Facoltà di Farmacia - Anno Accademico 2007-2008

4 giugno 2008 – Scritto di Fisica per <u>Farmacia</u>

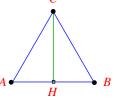
Nome:	Cognome:		
Matricola :	Corso di Lau	rea:	<u>Canale :</u>
Orale in questo appello :	□ si □ no	<u>Libro di testo :</u>	
Riportate su questo foglio le risposte numeriche con la relativa unità di misura.			

- 1. Quattro bambini, ciascuno di massa $m_b = 40$ kg, costruiscono una zattera con tavole di legno ciascuna di lunghezza a=2 m, larghezza b=1 m e altezza h=20 cm. Dati: $\rho_l=800$ kg/m³ densità del legno, $\rho_A = 10^3 \text{ kg/m}^3$ densità dell' acqua, Determinare:
 - a) quante tavole servono perchè la zattera, con i quattro bambini, galleggi immersa appena sotto il pelo dell' acqua N =
 - b) quale frazione dell' altezza della zattera resta sotto il pelo dell' acqua quando i bambini sono scesi $\alpha = \underline{\hspace{1cm}}$
- 2. Dieci moli di un gas perfetto monoatomico sono racchiuse in un recipiente cilindrico, chiuso da un pistone (libero di scorrere) di massa M=2 kg e area S=0.01 m². Si somministra al gas, in modo reversibile, una quantità di calore Q = 800 cal. Si ricorda che R = 8.315 J/(mol K)=0.082 (l atm)/(mol K)=1.987 cal/(mol K). Determinare:
 - a) di quanto aumenta la temperatura del gas

 $\Delta T = \underline{}$

b) di quanto si sposta il pistone

- $h = \underline{\hspace{1cm}}$
- c) la variazione di entropia del gas, se la sua temperatura iniziale era di 20^o C
- 3. Dato il sistema di tre cariche poste ai vertici di un triangolo equilatero (vedi figura), di valore $q_A = q_B = q_C = 1 \,\mu C$. La distanza AB vale 2 m. Il punto H si trova a metà della base AB. Determinare:



a) il potenziale in H

 $V_H = \underline{\qquad}$ $\vec{E}_H = \underline{\qquad}$

b) il campo elettrico in H, in modulo, direzione e verso

- c) la velocità con la quale una carica $q_H=2\mu C$ di massa $m_H=10$ g che parte da ferma da Hraggiunge l'infinito

Avvertenze:

- consegnate questo foglio unitamente alla bella copia (foglio intestato con nome, cognome, etc...)
- Per la brutta copia si debbono usare SOLTANTO i fogli timbrati.
- Nel caso non si faccia in tempo a copiare TUTTO (passaggi e risultati) in bella copia, si può consegnare anche la brutta copia, riportando nome e cognome, ed evidenziando le parti da correggere.

Soluzioni scritto di Fisica del 4-06-2008 - Farmacia

Soluzione Esercizio 1

Sia $V_z = a \cdot b \cdot h = 2 \cdot 1 \cdot 0.2 = 0.4 \text{ m}^3$ il volume di ciascuna tavola di legno. La massa della zattera sarà allora $m_z = N \cdot V_z \cdot \rho_l$, dove N è il numero incognito di tavole utilizzate.

a) Per l'equilibrio il peso della zattera + il peso dei bambini deve essere equilibrato dalla spinta di Archimede sul volume $N \cdot V_z$ (zattera immersa fino al pelo dell' acqua). Dunque:

 $N \rho_l V_z g + 4 m_b g = N \rho_A V_z g.$ Da cui si ricava $N = \frac{4m_b}{V_z(\rho_A - \rho_l)} = \frac{4 \cdot 40}{0.4 \cdot 200} = 160/80 = 2$ tavole utilizzate.

b) Senza bambini la zattera si solleva sul pelo dell'acqua. Di quanto, non dipende dal numero N di tavole utilizzate. La base sempre sommersa, l'altezza in parte sotto, chiamiamola d (con d < h), e in parte sopra l'acqua. Il volume immerso sarà allora $V_i = a \cdot b \cdot d$. Si ha equilibrio quando $V_z \rho_l = V_i \rho_A$. Da cui, semplificando il prodotto $a \cdot b$, area della base, si ricava: $d = h \frac{\rho_l}{\rho_A}$. La frazione dell' altezza di cui la zattera è sotto l' acqua è il rapporto $\alpha = \frac{\rho_l}{\rho_A} = 0.8$ (il valore di d è d = 0.16 m).

Soluzione Esercizio 2

La somministrazione di calore avviene a pressione costante, visto che si tratta di una trasformazione reversibile e il gas passa per stati di equilibrio nei quali la forza che il gas esercita sul pistone è uguale e contraria a quella dovuta alla forza peso Mg del pistone più la forza dovuta alla pressione atmosferica su S.

- a) Dunque: $Q=nc_p\Delta T,$ da cui $\Delta T=Q/(nc_p)$ = 16.1 K = 16.1 °C con $c_p = (5/2)R$.
- b) Per calcolare di quanto si sposta il pistone, dobbiamo calcolare la variazione di volume $\Delta V = S h$ e da qui lo spostamento $h = \Delta V/S$. Usiamo l' eq. di stato, $pV_f = nRT_f$ e $pV_i = nRT_i$, per i due stati finale ed iniziale. Sottraendo (p=costante) abbiamo: $p\Delta V = n R\Delta T$, da cui $\Delta V = n R \Delta T/p = 0.013 \text{ m}^3 \text{ dove } p = Mg/S + p_A = 1.033 \cdot 10^5.$ Dunque h = 1.3 m
- c) La variazione di entropia del gas è data da:

$$\Delta S = nc_p \int_{T_i}^{T_f} \frac{dT}{T} = nc_p \ln(\frac{T_f}{T_i}) = nc_p \ln(1.05) \ 11.1 \ \text{J/K}$$

Soluzione Esercizio 3

a) Indichiamo con $k_0 = \frac{1}{4\pi\epsilon_0} = 9 \, 10^9 \text{ m/F}.$

Notiamo che le tre cariche sono uguali in valore e tutte positive.

Il potenziale in Hè la somma dei potenziali dovuti alle tre cariche (sovrapposizione degli effetti). Le cariche q_A e q_B ad una distanza a=AB/2=1 m da H, la carica q_C ad una distanza da H (teorema di Pitagora) $b = \sqrt{((2a)^2 - a^2)} = a\sqrt{3} = 1.73 \text{ m}.$

- Si ha dunque: $V_H = k_0 \left(\frac{q_A}{a} + \frac{q_B}{a} + \frac{q_C}{b}\right) = k_0 \frac{q_A}{a} \left(2 + 1/\sqrt{3}\right) = 23.2 \text{ kV}$ b) Il campo elettrico in H è dovuto solo alla carica q_C , poichè i due contributi delle cariche q_A e q_B si annullano in quanto uguali e opposti. Se indichiamo con \tilde{b} il versore di b, positivo verso il basso della figura, il campo in H sarà:

$$\vec{E}_H = k_0 q_C \frac{\hat{b}}{b^2} = 3000 \text{ V/m}$$

c) La carica q_H in H ha energia potenziale $q_H V_H$. All' infinito, dove il potenziale elettrostatico è nullo, la sua energia è solo cinetica. Dunque: $(1/2)m_Hv^2 = q_H V_H$, da cui: $v = \sqrt{2 q_H V_H/m_H}$ 3.05 m/s.