IL PROGETTO NEW SMALL WHEEL NEL QUADRO DELL'UPGRADE DI ATLAS A LHC

NAPOLI - 7 NOVEMBRE 2016

15/11/16

SOMMARIO

- 1. Programma a lungo termine di ATLAS a LHC
 - L'esperimento ATLAS a LHC: run1 e run2 e prospettive di upgrade
 - Il caso della fisica del bosone di Higgs
 - Lo spettrometro a muoni dell'esperimento ATLAS: stato attuale e prospettive di upgrade

2. Il progetto New Small Wheel (NSW) e le camere MicroMegas

- Motivazioni e Layout
- Principio di funzionamento delle camere MM per la NSW
- Il Modulo0 SM1
- Stato del progetto e contributo INFN

L'ESPERIMENTO ATLAS AD LHC: RUN1/2

			- 50 _E
	Run1	Run2	45 ATLAS Online Luminosity
Years	11-12	15	$0^{\circ} 40$ - 2012 pp $\sqrt{s} = 8$ TeV 35 - 2015 pp $\sqrt{s} = 13$ TeV
c.o.m. energy (TeV)	7 → 8	13	2016 pp √s = 13 TeV
Peak luminosity (cm ⁻² s ⁻¹)	7×10 ³³	1.37×10 ³⁴	
Int. Luminosity (fb ⁻¹)	25	40	
Interbunch (ns)	50	25	
<#collisions/crossing>	21	25	
• Run1:			Jan Apr Jul Oct Month in Year

- Osservazione del bosone di Higgs a m_H=125 GeV e misura delle sue proprietà (massa, spin-parità, couplings)
- Ricerche di fisica oltre il modello standard fino al TeV
- Misure di precisione di Modello Standard.
- Run2 in corso (fino a tutto il 2018)

PROGRAMMA LHC (A LUNGO TERMINE)

4

HIGGS: RISULTATI RUN1 (ATLAS+CMS)

1. Misura della massa: (Phys.Rev.Lett. 114, 191803)

	ATLAS	CMS			
H → 41	$124.51 \pm 0.52 \pm 0.06$	$125.6 \pm 0.4 \pm 0.2$			
Н→үү	$125.98 \pm 0.42 \pm 0.28$	$124.70 \pm 0.31 \pm 0.15$			
Combination	$125.36 \pm 0.37 \pm 0.18$	$125.02 {}^{+0.26}_{-0.27} {}^{+0.14}_{-0.15}$			
ATLAS + CMS	125.09 ± 0.21 (stat) ± 0.11 (scale) ± 0.02 (other) ± 0.01 (theory)				

2. Fit degli accoppiamenti: (JHEP 08 (2016) 045)

PROSPETTIVE DI FISICA DELL'HIGGS AD LHC

- LHC Run2: 13 14 TeV 100 fb⁻¹: fine 2018
 - Osservazione di H $\rightarrow \tau \tau$, bb ATLAS e CMS independentemente;
 - Osservazione di VBF and VH ATLAS e CMS independentemente;
 - Evidenza di ttH
- LHC Run3: 14 TeV 300 fb⁻¹: fine 2023
 - Probabile osservazione di ttH
 - Evidenza di $H \rightarrow \mu \mu$
 - Misura dei singoli coupling al livello del ≈10 %
- **HL-LHC**: 14 TeV 3000 fb⁻¹: >2030...
 - Osservazione di ttH
 - Osservazione di $H \rightarrow \mu \mu e H \rightarrow Z \gamma$
 - Misura dei couplings a livello di pochi %
 - Probabile evidenza di produzione HH
 - Probabile sensibilità per SM $\Gamma_{\rm H}$ con metodo indiretto

L'ESPERIMENTO ATLAS - UPGRADE

In generale:

- -- "invecchiamento" rivelatori ed elettronica
- -- aumento rate

Principali upgrade previsti ATLAS LS2:

> New Small Wheel Integrazione NSW nella logica di trigger Upgrade elettronica calorimetro LAr Completamento Fast Tracker

LS3

New Silicon Tracker Upgrade foto-rivelatori calorimetro adronico Nuova architettura del trigger Upgrade elettronica MDT/RPC Nuove stazioni spettrometro µ

UPGRADE SPETTROMETRO A MUONI

NEW SMALL WHEEL: MOTIVAZIONI

Attesa diminuzione di **efficienza e** aumento di risoluzione **MDT** oltre la luminosità di progetto \rightarrow "Tube size" \approx 3 cm \times 1 m \times 750 ns; \rightarrow @ 7 \times 10³⁴, 14 TeV \rightarrow \approx 4 kHz/cm² >1 MHz/Tubo \approx 1 /750 ns > 50% drop in chamber efficiency

Trigger μ endcap dominato **da fake muons** \Rightarrow R(p_T>20 GeV)=60 kHz (@ 3×10³⁴,14 TeV) Necessaria una riduzione di un fattore 3 \Rightarrow R(p_T>20 GeV)=21 kHz (@ 3×10³⁴,14 TeV) (10% fakes) compatibile con bandwidth "**trigger di puntamento**"

NEW SMALL WHEEL: LAYOUT

•16 settori per wheel (8 large e 8 small): diametro totale \approx 10 m;

- 2 tecnologie: **sTGC** (small Thin Gap Chambers) e **MM** (MicroMegas)
- 8 piani MM e 8 piani sTGC: trigger e tracking forniti da ambedue

MICROMEGAS – ORGANIZZAZIONE E IMPEGNO INFN

MICROMEGAS: PRINCIPIO DI FUNZIONAMENTO - II

Linee di forza del campo elettrico nella zona della mesh Andamento del guadagno in funzione Della gap di lettura

Elevato electric field ratio:

→ La mesh è "trasparente" agli elettroni

→ Gli ioni creati nella avalanche sono raccolti nella mesh (entro \approx 100 ns) "Plateau" di guadagno (10⁴ ÷10⁵) intorno a d = 100 µm

15/11/16

RISULTATI SU PROTOTIPI 10X10 CM2

Prototipi 10x10 cm² costruiti e testati al CERN (coll. MAMMA)

Alto rate aspettato: necessità di ridurre la probabilità di scariche mantenendo un guadagno ≈10⁴

 \rightarrow anodo con strip resistive

(≈20 MΩ/cm; ≈1MΩ/□)

MICROMEGAS PER LA NSW - II

Estendere la tecnologia a camere di **grandi dimensioni** (2 ÷ $3m^2$) mantenendo **la precisione meccanica richiesta** ($30 \div 80 \mu m$) \rightarrow nuova tecnica di costruzione

5 pannelli planari (RMS<40μm) spessore 1 cm; superficie 2 m²: 2 RO panels (con RO PCB) 3 Drift panels + mesh tesa

Tecnica di assemblaggio: floating mesh

IL MODULO0 SM1 – LA COSTRUZIONE

Primavera 2016: i siti INFN costruiscono la prima camera full-size: il Modulo0

Table for mesh stretching and transfer frame in Roma3

Vertical assembly in Frascati

15/11/16

IL MODULO0 SM1 – IL TEST-BEAM - I

Misure su fascio di pioni da 180 GeV nelle condizioni "standard"

- -- Miscela Ar/CO₂ (93%-7%) @ 20 l/hr
- -- HV(ampl) = 580 V, HV(drift) = 300 V
- -- Elettronica APV25 (non la finale)

Obiettivo: validare il funzionamento del primo Q-pletto MM di 2m²

15/11/16

IL MODULO0 SM1 – IL TEST-BEAM - II

Risultati preliminari solo per tracce perpendicolari (centroide di carica)

CONCLUSIONI E PROSPETTIVE

- Nei prossimi decenni LHC costituirà ancora e a lungo la "frontiera dell'energia" della Fisica delle Particelle Elementari
- L'esperimento ATLAS si sta organizzando per rinnovarsi al fine di raccogliere la sfida dell'alta luminosità.
- In questo contesto lo spettrometro a muoni di ATLAS verrà aggiornato con un ampio contributo INFN in particolare con la costruzione delle nuove camere in avanti (NSW) che costituiscono anch'esse una vera sfida tecnologica.

HIGGS: RISULTATI FINALI RUN1- I

Misura della massa: Combinazione ATLAS+CMS (Phys.Rev.Lett. 114, 191803)

	ATLAS	CMS			
H → 41	$124.51 \pm 0.52 \pm 0.06$	$125.6 \pm 0.4 \pm 0.2$			
Н→үү	$125.98 \pm 0.42 \pm 0.28$	$124.70 \pm 0.31 \pm 0.15$			
Combination	$125.36 \pm 0.37 \pm 0.18$	$125.02 {}^{+0.26}_{-0.27} {}^{+0.14}_{-0.15}$			
ATLAS + CMS	125.09 ± 0.21 (stat) ± 0.11 (scale) ± 0.02 (other) ± 0.01 (theory)				

HIGGS: RISULTATI FINALI RUN1 - II

Fit degli accoppiamenti: Combinazione ATLAS+CMS (JHEP 08 (2016) 045)

HIGGS: "RISCOPERTA" A 13 TEV

Osservazione del bosone di Higgs nel canale $H \rightarrow ZZ^* \rightarrow 4I$ a 13 TeV (ATLAS-CONF-2016-081) + Scaling della Sezione d'urto di produzione

PRECISIONE ASPETTATA: SIGNAL STRENGTH

canale	Prec. (%) 100 fb ⁻¹	Prec. (%) 300 fb ⁻¹		Prec. (%) 3000 fb ⁻¹	
ttH H → γγ	~65	38	36	17	12
ttH H→ZZ*→41	~85	49	48	20	16
VBF H→γγ	~80	47	43	22	15
VBF H \rightarrow ZZ* \rightarrow 41	~60	36	33	21	16
Н→μμ	~70	39	38	16	12
Η→ττ	~18	14	8	8	5
H→bb	~20	14	11	7	5
Н→үү	~15	12	6	8	4
H → 41	~15	11	7	9	4
H → 41	~15	11	7	7	4

ATLAS: incertezze sperimentali e teoriche; solo incertezze sperimentali CMS: incertezze sperimentali e teoriche; inc. sper.∝ 1/√L e ½ inc. teor.

15/11/16

"Radiografia" di precisione del Modello Standard

- @7x10³⁴cm⁻2s⁻¹ → 3.6 kHz/cm² su MDT → 1.5 MHz/ tubo
- Δt (tubo) =750 ns \rightarrow r_{max}=1/ Δt = 1.3 MHz/tubo

Figure 2.2: a) Measured hit rate in the region of the Small Wheel for $\mathcal{L} = 9.6 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ at $\sqrt{s} = 7 \text{ TeV}$ in the CSC and MDT chambers as function of the radial distance from the beam line. b) Extrapolated hit rate in the CSC and MDT regions for a luminosity of $3 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$] at $\sqrt{s} = 7 \text{ TeV}$ as a function of the radial distance from the beam line. Also indicated is the range of tube rates of 200-300 kHz.

Figure 2.6: η distribution of Level-1 muon signal ($p_{\rm T} > 10 \,{\rm GeV}$) (L1_MU11) with the distribution of the subset with matched muon candidate (within $\Delta R < 0.2$) to an offline well reconstructed muon (combined inner detector and muon spectrometer track with $p_{\rm T} > 3 \,{\rm GeV}$), and offline reconstructed muons with $p_{\rm T} > 10 \,{\rm GeV}$.

MicroMegas construction: Read-out boards and resistive strips

- Board dimensions: from 45x30 up to 45x220 cm²
- 1022 strips/boards
- Readout strips pitch: 425 or 450 mm
- Pillars height: 128 µm
- Several types of alignment masks

IPRD16 - Siena 3-6 October 2016

STGC STRUCTURE

- The basic sTGC structure consists of a grid of gold-plated tungsten wires sandwiched between two resistive cathode planes at a distance of 1.4mm from the wire plane
- The precision cathode plane has strips with a 3.2mm pitch for precision readout relative to a precision brass insert outside the chamber, and the cathode plane on the other side has the pads for triggering
- The gap is provided using 1.4mm±20µm precision frames glued to the cathode

boards

IPRD16 - Siena 3-6 October 2016

sTGC structure

- Pad readout provide fast pre-trigger to determine the strip to be read
- Precision strips for precision muon tracking reconstruction at level of 100µm
- High efficiency at high background rate

IPRD16 - Siena 3-6 October 2016

sTGC working conditions

- sTGC chambers are working on n-Pentane/CO2 (45% / 55%) gas mixture
- This mixture has three main properties:
 - High gain
 - Quenching of photons
 - Clean the chamber
- Nominal operational voltage 2800V
- The cathode plane is made by the resistive layer of graphite with a surface resistivity of $\sim 100 k\Omega/\Box$ (200k Ω/\Box for outer chambers)
- All quadruplets have trapezoidal shapes with surface area up to 2m²