13° Topical Seminar on Innovative Particle and Radiation Detectors 7-10 October 2013, Siena, Italy

Study of the performance of the MicroMegas chambers for the ATLAS muon spectrometer upgrade

Cesare Bini

Sapienza Università and INFN, Roma

On behalf of the **Muon ATLAS** collaboration

and of the **MAMMA**(*) collaboration

(*) Muon Atlas MicroMegas Activity

6

4 ns

9

3-7 mm

2-6 mm(R)

544 (606)

3588

318k

2

TGC

trigger

trigger

Upgrade New Small Wheel: motivations

Sizeable decrease of MDT efficiency and resolution above the design luminosity \rightarrow "Tube size" \approx 3 cm \times 1 m \times 750 ns; \rightarrow Large ion evacuation time For L \approx 5 \times 10³⁴ cm⁻²s⁻¹ >1 MHz/Tube > 50% drop in chamber efficiency

High *fake rate* with present endcap trigger \Rightarrow R(p_T>20 GeV)=51 kHz (@ 3×10³⁴,14 TeV) A factor 3 reduction of trigger rate with NSW (95% fake \Rightarrow 10% fake) \Rightarrow R(p_T>20 GeV)=17 kHz (@ 3×10³⁴,14 TeV) compatible with bandwidth requirement.

Upgrade New Small Wheel: layout

- •16 sectors per wheel (8 large and 8 small): total detector diameter \approx 10 m;
- 2 technologies: **sTGC** (small Thin Gap Chambers) and **MM** (MicroMegas)
- 8 MM and 8 sTGC layers: trigger and tracking provided by both detectors
- MM quadruplet configuration with two back-to-back doublets.

MicroMegas for NSW - I

- 1. Tracks are expected to be at angles in the range $8 \div 35$ deg. \rightarrow µTPC reconstruction mode has to be used (see below).
- 2. High flux of heavily ionizing particles (>10³ e⁻) at LHC: effect of sparks (due to the required high amplification gain $\approx 10^4$) to be reduced \rightarrow resistive anode strips above read-out strips.
- 3. A magnetic field of up to 0.3 T is present in the NSW region with different orientations \rightarrow methods are studied to take into account Lorentz angle effects.
- 4. Strip positions have to be known with precisions of O(50 μ m) \rightarrow construction procedure should guarantee such a precision and alignment tools should be foreseen.

Specific tests for each point are described in the following.

MicroMegas for NSW - II

- Gas Mixture: $Ar(93\%) CO_2(7\%)$
- Drift velocity $\approx 5 \text{ cm}/\mu \text{s} \rightarrow \text{Maximum Drift Time} = 100 \text{ ns}$
- Strip pitch = 400 μ m, strip width = 300 μ m
- HV configuration: mesh at ground, cathode -300 V, strips +550 V
- Resistive strips to make
 "inoffensive" the sparks
- 2 nd coordinate through stereo strips: in half planes the strips are tilted by 3° providing 2 nd coordinate at O(cm) level.

MicroMegas for NSW - III

-- Construction procedure under study.
A new construction method will be
adopted (not "bulk-micromegas"):
the mesh is glued on the drift panel;
then is glued on the strip panel.

-- Read-out through VMM electronics (validation in progress of first prototypes) a 64-channel front-end chip developed for sTGC and MM for tracking and triggering.

Summary of tests done on prototypes

- Test-beam at CERN-H6 (120 GeV pions/muons)
 - measurement of efficiency
 - measurement of space resolution in the full angular range (validation of the μTPC operation mode)
- Test-beam with chambers in magnetic field at CERN-H2 (120 GeV pions/muons) and at DESY (1÷5 GeV electrons)
 - measurement of the Lorentz angle and validation of simulation results;
 - measurement of the space resolution in magnetic fields up to 1 T;
- Irradiation tests with *neutrons*, γ s, α s at Saclay
 - equivalent of 10 years of HL-LHC simulated
 - prototypes tested on beam at CERN-H6 after irradiation

All tests done using APV25 electronics read-out through SRS

Test-Beam set-up 2012-2013

8 chambers 10x10 cm² x-y view 400 μ m pitch operated with Ar-CO₂ gas mixture

July-September 2012 \rightarrow CERN H6 (120 GeV pions)

- -- Tests and validation of μTPC mode with APV25
- -- First test of VMM1 chip.
- -- First tests on large size MM 1x1m²

Results: chamber efficiency

- Efficiency is determined by tracking on all chambers apart from hand by booking hnocluster_T3
- for hits in the remai^{Entries} 776 for hits in the remai^{Entries} 2.519 chamber.
- Global 1-2% inefficiencies mostly due to the "pillars" (towers with 2.5 mm pitch
 and 300 µngudie Positive in where

the mesh is held). Dead Area = $\pi (0.3/2)^2/2.5^2 = 1.1\%$

774 .058 .589

60

50

40

30

20

10

0

Results: space resolution - I

- X coordinate obtained:
 - charge centroid
 - μTPC (position at half gap after tracklet fit Z=mX+c)
- after tracklet fit Z mA + c) • The two values of X are $X_{half} = \frac{Z_{half} - c}{m}$ combined to improve the resolution especially in the 10° region (where the two methods provide comparable resolutions)
- Resolution extracted from the difference between two chambers (due to the negligible effect of the beam divergence)

Results: space resolution - II

- μTPC mode gives the best resolution above 10°
- Resolution below 100 μ m in the full angular range of NSW
- Combination improves resolution at small angles due to an observed anti-correlation between X_{cent} and X_{half}

Results: Magnetic Field - I

B component orthogonal to **E** directly affects the charges drift \rightarrow systematic δx on position $\delta x = \frac{d}{2} \tan \alpha_L \approx B(T) \times 2.8 mm$ The Lorentz angle α_L measured vs **B** is in agreement with simulations (based on Garfield)

Typical values of the Lorentz angles expected are $<20^{\circ}$ \rightarrow systematics at O(100 µm)

Results: Magnetic field - II

MM back-to-back configuration: - the average point measured in the doublet is "systematic-free" due to the symmetry.

(provided *B* is uniform in the doublet) Angle corrections based on the knowledge of **B** are also possible.

(by combining

 X_{cent} and X_{half})

Results: irradiation tests - I

Extensive program of irradiation of small prototype $(10 \times 10 \text{ cm}^2)$ at Saclay in 2012 General strategy:

- \rightarrow 5÷10 years HL-LHC equivalent simulated
- \rightarrow high spark rate simulated with α particles
- → two identical chambers: one irradiated and one not irradiated; both tested after irradiation at H6 beam @ CERN

Irradiation with	Charge Deposit (mC/cm ²)	HL-LHC Equivalent	Results
X-Ray	225	5 HL-LHC years equivalent	No evidence of ageing
Neutron	0.5	10 years HL-LHC years equivalent	No evidence of ageing
Gamma	14.84	10 years HL-LHC years equivalent	No evidence of ageing
Alpha	2.4	5 x 10 ⁸ sparks equivalent	No evidence of ageing
16			

Mechanical tests

• The dimensions of the chambers have been defined.

RMS below 20÷30 \mum obtained in prototype panels of 1÷2 m² size

Mechanical tests are ongoing to define a construction procedure providing a planarity at $O(50 \ \mu m)$

Planarity measurements with CMM-Machine on prototype panels.

18

Summary and Outlook

- The MicroMegas chambers have been chosen for the upgrade of the ATLAS muon spectrometer in the forward region.
- Tests done on prototypes show that these detectors provide the required performance in the expected high rate environment.
- Now the mainstream of this work is:
 - to go to very large surface detectors
 - to prove that on such surfaces the mechanical properties are mantained
 - to define and start a serial production for installation in 2018.

Table 5.1: Main MM detector and operating parameters.

Item/Parameter	Characteristics	Value
Mesh	Stainless steel	$325 \ lines/inch$
	separate from readout board	
Amplification gap		$128\mu{ m m}$
Drift/conversion gap		5 mm
Resistive strips	Interconnected	$ m R = 10 ext{}20 m M\Omega hm/cm$
Readout strip pitch		$0.425 - 0.445 \mathrm{mm}$
Stereo angle	4/8 layers	$\pm 1.5^{\circ}$
Total number of strips		$2.1 \mathrm{M}$
Gas	Ar:CO ₂	93:7
HV on resistive strips	positive polarity	$550\mathrm{V}$
Amplification field		$40\mathrm{kV/cm}$
Drift field		$600\mathrm{V/cm}$

VMM electronics

23

APV25 READ-OUT – TIME AND CHARGE – TIME RESOLUTION

Timings and Amplitudes measured for each hit-strip applying a fit function to the sampled shaper output values

0.6437

0.06623

10

ΔT [25ns]

APV25 response and precision of the fit

MAGNETIC FIELD IN THE NEW SMALL WHEEL

- The MM chambers of the NSW will operate in a magnetic field with large variations and values up to about 0.3 T, with different orientations with respect to the chamber planes but a sizable component orthogonal to the MM electric field.
- The effect of the magnetic field on the detector operation has been studied with test beam data and simulations.

OVERVIEW OF AGEING TESTS

OVERVIEW OF AGEING TESTS

 X-Ray Accumulated charge: Exposure: 918 mC for 4 cm² in 21.3 effective days
 225 mC/cm² Vs 32 mC/cm² estimated for 5
 YMESS effective evolution and gain control measurements of non-exposed detector (connected in the same gas

line in parallel)

 Neutron Irradiation: flux ~8x10⁸ n/cm²/sec; Energy: 5 to 10 meV At Orphee ~ 3x10¹² n/cm²/hour which is about 2 HL-LHC years

Mesh current during the different neutron irradiation periods

• Gamma Irradiation:

⁶⁰Co exposure between March 22nd and April 11th 2012.

Total exposure time : 480 hours Total integrated charge : 1484 mC Mean mesh current : 858.4 nA More than 5 years of HL-LHC

Mesh current evolution with a zoomed plot of humidity measurements taken at the COCASE facility

