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“Logic” of an EPP experiment - I 
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�  Collision or decay: è process to look at 
�  Initial state (proj. + target) OR (decaying particle); 
�  Final state X = all particles produced 

�  Quadri-momentum conservation should always be at work 
�  In principle there is no need to measure ALL final state particles: a 

final state could be: à µ+µ- + X (“inclusive” search) 
�  Possible final states: 

�  a + b à a + b : elastic collision (e.g. ppà pp) 
�  a + b à X : inelastic collision (e.g. ppàppπ0) 

�  The experimentalist should set-up an experimental procedure to 
select “events” with the final state he is searching, in such a way 
to count the number NX of final states X. 



Why count events ? 
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�  Why count events ? 
�  Because QFT based models allow to predict quantities (like 

cross-sections, decay widths  and branching ratios, see 
later) that are proportional to “how probable is” a given final 
state. 

Example of collision: 
X == q qbar g 

Example of decay: 
X == e νe νµ	





Event: a “photo” of a collision/decay 
Inclusive Event: measure 
the electron only 

Exclusive Event: measure 
all particles to “close” the 
kinematics 
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“Logic” of an EPP experiment - II 
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�  An ideal detector allows to measure the quadri-momentum 
of each particle involved in the reaction. 
� Direction of flight; 
�  Energy E and/or momentum modulus|p|; 
� Which particle is (e.g. from independent measurements of E 

and |p| m2=E2-|p|2) è Particle ID 
�  BUT for a real detector: 

� Not all quadri-momenta are measured: some particles are out 
of acceptance, or only some quantities are accessible, 
inefficiencies; 

� Measurements are affected by resolution 
�  Sometimes the particle nature is “confused” 



“Logic” of an EPP experiment - III 
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�  Selection steps: 
1.  TRIGGER selection 

�  Retain only “interesting events”: from bubble chambers to electronic 
detectors 

�  è “logic-electronic” eye: decides in a short time O(µs) if the event is ok 
or not. 

�  In some cases (e.g. pp), it is crucial since interactions are so probable… 
�  LHC: every 25 ns is a bunch crossing giving rise to interactions: can I 

write 40 MHz on “tape” ? A tipical event has a size of 1 MB è 40 TB/s. Is 
it conceivable ? And how many CPU will be needed to analyze these data ? 
At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every 
200000 ! 

�  “pre-scale” is an option 
�   e+e-: the situation is less severe…  



“Logic” of an EPP experiment - IV 
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2.  OFFLINE selection: choice of a set of discriminating 
variables 

�  cut-based selection 
�  discriminating variables selection 
�  multivariate classifier selection 

3.  The selection strategy is a crucial part of the experimentalist 
work: defined and optimized using simulated data samples. 



“Logic” of an EPP experiment - V 
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�  Simulated samples of events: the Montecarlo. 
�  “Physics” simulation: final state with correct kinematic distributions; 

also dynamics in some cases is relevant. 
�  “Detector” simulation: the particles are traced through the detector, 

interactions, decays, are simulated. 
�  “Digitization”: based on the particle interactions with the detector, 

signals are simulated with the same features of the data. 
�  è For every interesting final state we have MC samples with the 

same format of a data sample. It can be analyzed with the same 
program. In principle one could run on a sample without knowing 
if it is data or MC. 

�  To design a “selection” strategy for a given searched signal one 
needs: signal MC samples and background MC samples. 



“Logic” of an EPP experiment - VI 
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�  End of the selection: CANDIDATES sample Ncand 

�  Which relation is there between Ncand and NX ? 
�  Efficiency: not all searched final states are selected and go to the candidates 

sample.(Trigger efficiencies are particularly delicate to treat.) 
�  Background: few other final states are faking good ones and go in the 

candidates sample. 

�  where:  
�  ε = efficiency (0<ε<1) 
�  Nb = number of background events 

�  Estimate ε and Nb is a crucial work for the experimentalist and can be 
done either using simulation (this is tipically done before the 
experiment) or using data themselves. 

 

€ 

εNX = Ncand − Nb



Event counting: a Poisson variable - I 
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�  What is a Poisson process ? If we can divide the time in small 
intervals δti such that 
�  p(n=1, δti) << p(n=0, δti) 
�  p(n=1, δti) = α δti 
�  p(n=1, δti) uncorrelated with p(n=1, δti+1) 

�  If this happens, given a time interval Δt the number of counts 
n follows the Poisson distribution (λ is the only parameter) 

p(n / λ) = λ
ne−λ

n!
E[n]= λ
var[n]= λ



Event counting: a Poisson variable - II 

07/10/14 Experimental Elementary Particle Physics 60 

�  If events come in a random way (without any time structure) 
the event count N is a Poisson variable. 

� è if I count N, the best estimate of λ is N itself and the 
uncertainty is √N 

�  If N is large enough (N>20) Poisson à Gaussian. è N±√N 
is a 68% probability interval for N. 

�  If N is small (close to 0) the Gaussian limit is not ok, a 
specific tretment is required (see later in the course). 



Efficiency: a binomial variable - I 
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�  Bernoulli process: success/failure N proofs, 0<n<N, p = 
success probability. p == ε	



P(n / N, p) = (n
N )pn (1− p)N−n

E n[ ] = Np
var n[ ] = Np(1− p)

•  Inference: given n and N which is the best estimate of p ?  
And its uncertainty ? 

ε = p̂ = n
N

σ ε( ) =
σ n( )
N

=
1
N

n
N
1− n

N
"

#
$

%

&
'



Efficiency: a binomial variable - II 
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�  So: I generate Ngen “signal” events. If I select Nsel of these 
events out of Ngen, the efficiency is:	



ε =
Nsel

Ngen

σ ε( ) =
σ Nsel( )
Ngen
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Background Nb  
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�  Simulation of Ngen “bad final states”; Nsel are selected. What 
about Nb ?  

�  We define the “rejection factor” R = Ngen/Nsel > 1 
�  We also need a correct normalization in this case: we need to 

know Nexp = total number of expected “bad final states” in 
our sample.  

Nb = Nsel
Nexp

Ngen

=
Nexp

R

σ (Nb ) =σ (Nsel )
Nexp

Ngen

= Nsel
Nexp

Ngen

=
Nexp

RNgen



Summarizing 

07/10/14 Experimental Elementary Particle Physics 64 

�  Ncand: poissonian process è the higher the better 
�  ε: binomial process è high Ngen and high e 
�  Nb: normalized ≈poissonian process è high R and high Ngen, 

low Nexp 

�  Moreover: unfortunately efficiency and background are 
correlated… 



Efficiency-background relation 
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Example: selection of b-jets in ATLAS. 
 “b-jet” is the signal; 
 “light jet” is the background. 

MC samples of b-jets and light-jets 
Application of 5 different selection recipes 
each with a “free-parameter”. 
For each point I evaluate  

 - b-jet efficiency  
  = Nsel/Ngen (b-jet sample) 
 - light-jet rejection  
  = Ngen/Nsel (light-jet sample) 

 
Choice of a working point, “compromise”. 
Unlucky situation: if you gain in efficiency you increase your bckg and viceversa… 



How to optimize a selection ? - I 
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�  Perfect selection is the one with  
�  ε = 1 
�  Nb = 0 

�  Intermediate situations ? Assume a given ε and a given Nb.  
 
 
�  Which statistical uncertainty have I on NX ?  

�  Assume a Poisson statistics to describe Ncand negligible uncertainty on 
ε and on Nb.Minimize the uncertainty on Ncand-Nb. We call: 

�  N = Ncand 

�  B =Nb  
�  S=N-B 

€ 

NX =
Ncand − Nb

ε

€ 

σ 2
S( ) =σ 2

N( ) +σ 2
B( ) = N +σ 2

B( ) ≈ N

S

σ S( )
=

S

S + B
≈

S

B



How to optimize a selection ? - II 
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�  This is the “significativity” of the signal that can be obtained. 
The higher is S/σ(S) ≈ S/√B , the larger is the number of 
std.dev. away from 0 of my measurement of S  
�   S/√B < 3 probably I have not osserved any signal (my 

candidates can be simply a fluctuation of the background) 
�  3 <S/√B< 5  probably I have observed a signal (probability of a 

background fluctuation very small), however no definite 
conclusion, more data needed. 

�  S/√B> 5 observation is accepted. 

�  NB: S/√B is an approximate figure, it relies on some 
assumptions (see previous slide).  



How to optimize a selection ? - III 
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�  Let’s define a more elaborated “score function” (widely used today).  
�  Counting experiment: S and B are expected values of signal and background, 

N is my count. We evaluate the likelihoods in the hypothesys of S+B and only 
B and take the “likelihood ratio” 

 
 

�  Suppose now to count N=S+B and take the square root of the -2logR 
evaluated above: 

�  This the so called “score function”: significativity of the signal hypothesys. 
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Normalization 
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�  In order to get quantities that can be compared with theory, once 
we have found a given final state and counted the number of 
events, we need to normalize to “how many collisions” took place. 

�  Measurement of: 
�  Luminosity (in case of colliding beam experiments); 
�  Number of decaying particles (in case I want to study a decay); 
�  Projectile rate and target densities (in case of a fixed target 

experiements). 

�  Several techniques to do that, all introducing additional 
uncertainties. 

�  Absolute vs. Relative measurements. 



The simplest case: rate measurement 
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�  Rate: r = counts /unit time (normally given in Hz). We 
count N in a time Δt (neglect any possible background) and 
assume a Poisson process with mean λ  

�  NB: the higher is N, the larger is the absolute uncertainty on 
r but the lower the relative uncertainty. 

 
�  Only for large N (N>20) it is a 68% probability interval. 

r = λ
Δt

=
N
Δt
±

N
Δt

σ (r)
r

=
1
N



Cosmic ray “absolute” flux 
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�  Rate in events/unit surface and time 
�  My detector has a surface S, I take data for a time Δt with a 

detector that has an efficiency ε  and I count N events 8again with 
no background). The absolute rate r is: 

�  Uncertainty: I combine “in quadrature” all the potential 
uncertainties. Why in quadrature ???  

�  Distinction between “statistical” and “systematic” uncertainty 
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Not only event counting 
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�  Many quantities are measured (particle properties, e.g. 
particle mass). 

�  BUT in most cases they are obtained from a FIT to a data 
distribution. So, you divide events in bins and extract the 
quantity as a fit parameter è the event counting is still one 
major source of uncertainty è the uncertainty on the 
parameter depends on the statistics. 

�  Example: 
� Measure the mass of a “imaginary” particle of M=5 GeV. 
� Mass spectrum, gaussian peak over a uniform background 
�  FIT in three different cases: 103, 104 and 105 events selected 



Mass uncertainty  
due to statistics 

07/10/14 Experimental Elementary Particle Physics 73 

Observations: 
 à Poissonian uncertainty on each bin 
 à Reduce bin size for higher statistics 
 à Fit function = A+B*Gauss(M) 
 à Free parameters: A,B,M (fixed width) 
 à The fit is good for each statistics 

Results 
    N=103 events:  
 Mass = 5.22±0.22 GeV,  χ2 =  28 / 18 dof 
    N=104 events:  
 Mass = 5.01±0.06 GeV,  χ2 =  38 / 48 dof 
    N=105 events:  
 Mass = 5.02±0.02 GeV,  χ2 =  83 / 98 dof 

Ev
en

ts
 

Mass (GeV) 

20 bins 

50 bins 

100 bins 



Summarizing 
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�  Steps of an EPP experiment (assuming the accelerator and 
the detector are there): 
� Design of a trigger  
� Definition of an offline selection 
�  Event counting and normalization (including efficiency 

and background evaluation) 
�  Fit of “candidate” distributions 

�  Uncertainties 
�  Statistical due to Poisson fluctuations of the event counting 
�  Statistical due to binomial fluctuations in the efficiency 

measurement 
�  Systematic due to non perfect knowledge of detector effects. 


