Facoltà di Farmacia e Medicina - A.A. 2015-2016 22 Febbraio 2016 – Scritto di Fisica

Corso di Laurea: Laurea Magistrale in FARMACIA

		_	
	Nome:	Cognome:	
	<u>Matricola</u>	Aula:	
	Canale:	Docente:	
	Nell'elaborato riportare le soluzioni in formato sia alfanumerico che numerico.		
	Esercizio 1. Forze, Lavoro, Potenza (10 p	ounti)	
	Supponiamo che la forza di attrito esercitata dallocità relativa della nave rispetto all'acqua. I mota nave si muove con una velocità $v_1 = 2.5 \mathrm{m/s}$.	_	
	a) Quanto vale la forza di resistenza che oppone	•	$F = \underline{\hspace{1cm}}$
b) Quanto vale il coefficiente di proporzionalità i velocità del mezzo?c) A che velocità si muoverebbe la nave se si race		tra forza di attrito e	$b = \underline{\hspace{1cm}}$
		doppiasse la potenza?	$v_2 = $
una 320	Quattro moli di gas perfetto monoatomico esegua compressione isobara ed una trasformazione iso K e che durante l'isobara il volume dimezza, ca	ocora. Sapendo che la ter	mperatura dell'isoterma è
	a) il calore scambiato nell'isoterma b) la temperatura al termine della trasformazion	ne isobara	$Q_{isoterma} = \underline{\qquad \qquad}$ $T = \underline{\qquad \qquad}$
	e) il lavoro del ciclo		$L_{ciclo} = $
	Esercizio 3. Elettrostatica (10 punti) Due lastre parallele di superficie 0.5 m² posti ne	d vuoto alla dietanza di 1	mm sono connessi ni noli
diι	una batteria e caricati in modo che ciascun pia colare:		
	a) la capacità del sistema dei due piatti; b) il campo elettrico (in modulo, direzione e ver	so) tra i niatti	$C = \underline{\hspace{1cm}}$
L	dopo il caricamento	so, ma i piami	$E = \underline{\hspace{1cm}}$
	e) la differenza di potenziale tra i due piatti		$\Delta V = $
d	l) il lavoro necessario per caricare i piatti		$L = \underline{\hspace{1cm}}$

Soluzione Esercizio 1. Forze, Lavoro, Potenza (10 punti)

La potenza e' uguale alla variazione di lavoro nel tempo $W=\frac{dL}{dt}$ ed anche $W=F\cdot v$.

- a) la forza di resistenza dell'acqua è F = W/v = 68000N.
- b) visto che la forza e' proporzionale alla velocità F = bv, si ha $b = F/v = W/v^2 = 27200$ N s/m.
- c) Se si raddoppia la potenza, W' = 2W allora la velocit $v' = \sqrt{W'/b} = \sqrt{2}v = 3.5$ m/s.

Soluzione Esercizio 2. Termodinamica (10 punti)

Indicando con P la pressione del gas nel punto di partenza A e con V il volume alla fine dell'espansione

- a) dato che nell'isoterma si ha $\Delta U=0, Q_{AB}=L_{AB}=\int pdV=nRTlog\frac{V_B}{V_A}=7376 \mathrm{J}.$ b) si hanno le seguenti relazioni: $P_A=P, V_A=V/2; P_B=P_xV_B=V; P_C=P_B, V_C=V/2.$ Per ricavare il valore della pressione P_X nel punto B ricordiamo che i punti A e B sono connessi da un'isoterma e quindi hanno la stessa temperatura: $P_A V_A = P_B V_B \rightarrow PV/2 = P_x V \rightarrow P_x = P/2$. Ricaviamo ora la temperatura del punto C: $P_AV_A = nRT_A$ e $P_CV_C = nRT_C$ dunque risultat $T_C =$ T/2 = 320/2 = 160K.
- c) al lavoro fatto nell'isoterma $L_{AB}=\int pdV=nRTlog\frac{V_B}{V_A}=7376\mathrm{J}$ va aggiunto il lavoro fatto nella compressione isobara che vale: $L_{BC}=P\Delta V=nR\Delta T=nR(T_C-T_B)=-5321\mathrm{J}$. Il lavoro fatto nell'isocora e' nullo. Dunque il lavoro totale e' $L_{tot} = L_{AB} + L_{BC} = 2055$ J.

Soluzione Esercizio 3. Elettrostatica (10 punti)

Una lastra di superficie $S=0.5m^2$ carica con $Q=10^{-3}C$ ha una densità superficiale di carica pari a $\sigma = 2 \cdot 10^{-3} C/m^2$. Le lastre sono poste a distanza d = 1mm. Si ottiene:

- a) $C = \epsilon_0 \cdot S/d = 4.425 \cdot 10^{-9}$ farad.
- b) il campo e' ortogonale alle armature, uscente da quella a carica positiva. Il modulo si ottiene da E = $\frac{\sigma}{\epsilon_0} = \frac{q}{S\epsilon_0} = 2.26 \cdot 10^8 \text{ V/m}$ c) $\Delta V = E \cdot d = 2.26 \cdot 10^8 \cdot 10^{-3} = 2.26 \cdot 10^5 \text{ V}$
- d) $L = q\Delta V = qEd = \frac{q^2}{2\epsilon_0 S} = \frac{q^2}{2C} = 113$ J