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much of h.f. studies have been performed in
e+e− collisions; therefore this chapter contains
also a discussion of this subject.



Mandelstam variables(*)
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The Mandelstam variables s, t, u :

➢ pa = [E, p, 0, 0];

➢ pb = [E, −p, 0, 0];

➢ pc = [E, p cos,p sin, 0];

➢ pd = [E,−p cos,−p sin, 0];

➢ s  (pa + pb)2 = (pc + pd)2 = 4E2;

➢ t  (pa − pc)
2 = (pb − pd)2  − ½ s (1 − cos)= −s sin2(/2);

➢ u  (pa − pd)2 = (pb − pc)
2  − ½ s (1 + cos)= −s cos2(/2);

➢ s + t + u = 0 (→ 1+1 independent variables, e.g. [E,], [s, t], [s,]).

(*) NOT specific of h.f.
or e+e−; here just for
convenience.
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Q.: what about  (the azimuth) ?
A. : if nothing in the dynamics is -dependent (e.g. the spin

direction), then the cross-section must be -symmetric.

a

d

c

b

a [=e+]

d

c

b [=e-]"Feynman" 

CM 

Lorentz-invariant variables for 2→2 processes.

Assume E >> mi, for the masses of all 4 bodies
(otherwise, look for the formulæ in [PDG]).

Lorentz-invariant



Mandelstam variables: mi  0
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General case ab → cd, masses NOT negligible:

[pi and pj are 4-mom, pipj = dot product]

➢ s  (pa + pb)2 = (pc + pd)2 = ma
2 + mb

2 + 2papb;

➢ t  (pa − pc)
2 = (pb − pd)2 = pa

2 + mc
2 − 2papc;

➢ u  (pa − pd)2 = (pb − pc)
2 = pa

2 + md
2 − 2 papd;

➢ s + t + u = ma
2 + mb

2 + mc
2 + md

2 +
+ 2pa(pa + pb − pc − pd) =

= ma
2 + mb

2 + mc
2 + md

2 =i mi
2.

In addition, the crossing symmetry correlates
the processes which are symmetric wrt time (s-,
t-, and u-channels [see box]). If the c.s. is
conserved in the interaction, the same
amplitude is valid for all the channels, in their
appropriate physical domains (an example on
next page).

s-channel ab → cd (p̄p → n̄n)

t-channel ac̄ → b̄d (p̄n → p̄n)

u-channel ad̄ → b̄c (p̄n̄ → p̄n̄)

a

b

c

d
s-channel

t-channel

u-channel

an old approach (1950-80), now almost forgotten,
especially important for strong interactions at low
energies (see the example p̄p → n̄n), where the
dynamics was not calculable (still is not).



Mandelstam variables: example
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Example : ma = mb = mc = md = m;

• s = 4E2  4m2;

• t = −4p2sin2(/2); s + t + u = 4m2;

• u = −4p2cos2(/2);

• in a xy plane draw an equilateral
triangle of height 4m2, and label s-t-
u the three sides and the lines
through them (drawn in red);

• remember Viviani's theorem and its
extension ("the sum of the signed
distances between a point and the
lines of a triangle is a constant");

• find the physical regions (i.e. the
allowed values of s-t-u) for the given
process (i.e. the "s-channel") and for
the t and u channels;

• among s-t-u, only two variables are
independent → the "space of the
parameters" is 2D.

y

xt

s u
s=4m2

phys. region, 
"t-channel"

t=4m2

u=4m2

phys. region, 
"u-channel"

phys. region, 
"s-channel"

( )

( )

 = − + − = → = 
 = = − − = − +

2

2
2

s 3x y /2           4m s u
x     

t y                              3

y t 4m s u u 4m 3x y /2.



Mandelstam variables: s vs t
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• in a "s-channel" process (e.g. e+e-− → +−),
the |4-momentum|2 of the mediator  is
exactly s [i.e. m() = s, s > 0];

• in a "t-channel" process (e.g. e+e+ → e+e+),
the |4-momentum|2 of the mediator (

also in this case) is t [t < 0 !!!] ;

• some processes (e.g. e+e− → e+e−, called
"Bhabha scattering") have more than one
Feynman diagrams; some of them are of
type s and some others of type t; in such a
case we say it is a sum of "s-type diagrams"
and "t-type diagrams" + the interference,
a… although, needless to say, on an event-by-
event basis, the observer does NOT know
whether the event was s or t.

e+

+

e−

*

−"s" channel

e+

e+

*

e+

e+

"t" channel

time

(e+)

(e−)

(e+)

(e−)



Mandelstam variables: 1/s
➢ in absence of polarization, the cross sections of a

process "X" does NOT depend on the azimuth  :

➢ for m2 << s, if ℳ"X" is the matrix element of the
process(*) :

➢ in lowest order QED, if m2 << s :

➢when → 0, cos → 1 :

• s-channel : ƒ(cos ) → constant;

• t-channel : ƒ(cos ) → .
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  
= =

   

"X" "X" "X"d 1 d s d
.

d 2 dcos 4 dt
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
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"X""X"
2

d
.

dt 16 s

M

 
= = 
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dcos 32 s s

M
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e+

+

e−

*

−"s" channel

e+

e+

*

e+

e+

"t" channel

time
_______________________

(*) also by dimensional analysis :
[c =  = 1], [] = [ℓ2]; [t] = [s] = [ℓ−2];

therefore, in absence of any other dimensional scale,
 [and d/d] = [number] × 1/s.



Collisions e+e− : initial state

• At low energy(*), the main processes happen
with annihilation into a virtual .

• The initial state is :

➢ charge = 0;

➢ lepton (+ baryon + other additive) number = 0;

➢ spin = 1 ("");

• CM kinematics :

➢ e+ [E, p, 0, 0];

➢ e− [E, −p, 0, 0];

➢  [2E,0, 0, 0];

➢m() = s = 2E [virtual photon, short lived].

___________________________
(*) "low energy" (mƒ << s = ECM = 2E = m << mZ), where
mƒ are the masses of all (initial+final) fermions. When ECM

~ mZ, a Z() may also be formed; the process e+e− → Z
resonates at s = mZ and becomes dominant (see Collider
Physics, § LEP).

In 
this 

chapter,
we will stay
in the "low

energy" regime.
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e+

e−





Collisions e+e− : QED cross sections

Consider some QED processes in lowest 
order [s << mZ, only  exchange] :

➢ e±e± → e±e±

➢ e+e- → 

➢ e+e- → e+e-

➢ e+e- → +-
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      →  + 
=  

 −  

22 2

2

d (e e e e ) 2 3 cos
;

dcos s 1 cos

+ − →   + 
= 

 − 

2 2

2

d (e e ) 2 1 cos
;

dcos s 1 cos

+ − + −   →  + 
=  

 −  

22 2d (e e e e ) 3 cos
;

dcos 2s 1 cos

( )
+ − + − →  

=  + 


2
2d (e e )

1 cos ;
dcos 2s

2/12





Collisions e+e− : QED d/dcos
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      →  + 
=  

 −  

22 2

2

d (e e e e ) 2 3 cos
;

dcos s 1 cos

+ − →   + 
= 

 − 

2 2

2

d (e e ) 2 1 cos
;

dcos s 1 cos

+ − + −   →  + 
=  

 −  

22 2d (e e e e ) 3 cos
;

dcos 2s 1 cos

( )
+ − + − →  

=  + 


2
2d (e e )

1 cos ;
dcos 2s



-1 -0.5 0 0.5 1

0.01

0.1

1

10

100

e±e±→ e±e±

e+e- → 

e+e- → e+e-

e+e- → +-

undefined
for cos < 0

s 
d


/d
co

s


(G
eV

2


b
)

cos 

divergent2

divergent4

symmetric

asymmetric



some little gymnastics:.

• compute a value, just to understand:

• limits of d/dcos for cos→ 1 (i.e. → 0):

Collisions e+e− : QED d/dcos
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      →  + 
=  

 −  

22 2

2

d (e e e e ) 2 3 cos
;

dcos s 1 cos

+ − →   + 
= 

 − 

2 2

2

d (e e ) 2 1 cos
;

dcos s 1 cos

+ − + −   →  + 
=  

 −  

22 2d (e e e e ) 3 cos
;

dcos 2s 1 cos

( )
+ − + − →  

=  + 


2
2d (e e )

1 cos ;
dcos 2s



2

2 2

s 1GeV
cos 1

3
2

2

(e e e e )
s ( c) 2

dcos

0.389 10 2 3.14
0.13 GeV b.

137

+ − + −

=
=−

 →
=  =



  
  

( )

( )

22 2

2

2 2

2

4

2

4

2
2 2

2

2 2

2 3 1 2
: ;

s sin s

2 1 1 2
: ;

e e e e

s sin s

3 1 2
: ;

2s 2sin /2 s

2
: 1 1 .

2

e e e e
16

2

16

1
e e

s s 2

e e

+ − +



  

+ − + −

−



   +   =   
   

  + 
=  

  

    +

 
 
 

→ 


=   

   

  


 
 

 
 
 

 
→

→

  


+ =  
 

→



Collisions e+e− : e+eˉ → +ˉ, qq̄

• kinematics, computed in CM sys, s >> me, m :

e+ (E, p, 0, 0);

e− (E, -p, 0, 0);

+ (E, p cos, p sin, 0);

− (E,-p cos, -p sin, 0);

p  E = s/2;

p(e+) · p(+)  E2 cos   s cos  / 4;

p(e+) p(+)  E2 (1 − cos ) = s sin2 (/2) = −t;

• the case e+e− → qq̄ is similar at parton level;
however free (anti-)quarks do NOT exist →
quarks hadronize, producing collimated jets of
hadrons [+ subtleties due to the fact that
hadrons and leptons, unlike quarks, are color
singlets with integer charge] .
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e+

ƒe-

 [ Z ]

e+

q
e-

 [ Z ]

ƒ̄

q̄



Collisions e+e− : (e+eˉ → +ˉ, qq̄)

• e+eˉ → +ˉ

• e+e- → qq̄

[1+cos2] = P1
Legendre(cos )

[spin 1 → 2 spin ½]
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( )
−



−

  
=  =



 +  =  


= = =

 
2

2 2 2
be

2
1 1

2

1

a

1

m

d
dcos dcos 1 cos

4 86.8 nb 21.7 nb

3s s[GeV ] E [Ge

dcos s

V

2

]
.

( )qq

2
2

qq

2
2 2 2

ƒ ƒ ƒ

ƒ ƒ

ƒ ƒ

2
ƒ ƒ ƒ

3         quarks  d
c e c e 1 cos ; c [color]

1         leptons dcos 2s

1        leptons 

c e ; e 2/3     u c t      [charge]

d

dcos

4
c e .

1/3  d s b     
3s

 





  
=  = +  =  

  

 
 =  = =  
 



 





−


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In the approx me << s, mƒ << s (i.e. light quarks).
If mƒ NOT negligible,use the complete formula
[see next slide].



Collisions e+e− : mƒ > 0
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Previous formulæ NOT correct if mƒ NOT
negligible, e.g. near the threshold for the
production of heavy quarks/leptons, s  2mƒ.

→

( ) ( )
2 2
ƒ ƒ

ƒ

2 2
ƒ ƒ ƒ ƒ 2 2 2

ƒ ƒ

2

ƒƒ ƒ

ƒ

0

2

ƒ

e

ƒ

 list (no proof) the formulæ for e e ƒƒ

      ( ):

  (see  curve);

d c e
  1 cos 1 sin ;

dcos 2s

4
    (see  curve).

3s

Cl

4m
  1 blue

s

3 3
  red

2 2

early:

2m s 2m

+ −→ →

 
 • =  +  + − 
 


= = 

− −
•  



−

 



•  =

ƒ

ƒ ƒ ƒ 0ƒƒ

  s 2m no ƒ production;

  s 2m 2m / s 0,  1,   .

•  →

• → →  →  → 0 1 2 3 4 5
0

1

ƒs 2m

ƒ
ƒƒ / 0

e+

e− ƒ

ƒ ̅



Collisions e+e− : larges(e
+eˉ → +ˉ, qq̄)

• the continuum, for 0.5 ≤ s ≤ 50 GeV,
agrees well with the predicted 1/s [the line
in log-log scale];

• + resonances qq̄ [the bumps];

• for s > 50 GeV [e.g. LEP] it is dominated
by the Z formation in the s-channel.

e+e- → hadrons
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


 = =

= =

2

2 2 2

4

3s

86.8 nb 21.7 nb
.

s[GeV ] E [GeV ]

√s (GeV)
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e−

e+

− , q

+, q̅



Collisions e+e− : R = (qq̄)/(+ˉ)
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( )
( ) ( )
+ −

+ − + −

 →
= = =

 → 
 2

iquarks

e e hadrons
R 3 e R s ;

e e

1 2 5 10 20 50 100 200 500
0

1

2

3

4

5

s (GeV)

R no !

2m(c) 2m(b) 2m(t)m(Z)

• define the quantity, both simple conceptually and easy to measure:

• sum over all the quarks, produced at energy s (i.e. 2mq < s) :

➢ 0 < s < 2 mc : R = Ruds = 3 × [ (2/3)2 + (-1/3)2 + (-1/3)2 ] = 2;

➢ 2 mc < s < 2 mb : R = Rudsc = Ruds + 3 × (2/3)2 = 3 + 1/3;

➢ 2 mb< s < 2 mt : R = Rudscb = Rudsc + 3 × (-1/3)2 = 3 + 2/3;

➢ 2 mt < s <  : R = Rudscbt = Rudscb + 3 × (2/3)2 = 5;

• but reality is more complicated :

➢ the step at s = 2mq is rounded [see before];
➢ qq̄ resonances are formed at s  2mq; their

decay modes affects the measurement of R;
➢ at s  mZ [and s  2mW] the weak interactions

change completely the scenario → for s  50
GeV, R has a different explanation [e.g. LEP];

➢ also notice that mZ < 2mt; therefore the "t step"
happens at higher s than the Z resonance.



s (GeV)

Collisions e+e− : R vs s (small s)
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Plot R vs s (=2E):

• resonances uū, dd̄, ss̄ at 1-2 
GeV (only those with JP=1−) 
(→"vector dominance");

• step at 2mc (J/);

• step at 2mb ();

• slow increase at s > 50 GeV 
(Z, next slide);

• [lot of effort required, as 
demonstrated by the 
number of detectors and 
accelerators];

• strong evidence for the 
color (factor 3 necessary).

10/12

plots from 
[PDG, 588]



Collisions e+e− : R vs s (large s)
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11/12

• The full range 200 MeV < s < 200
GeV (3 orders of magnitude !!!).

• For s > 50 GeV new phenomenon:
electroweak interactions and the Z
pole.

R



Collisions e+e− : e+e− → e+e−

The case e+e− → e+e− (Bhabha scattering) is
different, as seen before:

• two Feynman diagrams with a spin-1 boson
exchange ( [+ Z at higher energy]) :

▪ s-channel, similar to +-;

▪ t-channel, like e+e+;

▪ interference between the two diagrams
[four at higher energies];

• the angular distribution (see before) reflects
these differences;

• [il va sans dire que] on an event-by-event
basis it is NOT possible to determine whether
an event belongs to s- or t-channel; however,
different regions of the final state parameter
space are actually dominated by s- or t-
channel [therefore physicists speak of "s-
channel" physics (e.g. the formation of
resonances) or t-channel physics (e.g. Bhabha
at small )].
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e+ e+

e− e−

 [ Z ]

e+ e+

e− e−

 [ Z ]





The November Revolution
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• The u,d,s quarks have not been predicted; in fact the
mesons and baryons have been discovered, and later
interpreted in terms of their quark content [§ 1];

• Some theoreticians had predicted another quark,
based on (no K0 → +−), but people did not believe it.

•• In November 1974, the groups of
Burton Richter (SLAC) and Samuel
Ting (Brookhaven) discovered
simultaneously a new state with a
mass of  3.1 GeV and a tiny width,
much smaller than their respective
mass resolution.

• Ting & coll. had the name "J", while
Richter & coll. called it "". Today's
name is "J/".

• We split the discussion : start with
the hadronic experiment.

•• The width was measured, after some time, to be 0.087 MeV,
a surprisingly small value for a resonance of 3 GeV mass.

the two experiments are
quite different: we will
review first the "J" and then
the "".



The November Revolution : J
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• The group of Ting at the AGS proton
accelerator measured the inclusive
production of e

+
e
−

pairs in interactions of
30 GeV protons on a plate of beryllium :

p Be → e
+
e
−

X.

• The experiment was searching mass
resonances with JP = 1− (= ), decaying
into (e+e−) pairs with the "Drell-Yan"
process [see later].

• The key feature of the experiment was
the very good resolution in m(e

+
e
−
):

m(e
+
e
−
)  10 MeV.

• This resolution allowed for a much
higher sensitivity wrt other previous
exp.'s (e.g. Lederman's), which studied
+− pairs in the same range. Lederman
had a "shoulder" in d/dm(+−), but no
conclusive evidence [next slide].

• Ting called the new particle "J", because
of the e.m. current.

Measured quantum numbers of the J:
• mass ~3.1 GeV;
• width < 5 MeV (see fig., it is meas., not BW);
• charge = 0;
• JP = 1−;
• no meas. of isospin, , other decay modes …

Ting et al.,
p Be→e+e−X

AGS 1974

-20        -10           0         +10       +20

MeV/c2

N
u

m
b

er
o

f
ev

en
ts

/
5

M
eV

/c
2



• The Ting experiment used a two arm
magnetic spectrometer, to measure
separately the electron and the positron.

• Leptonic events are rare → very intense
beams (21012 ppp (*)) → high rejection
power (~108) to discard hadrons, that can
fake e+e- or +-.

• Advantage in the +- case:  penetration
→ select leptons from hadrons with a
thick absorber in a large solid angle →
larger acceptance, higher counting rate.

• Disadvantage : thick absorber → multiple
scattering → worst mass resolution.

The November Revolution : the J experiment
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(*) "ppp" : "particles (or protons) per pulse", i.e. once
per accelerator cycle every few seconds; it is the typical
figure of merit of a beam from an accelerator.

Drell
-Yan

p
spectators

spectators
N

e+,+

e-,−

*
• Benefit in the e+e- case: electron

identification with Čerenkov counter(s)
+ calorimeters → simpler setup.

• Disadvantage : small instrumented
solid angle → smaller yield.

D : multiwire proportional chamber;

M : dipole magnets;

C : Čerenkov counters;

S : e.m. shower counter.

~

B

m+−
2 = 4 E+E-

sin2(/2)

Ting et al.,
p Be→e+e−X



The November Revolution : the J exp.
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"p,  independent concept" 

→ vary |B|

Drell
-Yan

p
spectators

spectators
N

e+,+

e-,−

*

 

 

 
2 2 2 2

2 2

2

p E , p cos( /2), p sin( /2), 0

E , E cos( /2), E sin( /2), 0

p E , E cos( /2), E sin( /2), 0 ;

m (p p ) m m 2p p

2E E 1 cos ( /2) sin ( /2)

4E E sin ( /2) .

++ + +

+ + +

−− − −

+ − + −
+−

+ −

+ −

=   =

  

  − 

= + = + +  =

  −  +  = 

= 

D : multiwire proportional chamber;

M : dipole magnets;

C : Čerenkov counters;

S : e.m. shower counter.

~

B

m+−
2 = 4 E+E-

sin2(/2)

Ting et al.,
p Be→e+e−X



The November Revolution : mcc̄
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Lederman et al.
p U → +−X

1968-69

3.1 GeV

Michelini et al.
+ Pt → +−X

(200 GeV)
1979

Ting et al.,
p Be→e+e−X

AGS 1974

Problem (see previous slides)

Three similar exp. distributions:

d(hadron Nucleus → ℓ+ ℓ− X) / dmℓℓ.

Similar dynamics:
• continuum, exponentially falling [yes,

even in Ting's plot];
• resonance(s) on top [look Michelini's].

Differences:
• mℓℓ resolution [!!! why ?];
• horizontal scale (i.e. mass interval);
• vertical scale (i.e. resonance size)
Please comment on:
• effect of these differences on ratio

resonance/continuum (→ discovery ?);
• "quality" of the experiments.

3.1 GeV

~9.5 GeV (??)



[back to 1974 : they did not know]

• Mark I at the e+e− collider SPEAR was
studying collisions at s = 2.5  7.5 GeV.

• The detector was made by a series of
concentrical layers ("onion shaped").

• Starting from the beam pipe :

➢magnetostrictive spark chambers 
(tracking),

➢ time-of-flight counters (particles' speed
+ trigger),

➢ coil (solenoidal magnetic field, 4.6 kG),

➢ electromagnetic calorimeter (energy
and identification of 's and e's),

➢ proportional chambers interlayered
with iron plates (identification of 's).

• [Notice the strong similarity among all the
Collider detectors : CMS – 40 years later –
has the same "onion" structure, with a
scale factor > 10, i.e. a volume 1000
times larger. However, ATLAS is different].

The November Revolution : Mark I
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Mark I (SLAC-LBL)



The November Revolution : Mark I at SLAC
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The November Revolution : 
• In 1974, up to the highest available energies, R =
(e+e- → hadrons) / (e+e- → +-)  2.

• Measurements   at the Cambridge Electron
Accelerator (CEA, Harvard) in the region of energies
of SPEAR had found R ≅ 6 (a mixture of continuum
and resonances). Also ADONE at LNF, which could
reach an energy just sufficient, was not pushed to
its max energy [At the time the large amount of

information carried by R was not completely clear].

• At the novel Collider SPEAR, the scanning in energy
was performed in steps of 200 MeV.

• The measured cross-section appeared to be a
constant, NOT with expected trend  1/s.

• When a drastic reduction in the step (200 → 2.5
MeV) increased the "resolving power", a resonance
appeared, with width compatible with the beam
dispersion (even compatible with a -Dirac).

• The particle was called "" (see fig. on page 2).
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e+e- → hadrons

e+e- → e+e-

e+e- → +-

inside Mark I acceptance
and normalized to Bhabha.



Charmonium: J/ properties
▪ After some discussion, the correct

interpretation emerged :
➢ the resonance, now called J/, is a

bound state of a new quark, called
charm (c), and its antiquark;

➢ the c had been proposed in 1970 to
exclude FCNC [GIM mechanism, § 4];

➢ the J/ has JP = 1− [next slide];
➢ the name "charmonium" is an

analogy with positronium ("onium" :
bound state particle-antiparticle);

▪ The cross-section (Breit-Wigner) for the
formation of a state (JR = 1) from e+e−

(Sa = Sb = ½), followed by a decay into a
final state, shows that [see § intro.]:

▪ After 1974, many exclusive decays have
been precisely measured, all confirming
the above picture; the last PDG has 227
decay modes; the present most precise
value of the mass and width is

m(J/) = 3097 MeV, tot(J/) = 93 keV.
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Charmonium : J/ quantum numbers
At SPEAR they were able to measure many
of the J/ quantum numbers :

• the resonance is asymmetric (the right
shoulder is higher); therefore there is
interference between J/ formation and
the usual  exchange in the s-channel;
therefore the J/ and the  have the
same JP = 1−;

• from the cross section, by measuring
had,  and e, they have 3 equations +
a constraint (see the box, three ƒ + tot)
for the 4 unknowns (three ƒ + tot);
therefore they measured everything,
obtaining a tot very small (~90 keV, a
puzzling results, see next slides);

• the equality of the BR (J/ → 00) and
(→ ∓) implies isospin I = 0;

• the J/ decays into an odd (3, 5) number

of , not in an even (2, 4) number; this
fact has two important consequences :

➢ the G-parity is conserved in the decay
(so the J/ decays via strong inter. ).

➢G-parity = -1 [also (−1)I+ℓ+s = −1].
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4 equations (ƒ = had, , e + tot), 4 unknowns;

NO direct measurement of  "width" required, 
but assume that ALL decays detected (e.g. no )

𝔾



Charmonium : the GIM mechanism
• The weak neutral current processes

between quarks of different flavor (FCNC,
"Flavor Changing Neutral Current") are
strongly suppressed [e.g. (K0

L → +−)
<< (K → )].

• This fact was explained in 1970 by S.
Glashow, J. Iliopoulos and L. Maiani by
introducing the charm quark (Phys. Rev.

D2, 1285);

• they predicted:
➢ a fourth quark (c), identical to the u

quark (but mc >> mu), carrying a new
quantum number C, "charm";

➢ as for the strangeness, C is conserved
in strong and electromagnetic
interactions and violated in weak
interactions;

➢ the lightest charmed mesons are cq̄ or
c̄q pairs (q = uds), and have a mass of
1500 - 2000 MeV and JP = 0–;

➢ these mesons decay weakly; because of
their larger mass, their lifetimes are
O(ps), an order of magnitude shorter

than those of the K mesons;

➢ the positive meson with open charm
(cd,̄ now called D+) decays preferably in
final states with negative strangeness
(c → sƒ ҧƒ, S = C).

[see § 4 for more details]
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Charmonium : QCD decay
QഥQ states(*) [e.g.  (ss̄), J/ (cc̄),  (bb̄)] :

• decay preferentially ❶ [(QഥQ) → (Qq̄) (ഥQq)],
e.g. →തKK , i.e. [(ss̄) → (d̄s) (ds̄)];

• J/→ D+D− (or D0ഥD0) [(cc̄) → (dc̄) (dc̄) or (ūc) 
(uc̄)] forbidden (mJ/ < 2mD);

• then cc̄ annihilate into gluons (J/→'s ❷):

➢ 1 gluon forbidden by color;

➢ 2 gluons forbidden by C-parity                
[C2g = +1; CJ/ = C = -1];

➢ 3 gluons allowed :

• The value s
3 (and its "running" [§ 6])

produces a smaller width for larger masses :

➢ s
3(m2

) ≈ 0.53 = .125;
➢ s

3(m2
J/) ≈ 0.33 = .027;

➢ s
3(m2

) ≈ 0.23 = .008.

________________________

(*) in these slides: q = u/d, Q = s/c".
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see § 6
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Charmonium : the Zweig rule (OZI)
The "Zweig rule" was set out empirically in a
qualitative way before the advent of QCD :

• compare (→3)  (→KK)  (→3);

• in the decay of a bound state of heavy quarks
Q, the final states without Q's ("decays with
disconnected diagrams" ❷) have suppressed
amplitude wrt "connected decays" ❶;

• if only the decays ❷ are kinematically
allowed (ex. J/ or ), the total width is small
and the bound state is "narrow";

1963-1966 :

Susumu Okubo

(大久保進

Ōkubo Susumu),

George Zweig, 

Jugoro Iizuka (飯塚)
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before the QCD
advent, gluons were
not considered.



Charmonium: '
• After the discovery of the J/, at SPEAR they

performed a systematic energy scanning with a
very small step. After ten more days a second
narrow resonance was found, called ', with the
same quantum numbers of the J/.

• The analysis shows that the J/ was the 1S state
of cc,̄ while the ' is the 2S.

• Both particles have JP = 1−, I=0.

• The next page gives a scheme of the cc̄ levels.

• They offer a reasonable agreement with the
solution of the Schrödinger equation of a
hypothetical QCD potential [see § Standard Model]

• Notice that this approximation should become
more realistic for heavier quarks, when the non-
relativistic limit gets better.
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Charmonium : cc̄ levels
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JPC = 0–+ 1– – 0++ 1++ 2++

c1(1P)

c(2S)

c(1S)

(2S)

J/(1S)

c0(1P)

c2(1P)





(3770)

(4040)

2mD

DഥD

hadr.





radiat.

levels approx from
V(r) -4/3s/r + kr;
[Coulomb+linear] +
Schrödinger eq.

m

decays → charmed 
mesons

decays → light 
quarks

Richter/Ting 
1974



Open charm : discovery
• If the J/ is a bound cc̄ state, then mesons cq̄

and c̄q must exist, with a mass  mJ//2 +
100200 MeV [3690/2 < mD < 3770/2 MeV].

• In 1976, the Mark I detector started the
search for charmed pseudoscalar mesons (D0

ഥD0), the companions of 's and K's.

• They looked at s = 4.02 GeV in the channels

e+e− → D0 ഥD0 X0; → D+ D− X0.

• According to theory, D-mesons lifetimes are
small, with a decay vertex not resolved (with
1976 detectors) wrt the e+e− one.

• Therefore the strategy of selection was the
presence of "narrow peaks" in the combined
mass of the decay products.

• A first bump at 1865 MeV with a width
compatible with the experimental resolution
was observed in the combined mass (K±∓),
corresponding to the D0 and ഥD0 decay.

They were afraid of K/
exp. misidentification →
mass is computed with
all particle hypotheses.
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allows for it !!!



Open charm: "C-allowed, suppressed"
• Also the mass (K∓±±) had a bump at 1875

MeV, corresponding to the D+ and D− decays.

• Moreover, in perfect agreement with the GIM
predictions, no bump was found in (K±+−),
which is forbidden ("Cabibbo doubly
suppressed", in this language).

• i.e. mainly D+ → K‒++ , D‒ → K+‒‒ (!!!).

the c quark decays through    
its Cabibbo couplings (see):
[cs, ud]  cos c = "big"
[cd, us]  sin c = "small"

⅔ -⅓ ⅔ ⅓ K/ "Cabibbo" dependence

c 
→

s u d̄ K(n)  cos2 c "allowed"

s u s̄ KK(n) sin c cos c "suppressed"

d u d̄ (n) sin c cos c "suppressed"

d u s̄ K(n)  sin2 c ("suppressed")2
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c

s(d)

u

d̄ (s̄)W+

the so-called "S = C" rule :

c → തK : (C : +1→ 0)  (S : 0 →−1)

c̄ → K : (C : −1→ 0)  (S : 0 → +1)

(spectator quarks 
not included)



Open charm: meson multiplets

SU(3)flavor → SU(4)flavor

With 4 quarks, the SU(3) nonets
become 16-multiplets in a 3-D space.
However, the c quark has a large
mass, so SU(4)flavor is much more
broken that SU(3)flavor.

-4  4 = 15  1.

pseudo-scalar mesons

vector mesons
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JP = 0−

JP = 1−

3

3



Open charm : baryon multiplets

• Also

SU(4)flavor baryons
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JP = ½+

JP = ³∕2
+



The 3rd family
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• "who ordered that ?" [I.I.Rabi about the ];

• in modern terms : "why consecutive
families of quarks/leptons, differing only
in mass ? why/how they mix ?" [see § 4-5]

• as of today, nobody knows : the number of
families and the mixing matrix are free
parameters of the SM [maybe one day some

theory bSM will constrain it];

• "non-QCD" constraints in the SM:

➢ families must be complete : the
existence of a single member (e.g. the 
or the ℓ−) implies the existence of all
the others, to avoid anomalies (Adler-
Bell-Jackiw); it requires i ei = 0, where
the sum runs on all members i and
colors c of the family F [see box];

➢ the Z full width Z
tot constrains the

number of "light 's" [Coll. Phys. § LEP] ;

➢ in the SM, (at least) three families are
necessary to generate a natural
mechanism of CP violation in the quark
decays [see § K0];

➢ in the SM, nF is free, but nc must be 3.
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The  lepton : discovery
The analysis of Mark I data produced
another beautiful discovery : the  lepton
(M. Perl won the 1995 Nobel Prize):

• the selection followed a method well
known, pioneered at LNF-Frascati : the
"unbalanced pairs e±∓" :

(+ CC +e−).

• events from this process are extremely
clean and free from background [see
fig.];

• the e+e− / +- unbalanced pairs, which
have to be present in the correct number

Nunb(e+e−) = Nunb(+−) =

= N(e+−) = N(e−+),

are only used to cross-check the sample.

In principle the  lepton has very little to do with
the c quark. However collider, detector, energy,
selection and analysis are closely linked.
Therefore, in experimental reviews, the  lepton is
usually treated together with the charm quark.

Martin Perl

 !!!

e !!!
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The  lepton : identification

Simple method: the yield of e±∓ pairs vs s : it
immediately points to the threshold s = 2m.

• therefore : m  1780 MeV.
[best present value 1776.8 MeV]

• why is the  a lepton ?

➢ at the time, the evidence came from the lack of
any other plausible explanation;

➢ today, the evidence is solid :
▪ the Z and W decays into (e  ) with the same

BR and angular distribution;
▪ the  lifetime and decays have been measured

and found in agreement with predictions …

• the discovery of the  started the hunt for the
particles of the new (3rd) family, still unknown:

➢ the  (possibly mixed with the others);

➢ the pair of quarks qup qdown, similar to ud (now
called top and bottom).
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The b quark : discovery

Leon Lederman

• The down quark of the 3rd family
was called b (= beauty, bottom).

• In 1977 Leon Lederman and
collaborators built at Fermilab a
spectrometer with two arms,
designed to study +- pairs
produced by interactions of 400
GeV protons on a copper (or
platinum) target.

• The reaction under study was
again the Drell-Yan process. As
already pointed out, this type of
events is rare, therefore
requiring intense beams (in this
case 1011 ppp) and high rejection
power against charged hadrons.
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The b quark : d/dm

• The usual price of the absorber technique
is a loss of resolution in the muon
momenta, which was m / m 2%.

• The figures show the distribution of m.
Between 9 and 10 GeV : there is a clearly
visible excess.

• When the  continuum is subtracted,
the excess appears as the
superimposition of three separate states.

• The states, called (1S), (2S), (3S) are
bound states bb.̄
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The b quark : open b
• Precision measurement, carried out at

DESY and Cornell with e+e− Colliders,
soon confirmed the results. After two
years, also "open beauty", i.e. bound
states bq̄, was identified and called B0,.

• The figure in the next page shows an
updated compilation of the bb̄ states.

• Bottomonium (beauty in not used
anymore, don't know why) is a very
interesting system. Recently, a lot of

studies (BaBar, Belle) have been
performed on the ℂℙ violation in the
B0തB0 system (similar to the K0's, but
different from the charms) [see § K0].

• Leon Lederman together with Mel
Schwartz and Jack Steinberger got the
1988 Nobel Prize, NOT for his bb̄
discovery, but for his neutrino studies
(the "two neutrino experiment" in 1962).
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Leon Lederman Jack Steinberger Mel Schwartz

Nobel laureates 1988



The b quark : bottomonia

Energy and JPC levels of bb ̄ states.
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The t quark : search
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• The top quark was directly searched in hadron
(Spp̄S, Fermilab) and lepton (Tristan, LEP)
colliders, but was NOT found until 1990's;

• at the time the mass limit was mt ≥ 90 GeV;

• at mt mwmb ( 80 GeV), the search changes:
the "golden discovery channel" moves from
(W+→ tb̄ → W+*bb̄) to (t → W+b) [fig. ❶];

• mt was first computed from the radiative
corrections for mw and mz [Coll.Phys. § LEP];

• the LEP data, together with all other e.w.
measurements, allowed for a prediction of mt

≈ 175 GeV [fig. ❷];

• in the 1990's the search was finally concluded
at the Tevatron, by the CDF and D0
experiments.

• At present, we measure mt = 173  0.4 GeV.
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The t quark : production
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• in a hadronic collider [see Coll.Phys.], the top is
produced in pairs, via hadronic interactions;

• in pp and pp̄ the PDF of initial state partons are
different (valence / sea): the qq̄ channel decreases
from 90% (pp̄ at Tevatron, √s=1.8 TeV) to 5% (pp at
LHC, √s=14 TeV) [qualitatively understandable];

• in the same range, the total cross section increases
from 5 to 600 pb [also quite understandable].
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The t quark : decay
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• the top quark decays weakly in a (real) W and a "down-
type" quark (q=d/s/b), with a coupling  Vtq [CKM, see § 5];

• therefore the most common decay is t → bW+ (t̄→bW̄−);

• since  ≈ GFmt
3 / (8√2) ~ 2 GeV, t ~ 4 × 10-25 s [¿ "m3" ?];

• therefore the top decays before any hadronic process
(hadronization, toponium formation) may happen;

• in turn the W decays "democratically" [see Coll.Phys.] into all
the (ℓ) (qq)̄ pairs (hadrons × 3 because of color);

• in summary, the decays for (tt̄ → W+ W− X) are :

➢ both W's into e/μ : the golden channel, but rare;

➢ only one W into e/μ : more common, less easy;

➢ both W's into quarks (i.e. jets) : most common, difficult;

➢ (one or more)  in the final state : 's → almost
impossible with present technology.
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The t quark : discovery (1992-4)
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main tools for tt̄ events at Tevatron (1992-4) :

• multibody final states;

• lepton id (e±, μ±);

• secondary b vertices;

• mass fits.



The t quark : results (1992-4)
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• in may 1994, with 20 pb-1 of data, the 
CDF collaboration was able to claim the 
top "evidence" (3) and, one year after, 
its "discovery" (5);

• [for the latest results on top, see
Coll.Phys. § LHC].
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data before b-tag
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Summary
Finally, a simple table with all the quarks and their quantum
numbers [antiquarks have same I and opposite B, Q, I3, S, C, B,
T]:

d u s c b t

B : baryon number ⅓ ⅓ ⅓ ⅓ ⅓ ⅓

Q : electric charge −⅓ +⅔ −⅓ +⅔ −⅓ +⅔

I : Isospin ½ ½ 0 0 0 0

I3 : Isospin 3-component −½ +½ 0 0 0 0

S : strangeness 0 0 −1 0 0 0

C : charm 0 0 0 +1 0 0

B : bottomness 0 0 0 0 −1 0

T : topness 0 0 0 0 0 +1

Gell-Mann − Nishijima (revised) formula : Q = I3 + ½ (B + S + C + B + T).
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conventional rules:

• in Gell-Mann−Nishijima
all +ve;

• I3 −ve for d / +ve for u;

• S/B −ve for s/b;

• C/T +ve for c/t;

(if different rule, please 
stay consistent).
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End of chapter 3

End
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