
Facoltà di Farmacia e Medicina - A.A. 2018-19 19 giugno 2019 - Scritto di Fisica per <u>Farmacia</u>

Cognome:

Esercizio 1.

Un blocco di massa $m_b=14.55$ kg è poggiato fermo su un tavolo scabro; i coefficienti di attrito statico e dinamico valgono rispettivamente $\mu_s=0.40$ e $\mu_d=0.25$. Il blocco è legato a un secchio vuoto di massa $m_0=1.5$ kg sospeso mediante una fune inestensibile di massa trascurabile. La corda passa in una carrucola che scorre senza attrito. Con un tubo di portata costante si inizia a riempire, al tempo t_0 il secchio di acqua; al tempo $t_1=t_0+16$ s il secchio inizia a muoversi e simultaneamente viene interrotto il getto d'acqua. Calcolare la portata del tubo e la velocità del blocco a $t_2=t_0+26$ s.

Esercizio 2.

Un pallone aerostatico di massa a vuoto $m_p = 20$ kg e tessuto non dilatabile viene riempito di elio per sollevare un carico di massa $m_c = 200$ kg. Sapendo che la densità dell'elio e dell'aria sono rispettivamente $\rho_{He} = 0.179$ kg/m³ e $\rho_0 = 1.29$ kg/m³, calcolare il volume minimo del pallone, considerando trascurabile il volume del carico.

Si assuma ora che il pallone abbia un volume $V=210~\text{m}^3$, che la densità dell'elio resti costante durante la salita e che invece la densità dell'aria diminuisca con l'altitudine h secondo la relazione $\rho_h=\rho_0(1-c\cdot h)^4$ dove $c=0.0024~\text{km}^{-1}$. Qual è la quota massima raggiunta dal pallone?

Esercizio 3.

Una carica elettrica puntiforme di valore 8 nC viene posta nell'origine di un sistema di riferimento, sul piano $[\hat{x}, \hat{y}]$. Una seconda carica puntiforme, di valore un quarto la precedente e di stesso segno, viene posta nel punto O di coordinate $[10 \ \hat{x}, 0 \ \hat{y}]$ cm. Determinare:

- a) il campo elettrico $\vec{E}(P)$ nel punto P di coordinate $[20 \ \hat{x}, \ 0 \ \hat{y}]$ cm;
- b) il campo elettrico $\vec{E}(Q)$ nel punto Q di coordinate $[0 \ \hat{x}, \ 20 \ \hat{y}]$ cm;
- c) l'accelerazione $\vec{a_e}(P)$ alla quale è soggetto un elettrone che viene posto in P, inizialmente in quiete;
- d) la posizione sull'asse delle x, x_{eq} , nella quale dovrebbe essere messo l'elettrone per restare in quiete.

Soluzioni scritto di Fisica del 19 giugno 2019

Soluzione Esercizio 1

Sul secchio agiscono la forza peso $\vec{F} = m_s \vec{g}$ e la tensione della corda $\vec{\tau}$ che, finchè il secchio resta fermo sono uguali e opposte. La massa m_s è data dalla somma di m_0 e della massa dell'acqua versata $m_a = p \cdot \Delta t = p \cdot (t - t_0)$ con p portata dell'acqua (in kg/s o equivalentemente in litri/s). Sul blocco agiscono due forze verticali (peso e reazione normale) e due forze orizzontali (attrito statico e tensione della corda) che si annullano a due a due. Il blocco inizia a muoversi quando la tensione della corda raggiunge il valore massimo dell'attrito statico: $\mu_s N = \mu_s m_b g = \tau = m_s g$ da cui $\mu_s m_b = m_s = m_0 + p \cdot (t_1 - t_0)$ e p = 0.27 kg/s.

Dall'istante t_1 il blocco e il secchio si muovono di moto uniformemente accelerato con la stessa accelerazione. Per il secchio $m_s g - \tau' = m_s a$ con $m_s = m_0 + p \cdot (t_1 - t_0) = 5.82$ kg mentre per il blocco si ha $\tau' - \mu_d m_b g = m_b a$. Risolvendo il sistema $a = g \cdot (m_s - \mu_d m_b)/(m_s + m_b) = 1.05$ m/s². Dopo $t_2 - t_1 = 10$ s di moto, la velocità di blocco e secchio è quindi v = 10.5 m/s.

Soluzione Esercizio 2

Il volume minimo è quello per il quale la spinta di Archimede annulla la forza peso del carico e del pallone gonfiato di elio: $(\rho_{He}V + m_p + m_c)g = \rho_0Vg$ da cui V = 198 m³.

Con un volume maggiore, la spinta di Archimede prevale sulla forza peso e il pallone accelera verso l'alto. Salendo la densità dell'aria diminuisce fino alla quota per la quale le due forze si equivalgono: $(\rho_{He}V + m_p + m_c)g = \rho_h Vg = \rho_0 Vg(1 - c \cdot h)^4$. Risolvendo in h, si trova la quota di 5.2 km.

Soluzione Esercizio 3

Il campo elettrico generato dalle 2 cariche, che indichiamo con q_1 e q_2 vale:

- a) in P, $\vec{E} = k(\frac{q_1}{x_P^2} + \frac{q_2}{(x_P x_O)^2})\hat{x}$ e in modulo E = 3600 V/m.
- b) In Q il campo dovuto a q_1 vale $\vec{E}_1 = \frac{k q_1}{y_Q^2} \hat{y}$ ($E_1 = 1800 \text{ V/m}$). Avendo indicato con d =

 $\sqrt{x_O^2+y_Q^2}=0.224$ m la distanza della seconda carica dal punto Q e con α l'angolo fra il vettore campo elettrico a lei dovuto e l'asse delle y $(\cos\alpha=y_Q/d=0.89$ e $\sin\alpha=x_O/d=0.45$ oppure $\alpha=atan(x_O/y_Q)=26.56^\circ)$, il campo dovuto a q_2 , vale: $\vec{E}_2=\frac{k\,q_2}{d^2}\left(-\sin\alpha\,\hat{x},\cos\alpha\,\hat{y}\right)=(-161\hat{x},322\hat{y})$ V/m.

Pertanto $\vec{E}_{TOT} = \vec{E}_1 + \vec{E}_2 = (-161\hat{x}, 2122\hat{y})$ V/m. Il modulo del campo e l'angolo che esso forma con l'asse y valgono dunque 2128 V/m e 4.34°.

- c) La forza sull'elettrone in P è data da: $\vec{F} = -e\vec{E}$, con -e carica dell'elettrone. Pertanto $\vec{a} = -\frac{e}{m_e}\vec{E} = (-6.32 \times 10^{14}\hat{x}) \text{ m/s}^2$, opposto al verso del campo elettrico.
- d) Perchè l'elettrone, se in quiete, resti in quiete, la risultante delle forze dovute alle due cariche elettriche deve essere nulla. Ciò avviene sull'asse x in un punto fra le due cariche, dove i due campi elettrici hanno stesso modulo e verso opposto: $\frac{q_1}{x_{eq}^2} = \frac{q_2}{(x_O x_{eq})^2}$. Da cui si ha: $\frac{x_{eq}^2}{(x_O x_{eq})^2} = \frac{q_1}{x_{eq}^2} = \frac{q_2}{x_{eq}^2}$. Che risolto dà: $x_{eq} = \frac{2}{\pi}x_0 = 6.67$ cm. La seconda soluzione $x_{eq} = 2x_0 = 20$ cm è
- $\frac{q_1}{q_2} = 4$. Che risolto dà: $x_{eq} = \frac{2}{3}x_0 = 6.67$ cm. La seconda soluzione $x_{eq} = 2x_0 = 20$ cm è da scartare; essa infatti corrisponde al punto P dove i due campi elettrici hanno ancora stesso modulo ma anche stesso verso.