Facoltà di Farmacia e Medicina - A.A. 2014-2015 22 giugno 2015 – Scritto di Fisica

Corso di Laurea: Laurea Magistrale in FARMACIA

	Nome:	Cognome:
	Matricola	Aula:
	Canale:	Docente:
	Riportare sul presente foglio i risultati numerici tro Nell'elaborato riportare le soluzioni in formato sia	-
Un $h = $ di r	Esercizio 1 blocco di massa m inizialmente fermo scende le 40 cm. Alla fine del piano inclinato urta, in massa $2m$ fermo. I due blocchi proseguono su ur percorso 20 cm. Si calcoli:	naniera completamente anelastica, un blocco
b	a) la velocità del blocco di massa m in fondo al b) la velocità dei due blocchi subito dopo l'urto c) il coefficiente d'attrito dinamico sul tratto or	$v_b = $
Un di i maz isot	Esercizio 2 campione di gas perfetto monoatomico che occup l atm, segue un ciclo reversibile costituito dal zione a volume costante fino a raddoppiare la terma fino a tornare alla pressione iniziale, (in a a ritornare allo stato iniziale.	lle seguenti trasformazioni: (i) una trasfora pressione inziale, (ii) una trasformazione
	s) Si disegni il ciclo nel piano P,V.Si determini:o) il calore scambiato in ognuna delle trasforma	
		$egin{array}{ll} Q_{BC} = & & & & & & & & & & & & & & & & & & $
C	e) La variazione di energia interna in ognuna de	elle trasformazioni; $\Delta U_{AB} = \underline{\hspace{2cm}}$ $\Delta U_{BC} = \underline{\hspace{2cm}}$ $\Delta U_{CA} = \underline{\hspace{2cm}}$
d) la variazione di entropia del gas nel ciclo	$\Delta S = $
Due risp	Esercizio 3 e cariche puntiformi, $+q = 2$ nC, sono poste risportivamente $P_1 = (0, a)$ e $P_2 = (0, -a)$, con a ato $P_3 = (-a, 0)$. Determinare:	
	a) il campo elettrico in modulo, direzione e verso) il valore del potenziale elettrico nel punto all'infinito	Q = (2a, 0), assumendo il potenziale nullo
C	e) il lavoro che bisogna compiere per portare la	$V_Q = \underline{\hspace{2cm}}$ carica negativa da P_3 all'infinito, specifican-
	done il segno	$L = \underline{\hspace{1cm}}$

Soluzione Esercizio 1.

- a) Sul piano inclinato non c'è attrito: $mgh = \frac{1}{2}mv_f^2$, $v_f = \sqrt{2gh} = 2.8$ m/s.
- b) Nell'urto completamente anelastico i due oggetti rimangono attaccati: $mv_f = (m+2m)v'$, $v' = \frac{1}{3}v_f = 0.93$ m/s.
- c) Il lavoro della forza d'attrito è uguale alla variazione di energia cinetica: $\Delta K = -\frac{1}{2} 3 m v'^2 = -\mu_d 3 m g s, \ \mu_d = \frac{v'^2}{2 g s} = 0.22.$

Soluzione Esercizio 2.

b)
$$Q_{AB} = nc_V(T_B - T_A) = \frac{3}{2}R\frac{V(P_B - P_A)}{R} = \frac{3}{2}V(P_B - P_A) = 607.8 \text{ J}$$

 $P_BV_A = P_AV_C$ quindi $V_C = \frac{P_B}{P_A}V_A = 2V_A$. $Q_{BC} = nRT_B \ln \frac{V_C}{V_A} = P_BV_A \ln 2 = 561.7 \text{ J}$
 $Q_{CA} = nc_P(T_A - T_B) = \frac{5}{2}R\frac{P_A(V_A - V_C)}{R} = \frac{5}{2}P_A(V_A - V_C) = -1013 \text{ J}$

c)
$$\Delta U_{AB}=Q_{AB}=607.8~\mathrm{J}$$

 $\Delta U_{BC}=0$
 $\Delta U_{CA}=-\Delta U_{AB}=$ -607.8 J

d) La variazione di entropia in un ciclo è nulla.

Soluzione Esercizio 3.

a) I campi elettrici delle due cariche positive nell'origine sono uguali e opposti, quindi il campo risultante è solo quello della carica negativa, perciò è diretto lungo l'asse x verso la carica negativa. Il modulo è $E=\frac{1}{4\pi\varepsilon_0}\frac{2|q|}{a^2}=899~{\rm V/m}$

b)
$$V_Q = \frac{1}{4\pi\varepsilon_0} \frac{2q}{\sqrt{5}a} - \frac{1}{4\pi\varepsilon_0} \frac{2q}{3a} = \frac{1}{4\pi\varepsilon_0} \frac{2q}{a} (\frac{1}{\sqrt{5}} - \frac{1}{3}) = 20.5 \text{ V}.$$

c) $L=U(P_3)-U(\infty)$, poichè l'energia potenziale della carica all'infinito è zero $L=U(P_3)=-2\,\frac{1}{4\pi\varepsilon_0}\,\frac{2q^2}{\sqrt{2}a}=$ - 0.51 $\mu\mathrm{J}$

il lavoro è pari a - variazione di energia potenziale. Ossia = U(P3), come scritto. Ma l'energia potenziale della carica 3 nel potenziale generato dalle altre 2 `r negativa. Infatti il campo fa un lavoro resistente per allontanarla. Il - nella formula sopra viene dal segno della carica 3