The Logic of an EPP experiment
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“Logic” of an EPP experiment - |

* Collision or decay: = process to look at
® Initial state (proj. + target) OR (decaying particle);
® Final state X = all particles produced

® Quadri-momentum conservation should always be at work

e |n principle there is no need to measure ALL final state particlesz a
final state could be: =2 u*w + X (“inclusive” search)

® Possible final states:
® a+b > a+b:elastic collision (e.g. pp= pp)
e a+b = X : inelastic collision (e.g. pp=2ppn”)
® The experimentalist should set-up an experimental procedure to

select “events” with the final state he is searching, in such a way
to count the number N, of final states X.
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Why count events ?

° Why count events ?

* Because QFT based models allow to predict quantities (like
cross-sections, decay widths and branching ratios, see

later) that are proportional to “how probable is” a given final

state.
Example of collision: Example of decay:
X::quarg _ XZZGVeVM

e
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Event: a “photo” of a collision/decay

Inclusive Event: measure
the electron only
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Exclusive Event: measure
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“Logic” of an EPP experiment - |

® An ideal detector allows to measure the quadri-momentum
of each particle involved in the reaction.
® Direction of flight;
® Energy E and/or momentum modulus | p ]| ;
® Which particle is (e.g. from independent measurements of E
and |p| m’=E’-|p|?) =P Particle ID
e BUT for a real detector:

® Not all quadri-momenta are measured: some particles are out
of acceptance, or only some quantities are accessible,
inefficiencies;

® Measurements are affected by resolution

® Sometimes the particle nature is “confused”
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“Logic” of an EPP experiment - |l

e Selection steps:
1. TRIGGER selection

Retain only “interesting events’: from bubble chambers to electronic
detectors

=> “logic-electronic” eye: decides in a short time O(us) if the event is ok
or not.

In some cases (e.g. pp), it is crucial since interactions are so probable...

LHC: every 25 ns is a bunch crossing giving rise to interactions: can I
write 40 MHz on “tape” ? A tipical event has a size of 1 MB =» 40TB/s. Is
it conceivable ? And how many CPU will be needed to analyze these data ?
At LHC from 40 MHz to 200 Hz ! Only one bunch crossing every
200000 !

« » . .
pre—scale 1S an OpthIl

eTe: the situation is less severe. ..
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“Logic” of an EPP experiment - |V

2. OFFLINE selection: choice of a set of discriminating
variables

cut-based selection

discriminating variables selection

multivariate classifier selection
3. The selection strategy is a crucial part of the experimentalist

work: defined and optimized using simulated data samples.
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“Logic” of an EPP experiment -V

* Simulated samples of events: the Montecarlo.
® “Physics” simulation: final state with correct kinematic distributions;
also dynamics in some cases is relevant.

® “Detector” simulation: the particles are traced through the detector,
interactions, decays, are simulated.

* “Digitization”: based on the particle interactions with the detector,
signals are simulated with the same features of the data.
e = For every interesting final state we have MC samples with the
same format of a data sample. It can be analyzed with the same
program. In principle one could run on a sample without knowing

if it is data or MC.

e To design a “selection” strategy for a given searched signal one
needs: signal MC samples and background MC samples.
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“Logic” of an EPP experiment - Vi

* End of the selection: CANDIDATES sample N

cand

® Which relation is there between N__,and N, ?

* Efficiency: not all searched final states are selected and go to the candidates
sample. (Trigger efficiencies are particularly delicate to treat.)

® Background: few other final states are faking good ones and go in the
candidates sample.

eN, =N_  —N,

cand

® where:
® &= efficiency (0<e<1)
® N, = number of background events
* Estimate €and N, is a crucial work for the experimentalist and can be

done either using simulation (this is tipically done before the
experiment) or using data themselves.
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Event counting: a Poisson variable - |

e What is a Poisson process ? If we can divide the time in small

intervals Ot, such that

® p(n=1, 6ti) << p(n=0, 6ti)

® p(n=1, 6ti) = 6ti

 p(n=1, Ot) uncorrelated with p(n=1, 0t,,,)

e If this happens, given a time interval At the number of counts

n follows the Poisson distribution (A is the only parameter)

n_—-A
p(n/A)= re

n!
E[n]=A
var[n]= A
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Event counting: a Poisson variable - I

* If events come in a random way (without any time structure)

the event count N is a Poisson variable.

o =» if ] count N, the best estimate of A is N itself and the
uncertainty is \/N

* If Nis large enough (N>20) Poisson = Gaussian. "2 NN
is a 68% probability interval for N.

® It Nis small (close to 0) the Gaussian limit is not ok, a

specific tretment is required (see later in the course).
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Efficiency: a binomial variable - |

® Bernoulli process: success/failure N proofs, 0<n<N, p =

success probability. p==E&
P(n/N,p)=C)p"(1-p)"™
E[n]=Np
var[n|= Np(1-p)

* Inference: given n and N which is the best estimate of p?

And its uncertainty ?

£=p=—t
N
o (n) 1 |n n
ole)= = —|1-—
(¢) N JN \/ N ( N)
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Efficiency: a binomial variable - |l

® So: I generate Ngen “signal” events. If I select N_, of these

events out of N on the efficiency is:
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Background N,

¢ Simulation of N “bad final states”; N_, are selected. What

about N, 7

® We define the “rejection factor” R = Ngen/ N ,>1

se

® We also need a correct normalization in this case: we need to

know NeXp = total number of expected “bad final states” in

our sample.

N,=N,,—2¢ =

sel
N

Nexp
O(N,)= O(Nsel)N_ =

@ Experimental E]ementary Particle Physics

gen

N,

exp

sel
N

gen

N

exp

RN

gen

07/10/14

/




Summarizing

® N__.: poissonian process =>» the higher the better

cand*

® ¢&: binomial process -> high Ngen and high e

® N,: normalized ~®poissonian process -> high R and high
low NeXP

® Moreover: unfortunately efficiency and background are

correlated. ..
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Efficiency-background relation

..... IPAD«SV1

Example: selection of b-jets in ATLAS.
“b-jet”is the signal;
“light jet” is the background.

oo JetProb

w— |P3D s JalFilter

ight jet rejection

MC samples of b-jets and light-jets

.

C

Application of 5 different selection recipe
each with a “free-parameter”.
For each point I evaluate
- b-jet efficiency
=N_/N
- light-jet rejection
= Nyen/ Ny (light-jet sample)

(b-jet sample) 10,

gen

r ATLAS

d3 04 05 06 07 08 09 1
Choice of a Working point, “compromise”. b-jet efficiency

Unlucky situation: if you gain in efficiency you increase your bckg and viceversa. ..
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How to optimize a selection ? - |

® Perfect selection is the one with

e ¢ =1
o Nb o 0
® Intermediate situations ? Assume a given €and a given Nb.
N . —-N
_ d b
NX —_ can

E
e Which statistical uncertainty have lon N, ?

® Assume a Poisson statistics to describe N__, negligible uncertainty on
€ and on N,.Minimize the uncertainty on N__-N,. We call:

* N= N, 0°(S)=0*(N) +0°(B) =N +0*(B) =N
* B=N,

S S S
* S=NB o(S) VS+B B
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How to optimize a selection ? - |l

® This is the “significativity” of the signal that can be obtained.
The higher is S/0(S) = S/ VB , the larger is the number of
std.dev. away from O of my measurement of S

e S/NB<3 probably I have not osserved any signal (my

candidates can be simply a fluctuation of the background)

¢ 3 <S/\B<5 probably I have observed a signal (probability of a
background fluctuation very small), however no definite

conclusion, more data needed.

oS/ \/B> 5 observation is accepted.

e NB: S/ \/B is an approximate figure, it relies on some

assumptions (see previous slide).
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How to optimize a selection ? - |l

® Let’s define a more elaborated “score function” (widely used today).

* Counting experiment: S and B are expected values of signal and background,
N is my count. We evaluate the likelihoods in the hypothesys of S+B and only

B and take the “likelihood ratio”

~ eSS+ B)Y

N!
e_BBN
LB ==
S N N
?)‘t:L(S+B) _e (S;IV-B) =€_S(1+§)
L(B) B B

—2logR =28 - 2N10g(1 + %)

® Suppose now to count N=S+B and take the square root of the —ZIOgR

evaluated above:

A2logR(N =S +B) = \/2[(5 + B)log(l + %) - S]

® This the so called “score function”: significativity of the signal hypothesys.
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Normalization

® In order to get quantities that can be compared with theory, once
we have found a given final state and counted the number of

events, we need to normalize to “how many collisions” took place.

® Measurement of:
® Luminosity (in case of colliding beam experiments);
® Number of decaying particles (in case I want to study a decay);

® Projectile rate and target densities (in case of a fixed target

experiements).

® Several techniques to do that, all introducing additional

uncertainties.

® Absolute vs. Relative measurements.
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The simplest case: rate measurement

® Rate: r = counts /unit time (normally given in Hz). We
count N in a time At (neglect any possible background) and

assume a Poisson process with mean A
_A_N N
At At At
® NB: the higher is N, the larger is the absolute uncertainty on

r

r but the lower the relative uncertainty.

O'(r)= |
r N

® Only for large N (N>20) it is a 68% probability interval.
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Cosmic ray “absolute” flux

® Rate in events/unit surface and time

® My detector has a surface S, I take data for a time Ar with a
detector that has an efficiency € and I count N events 8again with
no background). The absolute rate r is:

N
eALS

* Uncertainty: I combine “in quadrature” all the potential

r

uncertainties. Why in quadrature 277

0 () (200 2
r N £ At S

e Distinction between “statistical”’ and “Systematic” uncertainty
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Not only event counting

e Manyv quantities are measured (particle properties, e.o.
yq P prop , €.8

particle mass).

® BUT in most cases they are obtained from a FIT to a data
distribution. So, you divide events in bins and extract the
quantity as a fit parameter =» the event counting is still one
major source of uncertainty "® the uncertainty on the
parameter depends on the statistics.

* Example:
® Measure the mass of a “imaginary” particle of M=5 GeV.
® Mass spectrum, gaussian peak over a uniform background
® FIT in three different cases: 10, 10* and 10° events selected
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: T ot || & B
Mass uncertainty o 20D '
due to statistics E +

1l
Observations: | u
—2 Poissonian uncertainty on each bin SUETORUTINONTUNN T s ¥l |
— Reduce bin size for higher statistics : e 1000
—> Fit function = A+B*Gauss(M) “F >0 bins T
—> Free parameters: A,B,M (fixed width) :j::
-2 The fit is good for each statistics 3
Results miﬂ | M
N=10° events: ‘“ﬂiﬂ{ | Wﬂ‘ B
Mass = 5.22%0.22 GeV, x* = 28 / 18 dof 1600__'""""" A
N=10* events: - i “Z%;fs 12‘2%37%

Mass = 5.0130.06 GeV, x° = 38 / 48 dof o
N=10° events: 1200

Mass = 5.02+0.02 GeV, x> = 83 / 98 dof

1000

900 -]
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Summarizing

® Steps of an EPP experiment (assuming the accelerator and
the detector are there):

® Design of a trigger
® Definition of an offline selection

* Event counting and normalization (including efficiency
and background evaluation)

e Fit of “candidate” distributions
® [Uncertainties
e Statistical due to Poisson fluctuations of the event counting

e Statistical due to binomial fluctuations in the efficiency
measurement

® Systematic due to non perfect knowledge of detector effects.
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