.2), ii) ¢(Q) as derived from the maxima of the simulated longitudinal
current spectra (as explained in Section 3.2) and iii) c.(Q) as derived from the fourth
moment of the dynamic structure factor (as explained in Section 3.2, 3.5.5). It is worth to
note that the quantity c.q (@) does not have a simple expression in terms of microscopic
variables, and cannot be directly evaluated numerically. In spite of the slightly different
thermodynamic points between the experiment (T=239 K) and the simulation (T=203

K), we observe an excellent agreement between the two common sets of data, i. e. for
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Figure 6.12. Q-dependence of the parameter I',(Q) (full circles) in liquid HF at the anal-

ysed temperatures from a viscoelastic analysis. The full lines are the parabolic fits to the

low-Q data.

¢,(Q) and ¢(@Q). This agreement implies that the interaction potential model used in the

simulation matches well the properties of the real system. The important information

emerging from the comparison of the data in Figure 6.11, is the very large difference
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Figure 6.13. T dependence of the non relaxing parameter I' in liquid HF. In this tem-
perature range I' is almost temperature independent (full line) being I' = (0.170 £
0.025)meV/nm 2

between the (measured) coq = €ou and the (calculated) c. This, in turn, implies not
only the existence of the p-process, but also that, in HF, this process has a relative
strength substantially larger than in water over the whole considered () range, which
extends beyond the first peak in the static structure factor.

In Figure 6.12 the Q-dependence of the parameter I', (@) of equation 6.10 is reported at
the four analysed temperatures. The data follow a quadratic law, they have been fitted

with a parabolic function

Fu (Q) = FQ2

It yields values of I' which appear to be temperature independent as shown in Figure 6.13
being T' = (0.170 + 0.025)meV/nm~2 = (2.6 + 0.4) - 10~3cm?/s. This result is consistent
with previous findings according to which the microscopic relaxation is a temperature
independent process.

The Q dependence of the relaxation time 7,(Q) is reported in Figure 6.14 at the four
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Figure 6.14. Q-dependence of the relaxation times 7,(Q) from the viscoelastic analysis at
the indicated temperatures. The timescale corresponding to the experimental resolution
(1.5meV) (full line) is also reported.

investigated temperatures in the range 1 = 16nm'. It shows a decrease at increasing Q
as already observed in water [1] and many other systems [2]. They are compared to the
timescale corresponding to the experimental resolution (1.5 meV) (full line). A constant
fit at low @ provides, for each temperature, Q independent values of this parameter.
They are plotted on a linear scale in Figure 6.15 as a function of the temperature. In the
explored temperature range, the 7, behavior is well described by the Arrhenius law (full

line):

Eq
To(T) = Toe¥BT (6.11)

with an activation energy E, = (1.9 + 0.2) K cal/mole and 15 = (6 & 2)10~s. Exploiting
the low Q values of 7,(Q) of Figure 6.15 together with the low Q extrapolations of the
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Figure 6.15. T dependence of the low-Q extrapolation of the relaxation times 7,(Q) of
Figure 6.14 together with the Arrhenius fit (full line) of Eq. 6.11.

other fit parameters, it is possible to calculate the kinematic longitudinal viscosity v, from

the relation 3.39:

T4 (0)
20?

where ¢q is the adiabatic sound velocity measured by Brillouin light scattering as dis-

v = 7a(0)(3a(0) — ¢5(0)) + (6.12)

cussed in Section 6.2. The values found are consistent with the hydrodynamic ones
as shown in Figure 6.16. This numerical equivalence gives further support to the va-
lidity of the employed viscoelastic model. A molecular dynamics (MD) study of the
transport coefficients (longitudinal and shear viscosity, thermal diffusivity and conduc-
tivity) of hydrogen fluoride [52] provides two values for the longitudinal viscosity 7z,
one at T = 205 K np(T = 205K) = 0.91 - 1072g/cms and the other at T = 279 K
np(T = 279K) = 0.38 - 1072g/cms. They are reported in Figure 6.5 after rescaling for the
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Figure 6.16. Temperature dependence of the kinematic longitudinal viscosity: from IXS
as calculated through Eq. 6.14 (full squares), from the Brillouin light scattering values
of section 6.2 (open circles) and from molecular dynamic simulations at 7 = 205K and
T = 279K (full diamonds) [52].

density of Eq. 6.4 according to the relation v (T) = n.(T)/p(T).

In Figure 6.17 we report the relaxation time for hydrogen fluoride on an Arrhenius plot
compared with the one of liquid water [1]. The activation energy found in water was E, =
(3.8£0.6) K cal/mole [1] while the one for hydrogen fluoride is E, = (1.94+0.2) Kcal/mole
as previously discussed. It is worthwhile to relate the values of the activation energies
to the different networks present in the two liquids. As described Chapter 4 hydrogen
fluoride forms linear chains with one hydrogen bond for each molecule while the preferred
arrangement, of water is the three-dimensional tetraedric structure with two hydrogen
bonds for each molecule. If we indicate with nyp_p,0 and nyp_ g the number of hydrogen
bonds for H,O and HF respectively and E,_pg,0, Eq—nr the activation energies for the

two liquids, the following relation is satisfied:
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Figure 6.17. Arrhenius plot for the relaxation time as obtained from viscoelastic analysis
of the dynamical structure factor for water (full diamonds) [1] and hydrogen fluoride; The
dashed lines indicate the best linear fit to the data and their slop give an activation energy
of 3.8 K cal/mole for water and 1.9K cal/mole for HF.

EG—HQO ~ Ea—HF (6 13)

NHB-H>0O NHB-HF

In previous studies on water [54] the activation energy has been associated with that of
the H-bond (& 5K cal/mole). The result of Eq. 6.13 reinforces the idea that the structural
relaxation process involves the H-bond networks of the system and it seems also to suggest
that the activation energy of the process is strictly related to the number of H-bonds to
make and break more than to the strength of each H-bond.

Finally in Figure 6.18 we report the ratio ¢y /¢, for three hydrogen bonded liquid systems:
water [38], hydrogen fluoride from this work, and methanol [55]. The x-axis represents the
energy for each molecule, namely, the energy of each bond times the number of H-bonds
for each molecule. In the case of water and HF we used the data of Table 4.2, in the case
of methanol we considered an H-bond energy of ~ —17K J/mole for each bond and one
H-bond for each molecule. The data show a slight decrease of the ratio cea/c, as the

strength of the total H-bond energy decreases.
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Figure 6.18. Ratio cya/co as a function of the hydrogen bond energy for each molecule
in the case of three hydrogen bonded liquid systems: water, hydrogen fluoride and
methanol [55].

6.3.4 Conclusions

In this section we have demonstrated that similarly to liquid water, the collective dynamics
of liquid hydrogen fluoride is characterized by a structural relaxation process in the

L and in a

sub-picosecond time scale. It takes place in a Q range between 1 + Tnm™
temperature region comprised between 214 <+ 283K . An accurate analysis done with two
different models, the DHO and the viscoelastic, has shown the consistency of the two sets
of results and the presence of a transition of the sound velocity from the low frequency limit
to the high frequency one. This provide strong evidence for the existence of a relaxation
process whose structural character is suggested by its temperature dependence. A parallel
with existing MD simulations [51] reveals a large difference between the measured cyq
and the calculated c., implying the presence of a further relaxation, that we identify as
the microscopic relaxation process discussed in section 3.5.3. Finally, comparing BLS
and IXS measurements and MD simulations, we provide a strong indication that, similarly
to simple and glass-forming liquids, also hydrogen bonded liquids present two relaxation

processes affecting their high frequency collective dynamics. These two processes produce a
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phenomenology consistent with the a- and p- processes, thus suggesting their universality
in the liquid state. The strengths of these two processes are, however, dependent on the
specific system. In particular - contrary to simple liquids where ¢ /o & 1.2 and ceo,, differs
from ¢, by few percent [5] - the strengths of these relaxation processes are much larger
in hydrogen bonded liquids: at low @ in both water and HF cyo/c, ~2, while ¢y /c, 3
in water and =7 in HF. It is intriguing to understand the origin of these quantitative
differences, and it could be of interest to asses whether they are correlated to the different

hydrogen bond networks existing in water and HF'.

6.4 Study of the high frequency collective dynamics
of (HF),(H,0),_, by inelastic x-ray scattering

6.4.1 Experimental data as a function of Q and concentration

We studied the dynamic structure factor S(Q,w) of five different mixtures of water and
hydrogen fluoride (HF),(H20)1_, with x = 0, 0.2, 0.4, 0.73, 1. We worked at fixed
temperature 7" = 283 K and at normal pressure. The S(Q,w) has been investigated
as a function of wave vector Q in the range 1 = 15nm~'. Each scan took about 180 min
and each spectrum at fixed Q was obtained by summing up to 3 scans. The data have been
normalized to the intensity of the incident beam. The empty cell contribution, represented
by the Teflon windows, has already been subtracted to the total scattered intensity. The
IXS spectra are reported in Figure 6.19. The S(Q,w) shape shows a strong dependence
from the concentration passing gradually from a situation in which a peak centered at
zero energy transfer is present (pure HF) to the case of pure water with inelastic peaks

clearly distinguishable with the naked eye.

6.4.2 DHO analysis

As already described in the case of pure HF, a preliminary analysis of the spectra has
been accomplished by fitting the data with the DHO model. In Figure 6.20 we report the
resulting line-shapes superimposed to the data. The contribution of the central peak and
of the inelastic side peaks are individually shown.

The main fit parameter, {2(Q), provides an estimate of the current maxima. It has been
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Figure 6.19. IXS spectra of (HF),(H20);—, solutions with x = 0,0.2,0.4,0.73 compared
with pure HF at T = 283 K at some selected QQ values.



Chapter 6: Study of the collective dynamics in HF and (HF),(H20);_, solutions 116

I T T T T T T T T 6 T T T T T T
3L/ 0=2m* HE ] HE ] HE
— [ T
2FT=283K T ]
s . . T 1
0 1 1 L = 1 0 n
06 F 4 ro-20 -10 10 0 1 2
2 L -
Ll H,0+73% HF ] ; H,0473% HF ] H,0473% HF
0 ~ 1 1 1t -
02 T
9 3 | 3
rt © ©
T 00 ok L = D0k L : 2 i .
206k . v -20 -10 10 20 7 U] . .
c 06 1 £ 1] ] 2,02 10 1 n |
S nf HoumHEl 2 HOHOWHE | 3 H 006 HF |
v o 1 ] 3]
~ 4 15 7
- 02 E : 054 ] 5
= > >
2 0 | ' T 00 - — (| e : '
[ g { c 5L 0 -10 10 0 c 20 10 10 20
c o i 1 8- g 2 1
= HOHWWHF] £ HO+20%HF | € H,0+20% HF
04k 4 W 1~ |
L 1 T
02 F E 05 F 4
0.0 h 00 Lk | 0
06 g b 2 10 10 0] :
I HO |
04+ b 10F :
I 1
02t 1 05} :
0.0 Lo 0.0 Loomd - 0 L .
-20 -20 -10 0 10 20 20 -10 0 10 2
Energy (mev
gy (meV) Energy (meV) Energy (meV)

Figure 6.20. IXS spectra of (HF),(H20)1_, solutions with x = 0, 0.2, 0.4, 0.73 compared
with pure HF at T' = 283 K at some selected Q values shown together with the total fits

and the individual components.

plotted in Figure 6.21 as a function of Q in the range 1 <+ 9nm ! at the investigated
concentrations. As with pure liquids the dispersion curves of these binary solutions show
a linear behaviour in the low Q region. It may be noted that their slope decreases at
increasing concentration of hydrogen fluoride. To allow a more detailed analysis we report
in Figure 6.22 the dispersion curve at each concentration individually plotted and com-
pared with the respective adiabatic sound velocity [44]. From this graph it is evident that
passing from pure hydrogen fluoride (bottom) to pure water (top) the transition of the

apparent sound velocity Q(Q)/Q takes place at decreasing QQ with decreasing concentra-
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Figure 6.21. Dispersion curves of (HF),(H20); , solutions with z = 0 (diamonds), 0.2
(asterisk), 0.4 (stars), 0.73 (squares). They are compared with the one of pure HF (circles)
at T' = 283 K.

tion of HF falling in the region @ < 1nm ! for the 40 % HF and 20 % HF solutions and
for pure water. In these last three cases a linear fit in the 1 = 7nm ™! Q range provides
a value of the sound velocity substantially higher than the adiabatic one. In the case of
pure HF and 73 %HF solution, the dispersion curves show a linear dependence for Q

! 1 with a slope corresponding to a sound velocity higher of

between 4 nm~" and 7 nm~
the adiabatic one. Furthermore, in the 1 + 4nm ! Q region, the data show a transition
of the sound velocity ¢(Q) from the low frequency value to the higher one. This means
that, as in the case of pure HF at different temperatures, the structural or « relaxation
discussed in Section 3.5.3 is present at higher concentration of HF. However our results
on pure water at 7' = 283 K cannot be directly compared with the ones of Figure 4.2 due
to the two different used fitting procedures. Here in fact we fitted the inelastic part of

the spectra with a simple DHO model while in the data of Figure 4.2 a further inelastic
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Figure 6.22. Dispersion curves for (HF'),(H,0),_, solutions at the indicated concentra-

tions at 7" = 283 K . The upper full lines corresponds to the linear fits in a Q range

described in the text. The slope of the lower dashed lines corresponds to the adiabatic

sound velocity [44].

contribution has been introduced to take into account the transverse modes.

A comparison between the high frequency sound velocity ¢, as obtained by IXS and

the adiabatic sound velocity, as obtained from reference [44], is reported in Figure 6.23(a).

Changing the concentration, the cua/co ratio shown in Figure 6.23(b) is always close to
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Figure 6.23. (a) Behaviour of the sound velocity in (H F),(H20)1_; solutions as a function
of the concentration at T' = 283 K: ¢ (full squares), cxq (full circles). (b) Sound velocities

ratio Coon/Co-

two as for the two limit compounds water and HF.

In order to understand the influence of the mass of the hydrated clusters of the HF
molecules on the longitudinal modes and to find therefore a mass scaling model for the
sound velocity, we analyse in more detail the way in which, depending on the concen-
tration, the molecules of water and HF arrange themselves to form different aggregates.
Detailed studies on aqueous solutions of hydrogen fluoride [56, 57, 58, 59, 60, 61] revealed
the presence of a strongly bound complex, dynamically fluctuating between two main

structures:

FH---H,O<=F ---H;0"

where the dots (---) indicate the presence of a link due to a strong hydrogen bond. This
behaviour was observed at dilute aqueous solutions as well as at higher concentrations
( 50%). These informations lead us to image our solutions as composed by clusters of

HF and H>O molecules whose mass is easily calculated. To simplify the description of
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Figure 6.24. Infinite frequency sound velocity ceoq (full diamonds) as measured by IXS
and adiabatic sound velocity [44] (full circles) in (HF),(H20)1_, solutions as a function
of the concentration at 7' = 283 K compared with the values calculated according to the

mass scaling law described in the text (full line).

our system it is suitable to define with X; the new aggregate and in particular to set
X, = FH---Hy0. Then we indicate with My,0, Myr, Mx,, the masses of hydrogen
fluoride, water and the new entity respectively whose values are My,po = 18 Myp = 20
My, =38

To calculate the scaling mass law for the sound velocity, indicating with x the concentra-
tion of HF, we can imagine that in the region x < 0.5 the X, aggregates are plunged in
a see of HF' molecules; while for z = 0.5 we deal with a liquid system made up of only
X clusters. The solution is equivalent to a liquid composed of particles with an average
atomic mass [62, 63, 64]

Myy(z) = a1 (2)Mx, + Bi(x)Mur
where a;(z) = z/(1 — z) and fi(z) = (1 — 22)/(1 — z).

A simple mass scaling law allows an estimation of the measured sound velocity as a
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function of concentration [62, 63, 64]

Mpy,o0
M AV (.I)
The measured values and the calculated one are reported in Figure 6.24. The theoretical

c(x) = cm,0

values of ¢(z) (full line) calculated in the range 0 < z < 0.5 have been extrapolated up to

x = 1.

6.4.3 Viscoelastic analysis

Whenever a relaxation process is present, a more detailed analysis of the spectra is ac-
complished in term of the viscoelastic model (Section 3.5.5). As in the case of HF, we use
the procedure described in sections 6.3.3 to get information on the dynamical behaviour
of the main fit parameters c.a(Q), co(Q), 7o(Q) and I',(Q) at all the investigated con-
centrations. In Figure 6.25 cooa (@), co(Q) are reported together with the apparent sound
velocity ¢(Q) = 2(Q)/Q obtained from the dispersion curves Q(Q) of Figure 6.22. We
observe that in the case of water, 20 % HF and 40 % HF solutions the ¢(Q), found with the
DHO analysis, lies completely on the ¢y, points except for Q = 1nm!; this reinforce the
idea that in these three cases the transition of the sound velocity ¢(Q) has already hap-
pened and that the system is un-relaxed. At decreasing concentration and in particular for
73 % HF solution and pure HF the transition of ¢(Q) found with the DHO analysis takes
place between the values of ¢o(Q) and cq(Q) supporting the hypothesis of the presence
of the o relaxation in both cases. The parameter related to the strength of the microscopic
relaxation process I',(Q) = A%7,(Q) is reported at all the investigated concentrations in
Figure 6.26. As already observed in HF, it follows a quadratic behaviour. The result of
the fit, done with the parabolic function,

FM(Q) = FQ2

provides values of I which are plotted in Figure 6.27. While in the case of HF I turned out
to be temperature independent, it shows a dependence on the concentration in the case of
(HF),(H20),_, solutions, in particular we observe that, being the ratio I'y,o/T'gr ~ 2
(the two limiting points in the graph), the microscopic relaxation process is faster in HF

than in water.
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Figure 6.25. Q-dependence of the sound velocities ¢y(@) (open diamonds) and cyq(Q)

(open circles) from a viscoelastic analysis in (HF),(H20);_, solutions, together with ¢(Q)
(full symbols) from Fig. 6.22 at 7' = 283 K. The value of the adiabatic sound velocity co
is indicated by the arrow [44].

The Q dependence of the last fit parameter 7,(Q) is shown in Figure 6.28 at all the

investigated concentrations, it is worthwhile to note that the values of 7,(Q) in the case

of pure HF are lower than the ones for water, this means that in hydrogen fluoride the

structural relaxation is quicker than in water. This can be attributed to the fact that
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Figure 6.26. Q-dependence of the parameter I',(Q) (full circles) from a viscoelastic analysis
in (HF),(H20),_, solutions at T' = 283 K. The full lines represent the parabolic fits to

the low-Q data.

the chain-like structures of HF molecules are ” more free” respect to the three dimensional

clusters of water. From the graph it comes out also that the error bars on the data decrease

passing from pure water to pure HF as a proof of the fact that the viscoelastic analysis

becomes more and more appropriate. A constant fit of the data in the low Q region

has provided values of 7,(0) plotted in Figure 6.29(a). In Figure 6.29(b) we report the
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Figure 6.27. Dependence on the concentration of HF of the parameter I' in (HF'),(H20)1—,
solutions, at T = 283 K.

kinematic longitudinal viscosity as a function of concentration of HF. It has been obtained
by exploiting the low Q values of the four viscoelastic fit parameters cy(Q), csa (@), I'4(Q)
and 7,(Q) related through the expression 3.39:

[, (0)
20)?
already used in the case of pure HF. This relation has been applied in the hypothesis

vr = 74(0)(c% ,(0) — c2(0)) + (6.14)

of absence of the contribution to the viscosity due to the fluctuations of concentration,
hypothesis justified by the fact that the two pure liquids have a very similar molecular
mass. The experimental data have been compared with the predictions of the Raoult’s law
of classical physical chemistry []. According to it a given property P in a binary solution,
is described in terms of a simple linear dependence on the composition of the solution
according to the law [65, 66]:

P=xP + 2P

where ;s are the mole fraction and P;s are the values of the property P of the pure
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Figure 6.28. Q-dependence of the relaxation time 7,((Q)) from a viscoelastic analysis in
(HF),(H30)_, solutions at 7" = 283 K. The time scale corresponding to the experimental

resolution is also reported (full line).

liquids. The dashed line on Figure 6.29(b) is the result of the Raoult’s law applied to the

kinematic longitudinal viscosity v;, according to:

v(x) =z vp_gr + (1 —2) vi_m0 (6.15)

where x is the concentration of HF, v;_gr = 0.003 cm?/s and v;_p,0 = 0.035 ¢cm?/s are
the experimental values of nuy, for the two pure liquids. The comparison of the theoretical
law with the linear fit to the data (solid line) shows a good agreement. This finding
reinforce the hypothesis that, for these systems, the fluctuations of concentration can be
really neglected without introducing any deviation of the kinematic longitudinal viscosity

from the Raoult’s law.

6.4.4 Conclusions

In this section, we have characterized the structural relaxation process in (HF),(H0);_,

solutions as a function of the concentration (x= 0, 0.2, 0.4, 0.73, 1) at fixed temperature
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Figure 6.29. (a) Dependence on the concentration of the relaxation time 7,(0) in
(HF),(H20);—_, solutions at 7' = 283 K as obtained from Figure 6.28 in the limit @@ — 0.
The value for pure water (x=0) from ref [1] is also reported. The dashed line is a guide for
the eye. (b) Dependence on the concentration of the kinematic longitudinal viscosity vy,
in (HF'),(H20);_, solutions at T' = 283 K as obtain from Eq. 6.14 (squares); linear fit to
the data (solid line); kinematic longitudinal viscosity as calculated from the Raoult’s law

of Eq. 6.15 (dashed line). The value for pure water (x=0) from ref [1], is also reported.

(T = 283 K). As preliminary analysis, we fitted the data with the DHO model, the
derived dispersion curves show a linear behaviour in the low Q region with slopes de-
creasing at increasing concentration of hydrogen fluoride. The structural relaxation has
been observed at higher concentration of HF and the ratio cyq/co has been found almost

independent on the concentration and close to two. A mass scaling model for the sound



Chapter 6: Study of the collective dynamics in HF and (HF),(H20);_, solutions 127

velocity has been proposed, it allows to write an expression for the sound velocity c(x) as
a function of the concentration x of HF. A more detailed analysis in term of the viscoelas-
tic model supports the results found with the DHO model on the structural relaxation
giving further informations on its time scale. A comparison between the two limit case,
water and HF, shows that in HF the structural relaxation is faster than in water being
Ta(@ = 0)i,0/7a(Q — 0)gr ~ 3. This is attributed to higher degree of freedom of the

chain-like structure of HF respect to the three dimensional clusters of water.



Conclusions

In this Thesis we have presented a detailed study of the dynamic structure factor S(Q,w)
of two hydrogen bonded (HB) liquid systems: hydrogen fluoride HF and (HF'),(H,0);
solutions. The collective dynamics of HF has been investigated as a function of the
temperature in the range 214 — 283 K with two different techniques: Brillouin light
scattering (BLS) and inelastic X-rays scattering (IXS). (HF),(H20);_, solutions have
been studied at fixed temperature (77 = 283 K) as a function of the concentration
(x =0, 0.2, 0.4, 0.73, 1). To characterize the relaxation phenomena of these associated
liquids, we presented a comparative study of HF, the inorganic system with the strongest
hydrogen bond, and water with the aim to establish a connection between the dynamical
properties of these systems and the specific HB arrangement (number of bonds, strength,
geometry). We found that similarly to liquid water, in the investigated temperature range,
the collective dynamics of liquid hydrogen fluoride is characterized by a structural relax-
ation process in the sub-picosecond time scale. The data have been accurately analysed

in terms of two different models: the DHO and the viscoelastic ones.

e The consistency of the two sets of results revealed the presence of a transition of the
sound velocity from the low frequency limit to the high frequency one. This provided
evidence for the existence of a relaxation process whose structural character was

suggested by its temperature dependence.

e The measured relaxation time 7, in the explored temperature range is comprised
between 0.17 and 0.47 ps; as in water it lies in the sub-picosecond time scale [1].
Molecular dynamics simulations in water [67, 68] have shown that the bond lifetime
is of the order of sub-picosecond and has an Arrhenius temperature dependence.
This result leads to think that in HB liquid systems the structural relaxation time
is related to the lifetime of the HB.
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e The strength of the structural relaxation in HF is such that, as in water, cyq/co & 2
and that this ratio is temperature independent. This showed that at difference with
simple liquids where cy, differs from ¢y by a few percent, the strengths of the

structural relaxation process is much larger in HB liquid systems.

e The activation energy for the structural relaxation process, not only comes out to
be associated with that of the H-bond, as previously observed in water [1], but it is
strictly related to the number of H-bond to make and break more that to the strength
of each bond. We found that the relation E, w,0/nup_m0 ~ Es ur/nup_pr is
fulfilled.

A comparison of our data with existing MD simulations [51] revealed a large difference
between the measured c., and the calculated c.,, implying the presence of a further

relaxation, that we identify as the microscopic relaxation process.

o The strength of this process is such that in HF ¢y, /co & 7 and this value is compared
t0 Coou/Co & 3 in water. Since these ratios are larger than what found in simple
monoatomic liquids, where co,/co &= 1.2 [5], we can conclude that the relative
strengths of both the structural and microscopic relaxation processes seem to be

larger in hydrogen bonded liquids.

e The comparison between BLS, IXS measurements and MD simulations, provides
a strong indication that, similarly to simple and glass-forming liquids, also hydro-
gen bonded liquids present two relaxation processes affecting their high frequency

collective dynamics.

The study of (HF),(H20);_, solutions has helped to understand the evolution of the
collective dynamics from the phenomenology of one liquid to that of the other. The main
difference between the two liquids in fact, lies in the different HB arrangement: water is
characterized by a tethraedral network with two hydrogen bonds for each molecule, while
HF is organized in linear chains with one hydrogen bond per molecule. A preliminary
analysis of the data in terms of the DHO model has shown a linear behaviour of the
dispersion curves in the low () region with slopes decreasing at increasing concentration of
hydrogen fluoride. At higher concentration of HF the presence of the structural relaxation

has been observed as a transition of the sound velocity from the low frequency limit to
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the high frequency one and the ratio cyq/co has been found almost independent on the
concentration and close to two as the two limit cases. A more detailed analysis in term of
the viscoelastic model supported the results found with the DHO model and gave further
informations on the time scale of the a — relaxation. A comparison between the two
limit cases, water and HF, showed that in HF the structural relaxation is faster than in
water being 7o #,0(Q — 0)/7a—nr(Q — 0) ~ 3. This is attributed to higher the degree
of freedom of the chain-like structure of HF respect to the three dimensional network of

water.

The study of these two systems encourages the extention of our investigationsto other HB
liquids. In particular, since an effort has been done to relate their main qualitative and
quantitative differences to the particular arrangement of the hydrogen bond networks,
it is tempting to consider systems with different number of HB per molecule, different
strength of the bond and different geometries. This of course requires a large variety of
HB systems to be investigated. In this respect measurements on liquid compounds of
organic and inorganic nature as HCOOH (formic acid) C'HsOH (methanol) have been

planned.



Appendixl

HF sample cell drawings
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(HF);(H20);_, solutions sample cell drawings
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