Facoltà di Farmacia e Medicina - A.A. 2019-20 12 Febbraio 2020 – Scritto di Fisica per <u>Farmacia</u>

<u>nome</u> :	<u>Cognome :</u>	
Matricola:	Orale in questo appello : \square SI	□ NO

Esercizio 1.

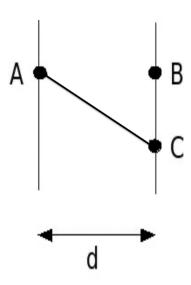
Due pendoli di uguale lunghezza e con sferette di massa $m_1 = 30$ g e $m_2 = 20$ g sono vincolati allo stesso punto del soffitto di una stanza. Il pendolo di massa m_1 viene lasciato libero di oscillare da una quota h = 10 cm dal punto più basso della traiettoria dove si scontra con il pendolo di massa m_2 che si trova in quiete in quel punto. Sapendo che l'urto è centrale e elastico, calcolare:

- a) le velocità delle due sferette dopo l'urto;
- b) la quota d alla quale arriverà la seconda sferetta in seguito all'urto.

Esercizio 2.

Un recipiente isolato di volume $V=0.1~\mathrm{m}^3$ è diviso in due parti uguali A e B da una parete adiabatica. In A è contenuta una mole di O_2 alla temperatura di 10 °C; in B sono contenute due moli di N_2 alla temperatura di 50 °C. Rimossa la parete adiabatica viene raggiunto lo stato di equilibro finale. Supponendo i gas ideali, determinare:

- a) la variazione di energia interna totale;
- b) la temperatura finale;
- c) la pressione finale.


Esercizio 3.

Una lastra metallica, di superficie S=1 m², su cui è disposta una carica $Q=8.85\cdot 10^{-8}$ C è posta verticalmente ad una distanza d=10 cm da una seconda lastra collegata a terra. Le due lastre sono uguali e parallele. Calcolare:

a) la differenza di poteziale e il campo elettrico tra le due lastre.

Sulla prima lastra, in posizione A, viene poggiata in quiete una particella di massa m = 0.1 mg e carica $q = 10^{-10}$ C. Si calcoli: b) a che distanza dal punto B la particella andrà ad urtare sulla seconda lastra (distanza BC);

c) l'energia cinetica della particella nel momento dell'urto.

Soluzioni scritto di Fisica del 12 Febbraio 2020

Soluzione Esercizio 1

- a) La conservazione dell'energia meccanica applicata al primo pendolo: $m_1gh = m_1v_0^2/2$ permette di calcolare la sua velocità prima dell'urto: $v_0 = \sqrt{2gh} = 1.40$ m/s. Indicando con v_1 e v_2 le velocità dei due pendoli subito dopo l'urto, dalla conservazione della quantità di moto in direzione orizzontale si ricava $m_1v_0 = m_1v_1 + m_2v_2$ vale a dire $v_0 = v_1 + 2v_2/3$ dove si è usato il rapporto tra le due masse $m_2/m_1 = 2/3$. Dalla conservazione dell'energia cinetica si ricava invece $m_1v_0^2/2 = m_1v_1^2/2 + m_2v_2^2/2$ vale a dire $v_0^2 = v_1^2 + 2v_2^2/3$. Risolvendo il sistema si ha: $v_1 = v_0(m_1 m_2)/(m_1 + m_2) = v_0/5 = 0.28$ m/s e $v_2 = 2m_1v_0/(m_1 + m_2) = 6v_0/5 = 1.68$ m/s. L'altra coppia di soluzioni ($v_1 = v_0$ e $v_2 = 0$) implica che la prima sferetta attraversi la seconda senza subire alcuna collisione, quindi fisicamente non accettabile.
- b) Per calcolare d basta utilizzare la conservazione dell'energia e imporre che tutta l'energia cinetica acquistata dal pendolo 2 in seguito all'urto si trasformi in energia potenziale: $m_2v_2^2/2=m_2gd$, da cui $d=v_2^2/2g=14.4$ cm.

Soluzione Esercizio 2

- a) In un sistema isolato sul quale non viene compiuto alcun lavoro, la variazione di energia interna totale è nulla: $\Delta U = \Delta U_A + \Delta U_B = 0$.
- b) Esprimendo la variazione di energia interna in funzione della variazione di temperatura, si ha $n_A C_V(T_e T_A) + n_B C_V(T_e T_B) = 0$.

Da questa relazione si ricava $T_e = (n_A T_A + n_B T_B)/(n_A + n_B) = 309.8$ K.

c) La pressione finale è data dall'equazione di stato dei gas perfetti: $P_e = (n_A + n_B)RT_e/V = 7.72 \cdot 10^4 \text{ Pa}.$

Soluzione Esercizio 3

- a) Le due lastre costituiscono un condensatore piano dal momento che la carica Q presente sulla prima lastra induce una carica -Q su quella collegata a terra. Avremo: $C = \epsilon_0 S/d = 8.85 \times 10^{-11} \text{ F e } \Delta V = Q/C = 10^3 \text{ V e } E = \Delta V/d = 10^4 \text{ V/m}.$
- b) In un sistema di riferimento con l'asse y parallelo alle lastre e diretto verso il basso, l'asse x perpendicolare alle lastre e diretto dalla prima lastra verso la seconda lastra, e origine nel punto A, le equazioni del moto della particella sono: $y = gt^2/2$ e $x = at^2/2$, con a = F/m = qE/m. Il tempo impiegato per colmare la distanza d tra le lastre è dunque $t_f = \sqrt{2d/a} = \sqrt{2dm/qE}$ = 0.14 s; da cui la distanza $AB = s = gt_f^2/2 = 9.8$ cm.
- c) Dalla conservazione dell'energia si ricava l'energia cinetica della particella come:
- $K = \Delta U_e + \Delta U_g = q\Delta V + mgs = 1.96 \cdot 10^{-7} \text{ J}.$