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These notes are based on the Experimental Elementary Particle Physics lectures given
to the students of the Laurea Magistrale in Physics starting from the year 2013-2014 at
the Sapienza Universitá, Roma.
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1. Introduction

Elementary Particle Physics (EPP) experiments typically require the analysis of large
data samples. In order to obtain physics results from such large amounts of data,
methods based on advanced statistics are extensively applied. In recent years, due to
the continuous development in computing, several statistical methods became easily
available for data analysis, and several packages have been developed aiming to provide
a platform to approach complex statistical problems.

In a typical EPP experiment, the data analysis can be roughly decomposed in two
main steps: first, out of the total amount of events contained in the data sets (all the
”triggers” according to the standard terminology), the sample of ”interesting” events has
to be selected; then, once the good sample has been obtained, the relevant quantities that
can be compared to the theory by studying the overall features of the sample have to be
extracted. This second step includes direct measurements based on event counting, and
measurements based on the analysis of the distributions of one or more variables. The
latter measurements turn out to be particularly interesting, since distributions can be
compared to theories, and estimates of physically significant parameters can be obtained.

In these lectures, the main elements of these data analysis methods are presented
and discussed with particular emphasis on their fundamental aspects rather than on
how they are implemented in the available packages. Few examples taken from recent
experiments are also illustrated.

Sect.2 summarizes without any proof, the fundamentals of the theory of the random
variables. The event selection methods are briefly described in sect.3, sect.4 describes
how to obtain the measurements based on event counting and sect.5 describe the fit
methods. The problem of extracting a small signal from a large background is discussed
in sect.7, while sect.8 describe the kinematic fits.
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2. The language of Random Variables and of Inference

2.1. Introduction. A random variable is a variable x that can assume different values
within a given interval, according to a given probability distribution. Random variables
are used in particle physics to describe experimental quantities. This happens for at
least two different reasons.

The first reason, that is common to all areas of physics, is that any measurement in
physics is characterized by intrinsic fluctuations, also said measurement errorsso that
the result has to be given as an interval of possible values. As physicists say, the result
of a measurement is affected by an uncertainty and the amount of such an uncertainty
has to be estimated by the experimentalist and given together with the result. This
implies that statistical methods have to be used to treat the results of measurements.
In particular it turns out that the best way to describe the properties of a physical
observable is to assign to it a random variable: if the measurement is repeated in the
same conditions in general different values of the physical observable are obtained. This
is a random variable.

The second reason is the intrinsically quantum behaviour of physical observables in
particle physics. When I have a collision between two particles, the quadri-momenta of
the emerging particles are not uniquely defined as in classical physics. We can predict
the distribution of the variables describing the kinematics of the final state (e.g. the
angles, or the momenta), but not the actual value in each collision. It is natural to
describe the kinematical quantities of particle physics experiments as random variables.

Each random variable is characterized by its probability distribution function or prob-
ability density function generically called pdf. Once the pdf is known a random variable
is completely assigned. We consider the measurement of a quantity x. The repetition
of the measurement gives rise to different values of x. We can do an histogram of the
measurements. This is called sample of events and is characterized by the number of
events N . By increasing N the histogram gets better and better defined, and in the limit
on N →∞ the histogram approaches the pdf f(x) of the random variable x describing
the measurement. In this limit we say that the sample approaches the population of
the variable x.

In the following the main definitions related to random variables are given together
with the properties of the random variables more frequently used in physics. Then,
the procedures to extract estimates of physical observables from the outcome of the
measurements are shortly introduced on a conceptual scheme. These procedures are
generally called statistical inference.

2.2. Discrete and continuous random variables. A random variable is discrete
when it can take only integer values. We call it in this case n, and the pdf of such variable
will be given by a function p(n) that gives the probability of any possible outcome of
n. If we call nmin and nmax the minimum and maximum value of n, the normalization
condition will be:

(1)

nmax∑
n=nmin

p(n) = 1
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If we are interested in the probability to have n in a given interval, between n1 and n2
we have to calculate:

(2) p(n1 ≤ n ≤ n2) =

n2∑
n=n1

p(n)

A random variable is continuous when it can take real values in a given interval. In
this case we call it x and xmin and xmax the minimum and maximum values of x. The
pdf is a function f(x). The sums have to be replaced by integrals. The normalization
condition is:

(3)

∫ xmax

xmin

f(x)dx = 1

and, as above, the probability to have an outcome of x in an interval, between x1 and
x2 is

(4) p(x1 < x < x2) =

∫ x2

x1

f(x)dx

An important difference between the pdfs of discrete and continuous random variables
is that while p(n) is a probability, f(x) is not a probability. f(x)dx is a probability.
This means that dimensionally the f(x) is the inverse of x and its meaning is somehow
a ”probability per units of x”. While it is perfectly meaningful to ask what is the
probability to get a given vale of n, say n it is not meaningful to ask ”what is the
probability to get x. It is meaningful on the contrary to ask ”what is the probability to
get a value in a given interval”. In the case of continuous variables only interval related
probabilities are meaningful.

2.3. Properties of the pdfs. A pdf can depend on a set of parameters, say θ. In
this case, we will write p(n/θ) and f(x/θ). A correctly defined pdf should maintain its
normalization properties for each possible values the parameters take. This implies that
in some cases the parameters are correlated (we will discuss this in the following).

The cumulative function, also called partition function, is defined in the following
way: for a discrete variable n:

(5) P (n) =

n∑
n′=nmin

p(n′)

and for a continuous variable x:

(6) F (x) =

∫ x

xmin

f(x′)dx′

From the definition it is clear that the probability to get a value in a given interval, is
related to the difference between the values of the cumulative function at the interval
boundaries (a similar formula holds for discrete variables):

(7) p(x1 < x < x2) = F (x2)− F (x1)

In many cases it can be useful to summarize the features of a given random variable by
giving one or more numbers indicating the main properties of the variable. For example
the average position or the width of the pdf. For this reason the momenta of the pdf
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are defined. From the mathematical point of view these are ”functionals” since they are
numbers depending on the shape of a function. A momentum of order k around the
point ñ or x̃ is defined as:

(8) Mk(ñ) =

nmax∑
n=nmin

(n− ñ)kp(n)

for a discrete variable n and

(9) Mk(x̃) =

∫ xmax

xmin

(x− x̃)kf(x)dx

for a continuous variable x. Particularly interesting is the case k = 1 and x̃ = 0 that
corresponds to the mean of the variable

(10) E[n] =

nmax∑
n=nmin

np(n)

(11) E[x] =

∫ xmax

xmin

xf(x)dx

Also interesting is the case k = 2 and x̃ = E[x] that corresponds to the variance of the
variable

(12) V ar[n] =

nmax∑
n=nmin

(n− E[n])2p(n)

(13) V ar[x] =

∫ xmax

xmin

(x− E[x])2f(x)dx

Momenta of order k=3, 4 are also used to classify different pdfs: the skewness coefficient
As related to the symmetry properties of the pdf, and the kurtosys coefficientAk related
to the ”gaussianity” of the pdf.

(14) As =
M (3)(E[x])

(M (2)(E[x]))3/2

(15) Ak =
M (4)(E[x])

(M (2)(E[x]))2
− 3

2.4. Multiple random variables. Many experimental situations require a description
of data based on a set of different variables simultaneously measured. The definitions
given above extend in a natural way. However the description of two or more variables is
not in general equivalent to the description of each variable independently on the others.
The possibility that the variables are correlated has to be taken in consideration. We
will see many examples of correlations in the following. Now we give the formulas to
describe them.



7

We consider for simplicity the case of two continuous variables x1 and x2, defined in
the intervals respectively a1, b1 and a2, b2. The joint pdf of the two variables is a 2D
function f(x1, x2) normalized in 2D:

(16)

∫ b1

a1

∫ b2

a2

f(x1, x2)dx1dx2 = 1

Mean and variances can be defined

(17) E[x1,2] =

∫ b1

a1

∫ b2

a2

x1,2f(x1, x2)dx1dx2

(18) V ar[x1,2] =

∫ b1

a1

∫ b2

a2

(x1,2 − E[x1,2])
2f(x1, x2)dx1dx2

The marginal pdf of x1 and x2 can be obtained by integrating on the other variable:

(19) f1,2(x1,2) =

∫ b2,1

a2,1

f(x1, x2)dx2,1

giving the projection of the 2D distribution onto one axis. But, is the knowledge of the
two marginal pdfs equivalent to the knowledge of the joint pdf ? The answer is in general
no. There is a case in which the answer is yes, and it is when the joint pdf factorizes in
a product of the functions of a single variable each:

(20) f(x1, x2) = f1(x1)f2(x2)

A quantity that determines the degree of correlation between x1 and x2 is the covariance

(21) Cov[x1, x2] =

∫ b1

a1

∫ b2

a2

(x1 − E[x1])(x2 − E[x2])f(x1, x2)dx1dx2

It is very easy to show that when the condition 20 is satisfied the covariance is zero.
When the covariance is different from zero, it means that the two variables x1 and x2
have a degree of correlation. It is also interesting to compare the definitions 18 and
21. The definition of the covariance appears as a generalization of the definition of vari-
ance. In particular the variance can be seen as the covariance of a variable with itself
V ar[x1] = Cov[x1, x1]. This observation naturally implies the introduction of a covari-
ance matrix whose diagonal terms are the single variances and the off-diagonal terms
are the actual correlations between each pair of variables. Such a matrix is symmetric
(due to the symmetry of the definition 21. A purely diagonal covariance matrix shows
that the random variables are all uncorrelated. A more convenient way to quantify the
degree of correlation between two random variables xi, xj , is to define the correlation
coefficient:

(22) ρ[xi, xj ] =
Cov[xi, xj ]√
V ar[xi]V ar[xj ]

This defines an adimensional quantity that assumes values limited between -1 and 1. ρ=0
corresponding to uncorrelated variables, ρ = ±1 correspond to maximally correlated or
anti-correlated variables.

2.5. Examples of random variables.
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2.5.1. Binomial. The binomial variable n is a discrete random variable describing the so
called Bernoulli processes. An event can give rise either to a success with probability p
or to an unsuccess with probability 1−p. We repeat it N times and we want to evaluate
the probability to have n successes. n is a random variable since if we repeat several
times the set of N trials we will have in general a different value of n. n is defined
between 0 and N , and its pdf clearly will depend on two parameters: p the probability
of the success and N the number of trials. The pdf is

(23) p(n) =
n!

N !(N − n)!
pn(1− p)N−n

with mean and variance respectively given by:

(24) E[n] = Np

(25) V ar[n] = Np(1− p)

The binomial distribution is widely used in the assessment of uncertainties of efficiencies.
Fig.1 shows the binomial distribution for N = 50 and different values of p.

Figure 1. Examples of binomial distributions for N=50 and p=0.05
(red), 0.20 (green), 0.50 (blue), 0.80 (magenta) and 0.95 (black). The
complete symmetry of the distributions between p and 1 − p is evident
together with the loss of symmetry when p is close to 0 or to 1.
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2.5.2. Poissonian. The Poissonian variable is also a discrete variable n defined between
0 and ∞. If we count the number of ”happenings” in a fixed amount of time ∆t,
which is the most general probability distribution of such number, say n ? It can be
demonstrated that, if happenings come in a completely random way without any time
structure or correlation between events, n is a Poisson variable. Its pdf is

(26) p(n) =
e−λλn

n!

with λ the only parameter. The meaning of λ is well clarified if we calculate mean and
variance of a poissonian variable. Infact we get:

(27) E[n] = λ

(28) V ar[n] = λ

So the parameter λ describes the center of the distribution and the square of its width.
The average rate of the process is given by the ratio λ/∆t. Fig.2 shows examples of
Poisson pdfs for different values of λ.

Figure 2. Examples of poissonian distributions for λ=0.5 (red), 5
(green) and 20 (blue).

2.5.3. Exponential. In case of a poissonian process characterized by a completely random
time structure in the arrival of the events, the time interval δt between a count and the
following is a random variable. It is a continuous random variable, defined between 0 and
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∞. It can be demonstrated that in the same hypotheses of the poissonian distribution,
the pdf of δt is:

(29) f(δt) =
1

τ
e−δt/τ

with τ the only parameter. Even in this case the meaning of τ is well clarified if we
calculate mean and variance of an exponential variable. We get:

(30) E[δt] = τ

(31) V ar[δt] = τ2

so that τ is at the same time the mean and the width of the distribution. For a given
poissonian process, τ is related to λ. Infact the rate r is

(32) r =
1

τ
=

λ

∆t
τ is the inverse of the rate and it is independent on the time interval ∆t chosen for the
counting. τ and r are intrinsic properties of the poissonian process. Given the rate or
equivalently the τ of the process, all is known.

2.5.4. Gaussian. Now let’s move to a different kind of problems. We consider the mea-
surement of a quantity x. The repetition of the measurement gives rise to different values
of x. What is the meaning of the pdf of x ? If we are repeating the measurement of x al-
ways in the same conditions, we expect to obtain always the same value, any fluctuation
will be attributed to random errors. In this case f(x) describes the response function
of our measuring device, let’s call it apparatus. It is what we call the resolution. In
all the other cases, f(x) will depend on the physics of x.

Let’s consider the case of what we have called a resolution function: how do we
expect the shape of the function f(x) ? If the fluctuations of the measurements can be
attributed to several independent causes the central limit theorem tells us that the
f(x) will approach a gaussian or normal function. In fact the central limit theorem
can be expressed as follows: if we have N random variables xi, each characterized by
finite means and variances E[xi] and V ar[xi], any linear combination y of these variables

(33) y =
N∑
i=1

αixi

in the limit of large N is a gaussian variable with mean and variance respectively

(34) E[y] =
N∑
i=1

αiE[xi]

(35) V ar[y] =
N∑
i=1

α2
iV ar[xi]

The convergence to a gaussian variable is faster if the single variables have comparable
variances. Infact if one of the variables has a larger variance it will dominate the variance
of the sum.
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The important point of this theorem is that there are no hypotheses about the pdf of
the single xi. So we can say that any sum of independent random variables gives rise
to a gaussian variable. Going back to our problem of the resolution function, when the
errors are coming from several origins we expect a gaussian distribution. And this is
what actually happens in most experimental situations: a gaussian parametrization for a
response function of a detector is in the vast majority of the cases a good approximation
of the real situation.

The gaussian pdf is (the gaussian random variable x is defined between −∞ and +∞):

(36) G(x) =
1√
2πσ

e
−(x−µ)2

2σ2

where µ and σ are the two parameters both having the same dimensions of x correspond-
ing to the mean and the root of the variance of the distribution. Eq.36 is a normalized
gaussian, the integral being equal to 1 for any choice of the two parameters. If the
gaussian represents an histogram with bin size δx of N events, normally a 3-parameter
function is used:

(37) G(x) = Ae
−(x−µ)2

2σ2

where A the value of the function for x = µ. A is directly related to the total number
of events according to the:

(38) N =
A
√

2πσ

δx

Eq.37 is widely used to fit resolutions from experimental data.
A gaussian variable with µ = 0 and σ = 1 is a standard normal variable. A

gaussian variable x becomes standard (it is standardized) if we build the variable z =
(x− µ)/σ.

Among the several properties of the gaussian function the following has a special
importance. The integral of a standard normal function between ±1, ±2 and ±3 are
respectively 68.3%, 95% and 99.7%. These numbers are widely used to assess the prob-
ability contents of 1σ, 2σ and 3σ intervals. We call these intervals standard intervals.

The central limit theorem can be applied to the binomial and Poisson variables also.
In fact in both cases they experience a ”gaussian limit”. For large values of N a binomial
variable converges to a normal variable provided the p is not too close to 0 or to 1. A
Poisson variable is well approximated by a gaussian pdf for λ sufficiently large (20÷30
is already enough to be in the gaussian limit). In these limits the standard intervals can
be used with the gaussian probability contents.

2.5.5. χ2. If we have N standard normal variables zi, the variable

(39)

N∑
i=1

z2i

is called a χ2 variable. It is a continuous random variable defined between 0 and ∞
depending on a single parameter, N also said number of degrees of freedom. The
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important point is that the pdf of this variable is known

(40) f(χ2) =
1

2ν/2Γ(ν/2)
(χ2)ν/2−1e−

χ2

2

where we have indicated with ν the parameter. Γ is the Euler Gamma function. Mean
and variance of the χ2 variable are given respectively by:

(41) E[χ2] = ν

(42) V ar[χ2] = 2ν

The χ2 variable is widely used in the data analysis. The reason is that it naturally
leads to very simple and powerful hypothesis tests. In fact suppose that we have N
experimental points xi and a model that predicts for each of them a mean µi. Moreover
from the knowledge of our experimental apparatus we know that the results of the
N measurements will fluctuate normally around their means with given and known
variances σ2i . In this situation we can built a χ2 variable as:

(43) χ2 =

N∑
i=1

(xi − µi)2

σ2i

where each term of the sum is actually the square of a standard normal variable. So,
if the model is correct, the value of χ2 should be distributed according to the function
40 for ν = N . This is, as we will see in the following, exactly what is required to
perform an hypothesis test. In the example given here we have assumed that the model
makes absolute predictions of the values µi. In many cases this is not possible, but
the predictions partly depend on the data themselves. But even in this case the test is
possible, only care has to be taken in the definition of ν because in general it will be
lower than N .

For large values of ν the χ2 distribution also converges to a normal distribution.

2.5.6. Multinomial. As an example of a joint pdf of a set of M discrete random vari-
ables, ni, i = 1,M , we consider the multinomial distribution that will be considered
in the following, in the context of the fit. The multinomial distribution is particularly
interesting because it describes in a natural way the distribution of the contents of the
M bins of an histogram when the total number of entries N of the histogram is fixed.
The probabilities of the different bins pi are the M−1 parameters of the joint pdf. They
are M − 1 because clearly the sum of the probabilities should be 1. This observations
shows that the contents of the bins should have some degree of correlation if N is fixed.
The joint pdf is:

(44) p(n1, ..nM ) = N !
M∏
i=1

pnii
ni!
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while the means, the variances of the single variables and the covariance between pairs
of variables are:

E[ni] = Npi(45)

V ar[ni] = Npi(1− pi)(46)

cov[ni, nj ] = −Npipj(47)

With reference to Eq.22, it can be seen that the correlation coefficient between a pair of
multinomial variables is:

(48) ρ[ni, nj ] =
pipj√

pi(1− pi)pj(1− pj)
=

√
pipj

(1− pi)(1− pj)

This formula shows that the correlation coefficients become close to 0 when the single
probabilities are small. This happens when the histogram is distributed over a large
number of bins.

2.6. Statistical inference. We have seen the distinction between samples and popu-
lations. When performing a measurement normally we have a sample and we aim to
say something related to the population. The process of doing this, is called inference.
We formalize this procedure using a very simple case, the case of the measurement of a
quantity x. We outline here the conceptual scheme.

Let’s consider a physical observable x and suppose that a ”true value” of this variable
xt exists. Let’s suppose that xt is known, for example because it has been already
measured with an extremely better accuracy with respect to the one of our measurement.
Now we perform our measurement and by repeating a large number of times, say close
to ∞ times the measurement we determine the resulting f(x).

We call µ and σ2 the mean and the variance of the f(x) respectively and we define
δ = xt − µ. Fig.3 shows the definitions of the relevant quantities in an example.

Now we perform a measurement and we get xm. We define measurement error the
quantity

(49) ∆ = xt − xm
that is the difference between the result of the measurement and the true value. We can
write this difference in this way:

(50) ∆ = xt − xm = (xt − µ) + (µ− xm) = δ + δm

so that the error can be decomposed into the sum of the distance δ between the true
value and the mean of the pdf of the measurement, and the distance δm between the
outcome of the measurement and the mean of the pdf of the measurement. δm is a
random error due to the sample and it depends on the statistics we have: if we perform
N repetitions of measurement, they will be distributed according to the f(x) and the

mean will have a distance from µ that will decrease as 1/
√
N . δ is a systematic error,

due to the fact that the response function of our apparatus doesn’t give xt as mean: it
is the error that remains in the limit of infinite statistics.

Notice that ∆ is the measurement error. It is possible to evaluate it only if xt is
known. Normally xt is not known, so we cannot calculate the error, but we have to
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Figure 3. Example of a gaussian response function (red) with µ and σ
and comparison with the true value xt. δ is the systematic error. The
outcome of the measurement xm is distributed according to the apparatus
response function. The length of the double arrow indicating the σ is
actually the function FWHM (full width half maximum) that in case of
a gaussian function is FWHM=2.36×σ.

estimate it and its estimate is the so called measurement uncertainty. In the following
we will use the words error and uncertainty with these two meanings.

Now we invert the process: we get xm from our apparatus and we want to say some-
thing about xt. This requires two steps: first we have to use statistical methods to pass
from xm to µ; then we have to estimate possible systematic errors and correct for them
or to take into account them as additional uncertainties. The statistical step is the real
inference procedure. In the following (sect.5.6) we will review the two main approaches
to statistical inference: the bayesian approach and the frequentist approach.
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3. Event selection

3.1. Introduction. Let us assume that in our experiment we have collected a certain
number of triggers1, corresponding to the sample of events stored in our tapes2. Each
event is essentially a sequence of numbers, related to the responses of the detector cells.
The reconstruction program will transform these informations in higher level quantities,
like energies, momenta, multiplicities and so on. From the point of view of the data
analysis, an event is a sequence of physics objects, organized in data structures containing
the informations we have to rely on in order to analyze and identify the event itself.

Then suppose that we are interested in studying a certain reaction, so that we want
to select only events corresponding to the final state of that reaction. We have to define
a procedure, called selection that loops on all events and decides whether to accept
or to discard each of them. At the end of the selection we’ll be left with a sample of
candidates.

In order to define this procedure, it is very useful to have samples of simulated events
(Montecarlo events, MC in the following). In particular, we need two categories of
simulated events: the signal events (namely the complete simulation of the final states
corresponding to the reaction we want to study) and the background events (namely
all those categories of events that are not due to the reaction we want to study but
that have similar characteristics of those we are looking for). These two categories
correspond to the two hypotheses we want to discriminate: the ”signal hypothesis” Hs

and the ”background hypothesis” Hb. The selection procedure is an hypothesis test
applied to each single trigger collected by the experiment.

In order to test and optimize the selection procedure, we apply it to the two MC sam-
ples. If we call S0 and B0 respectively the number of simulated events in the two samples
and Sf and Bf the numbers of simulated events selected by the defined procedure, we
define:

(51) ε =
Sf
S0

(52) R =
B0

Bf

selection efficiency (ε) and rejection (R) respectively. These two quantities define the
quality of the selection procedure. A perfect selection procedure is one for which ε=1
and 1/R=0. Unfortunately the two defined quantities are in general anti-correlated:
higher efficiencies correspond to lower rejection power and vice-versa. The analyst has
to find a compromise. In the following we’ll see how one can define a good compromise.

In any case efficiency losses correspond to the so-called ”Type-I errors”: signal events
are discarded. On the other side, rejection power losses correspond to the so-called
”Type-II errors”: background events contaminate the candidate sample.

1The extremely important concept of ”trigger” is assumed to be known to the student. A trigger is
an event that for some reason the ”logic” of the experiment decides to retain for offline analysis.

2The Data Acquisition System (DAQ) of any experiment writes in the form of a sequence of bits each
trigger in a data storage (the term tape is a jargon related to the way in the past the data were stored).
The sequence of bits include all the informations from the detector on the event itself.
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In this context the efficiency includes also the so called acceptance. Acceptance is
defined as the ratio of signal events whose final states are geometrically included in the
detector. Any detector is limited geometrically (for example a collider detector cannot
detect particles produced within the beam pipe). In many cases it is useful to factorize
the efficiency as the product of the acceptance times the detection efficiency that is the
probability that an event in acceptance is detected. In the following by efficiency we
mean the overall efficiency including the acceptance.

3.2. Cut-based selection. The most natural way to proceed is to apply cuts. We
find among the physical quantities of each event those that are more ”discriminant” and
we apply cuts on these variables or on combinations of these variables. The selection
procedure is a sequence of cuts, and is typically well described by tables or plots that
are called ”Cut-Flows”. An example of cut-flow is shown in Table 1. The choice of each
single cut is motivated by the shape of the MC signal and background distributions in
the different variables. From the cut-flow shown in Table 1 we get: ε = 2240/11763 =

Table 1. Example of cut-flow. The selection of ηπ0γ final state with
η → π+π−π0 from e+e− collisions at the φ peak (

√
s = 1019 MeV,

is based on the list of cuts given in the first column. The number of
surviving events after each cut is shown in the different columns for the
MC signal (column 2) and for the main MC backgrounds (other columns).
(taken from D. Leone, thesis , Sapienza University A.A. 2000-2001).

Cut ηπ0γ ωπ0 ηγ KS → neutrals KS → charged
Generated Events 11763 33000 95000 96921 112335

Event Classification 6482 17602 55813 18815 14711
2 tracks + 5 photons 3112 724 110 371 3100

Etot − ‖~Ptot‖ 2976 539 39 118 1171
Kinematic fit I 2714 236 5 24 66
Combinations 2649 129 1 19 0

Kinematic fit II 2247 2 0 1 0
Erad > 20 MeV 2240 1 0 0 0

(19.04 ± 0.36)%3 and R = 33000 for ωπ0. For the other background channels only a
lower limit on R can be given, since in the end no events pass the selection.

3.3. Multivariate selection. In many cases a cut-based selection is not the best option.
Let’s consider for example the case described in Fig.4. If we have two variables and we
plot the 2-dimensional histogram (also named ”scatter-plot” for historical reasons), we
can discover that, due to the correlation between the two variables4, cutting on each
variable has not the same power than cutting on the scatter plot. If we call x1 and

3The uncertainty on the efficiency is evaluated assuming a binomial statistics, see eq.79 below
4The degree of correlation between two variables is normally well defined by the sample correlation

coefficient, that is a non-dimensional quantity defined between -1 and 1.
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x2 respectively the two variables, in the case of the figure a more effective cut can be
applied on a linear combination of the two variables:

(53) αx1 + βx2 < γ

with α, β and γ three numbers optimized by looking at the 2-D plot.
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Figure 4. This canvas shows an example of 2-dimensional plot with
two populations we want to discriminate. In the upper left plot the
scatter-plot is shown with a diagonal cut. In the upper right ad lower
left plots, the X and Y projections are shown, illustrating how smaller
is the discrimination capability in case of a 1-dimensional cut. Finally
the lower right plot shows the effect of the combination of 2 independent
cuts on the same 2-dimensional plot. This example shows the benefit of
the most simple multivariate selection.

By generalizing this concept, given N discriminating variables, a linear combination
of them t can be defined and a single overall cut can be applied on it.

(54) t =
N∑
i=1

αixi < tcut

The coefficients αi have to be defined by optimizing the separation between MC signal
and background samples. This is a simple form of what is in general called Discriminant
analysis.

The use of linear combinations of the discriminating variables can be in many cases a
limitation. In fact a non-linear correlation between the discriminating variables can be
present in some cases so that one can think of a way to introduce these correlations to get
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the optimum discriminating capability. Several methods, based on recently developed
computing methods in other research areas became available. Among these we quote
two main categories of methods, both included in the standard packages in root5: the
Neural Network and the Boosted Decision Tree. The use of these and other similar
methods is generically called Multivariate Analysis.

A description of these methods goes beyond the program of these lectures. However,
it is important to describe in short how these methods can be used and an example of
use.

Let us suppose to have the signal and background MC samples. Each MC event
in both samples is simply a set of discriminating variables stored in a structure that,
in the case of the root package, is called tree. The multivariate method requires first
the so-called ”training” phase: by looping on the two samples, the optimum internal
parameters to discriminate between the two samples are found. The internal parameters
define the variable t for each event, a generalization of the discriminant variable of eq.54
to a non linear case. This phase is somehow like the determination of the αi coefficients
introduced in the linear case to get a value of t for each event. Distributions of t for signal
and background events are obtained. Then there is the second phase namely the ”test”
phase: two additional MC signal and background samples, completely independent from
those used in the training phase are submitted and the t distributions for these samples
are obtained and compared to those of the training test. A good agreement between
training and test distributions is very important because it says that the definition of t is
not due to a specific features of the training sample (for instance a statistical fluctuation),
but can be relaid on.

Figs.5 and 6 show an example of multivariate selection6. Fig.5 shows for the 6 dis-
criminating variables chosen the comparison between MC signal and MC background
distributions. It can be seen that a different degree of discrimination is present in each
variable. Then, fig.6 shows the resulting t distributions, again for MC signal and MC
background samples. In the same figure the comparison is shown between training and
test distributions. A possible inconsistency between the training and the test distri-
butions could indicate that the definition of the variable provided by the multivariate
classifier relies on features of the particular sample used to train the classifier rather than
on a general feature of the kind of events we are selecting. This phenomenon that in
particular happens when low statistics samples are used to train the classifier, is called
”overtraining”, and special care has to be devoted to avoid it.

Whatever is the method used, in the end one is left with the two t distributions that
can be very well separated or partly overlapping, and again a cut on t can be applied.

3.4. Cut optimization. Suppose that we have defined our multivariate variable t and
we want to define the cut on it. We have to ”optimize” the cut, in other words we
have to choose the best value of tcut for the purpose of our selection. How can an
optimization criterium be defined? In general the aim is to have the largest possible

5The package root is the widely used program for statistical analysis provided by the CERN libraries.
Most of the plots shown in these lectures are based on this package (see root.cern.ch for a complete
description of the program)

6These figures are taken from a preliminary study done by ATLAS of a possible discrimination between
the Higgs signal in the 4leptons final state with respect to the unreducible background.
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Figure 5. Comparison between MC signal (blue) and MC background
(red) distributions for the 6 chosen discriminating variables entering in
the multivariate analysis (taken from A.Calandri thesis, Sapienza Uni-
versity, A.A. 2011-2012).

signal events content in the candidate sample and the lower background content, but
which combination of S and B allows to get the optimum selection? We need a score
function to define the optimum cut.

Let’s call N the number of events we have at the end of our selection, that is the sum
of S and B, the number of signal and background events respectively, so that our best
estimate of S is:

(55) S = N −B

with uncertainty

(56) σ2(S) = σ2(N) + σ2(B) = N + σ2(B)

where we have assumed that N is characterized by a poissonian fluctuation. Notice that
here σ(B) is the uncertainty on the estimated average value of B, so that, in case we
estimate it with a large MC statistics, this uncertainty can be low and hence negligible.
Let’s assume it is indeed negligible. In this case we have:

(57)
S

σ(S)
=

S√
N

=
S√
S +B

This quantity gives us the number of std.deviations away from 0 of the signal, a
quantity that should be as large as possible, so that it is a good score function for our
purpose, a function that we can maximize. In case we are looking for small signals out
of large backgrounds (S << B) we can use an approximate form of the score function:

(58)
S

σ(S)
∼ S√

B
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Figure 6. Comparison between MC signal (blue) and MC back-
ground(red) BDT variable. The points are for the ”training” samples,
while the histograms correspond to the ”test” samples. In the insert the
results of compatibility tests between training and test results are given
(taken from A.Calandri thesis, Sapienza University, A.A. 2011-2012).

This is a good starting point to optimize a selection in case we wish to select a small
signal out of a large background. The score function as a function of the value of tcut is
shown in Fig.7 for the same case shown in Figs.5 and 6. The green curve here is called
significance and is the quantity given in eq.57. It is a non-dimensional number, whose
meaning is how well we can ”see” the signal in number of standard deviations. Values
of the significance below 3 mean that there is not enough statistical power to observe
the signal. Values between 3 and 5 mean that we are close to observe the signal, values
larger than 5 mean that if the signal is there we’ll observe it. In the case of Fig.7 the
maximum of the score function is close to 1. This means that with that statistics there
is no way to find a selection capable to allow an observation of the signal (for which
a score function of at least 3 should be needed). Moreover notice that all these score
functions are built in such a way that given a selection procedure, an increase in the
integrated luminosity L translates in an increase of the score function that goes as

√
L.
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We anticipate here that another score function is used in several applications based
on the likelihood ratio test (see sect.7 and discussion of eq.209):

(59)

√
2(S +B) ln

(
1 +

S

B

)
− 2S

The same considerations done for the other score functions apply to the resulting nu-
merical value of this quantity that also depend on S and B.
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Figure 7. Several quantities are shown as a function of the possible
value of tcut, the cut on the BDT variable. Blue and red curves show
respectively the signal and background efficiency while the green curve is
the score function that, in this case, has a maximum around tcut = 0.25
although with a very low significance (below 1). (taken from A.Calandri
thesis, Sapienza University, A.A. 2011-2012)

3.5. Sample purity and contamination. Once the selection has been defined we are
left with a sample of N candidate events. If we take one of these events randomly,
how big is the probability that it is a ”signal event”? We have to understand well this
question. In fact all the candidate events are equal from the point of view of the selection.
If they had some differences we could have used the difference to select the events, but
at the end of the selection all of them are equal. So that we cannot distinguish signal
and background events on an event-by-event basis, but only in a ”statistical” sense,
by evaluating the probability that a given event is a signal event.



22

In order to evaluate this probability we use the Bayes theorem7. As usual the Bayes
theorem needs two ingredients.

• The so called likelihood (we will make use of this word several times in the
following). In this context we need essentially on one side the probability that
a signal event is identified as signal, and on the other side, the probability that
a background event is identified as signal. These two quantities are respectively
the efficiency ε and the inverse of the rejection power β = 1/R defined above.
• The so called prior probabilities. In our case they are the expected ”cross-

sections” of signal and background events respectively.

We call P (t > tcut/S) and P (t > tcut/B) the two likelihood functions we need8, and πS
and πB the two prior functions. The Bayes theorem gives:

(60) P (S/t > tcut) =
P (t > tcut/S)πS

P (t > tcut/S)πS + P (t > tcut/B)πB

This probability can be regarded as a purity of the sample. It is interesting to write it
as follows:

(61) purity = P (S/t > tcut) =
1

1 + P (t>tcut/B)πB
P (t>tcut/S)πS

=
1

1 + πB
RεπS

showing that a high purity can be reached only if

(62) Rε >>
πB
πS

that imposes a condition on the goodness of the selection procedure based on the ex-
pected signal and background cross-sections. This is something that one needs to eval-
uate in the design phase of an experiment. If we apply this formula to the MC data of
Table 1, where we use the ωπ0 sample as the only background of the analysis, Rε = 6284
and since πB/πS ∼ 102 we have a purity of ∼ 98.4%.

The purity defined above can also be used to evaluate the fake rate that is an
important quantity, especially when the rate is an important issue, as in trigger design9.
If we call r the rate of selected events, the fake rate f is:

(63) f = r(1− purity)

3.6. The Neyman-Pearson Lemma. We complete this section on event selection by
quoting an interesting theorem, called Neyman-Pearson Lemma. We have already seen
that whatever is the selection procedure defined, we encounter two types of errors: type-I

7The Bayes theorem is a crucial ingredient in the EPP data analysis. In several points of these lectures
it will be used. We assume that the students are familiar with it.

8Here and in the following we will make use of the standard notation for the conditional probability,
namely p(A/H) the probability of the event A given the hypothesis H. The same notation is extended
to pdf’s like f(x/θ).

9In modern experiments the trigger design is conceptually similar to the offline event selection. So
that a trigger efficiency and a trigger rejection power can be defined, together with a fake rate. A large
trigger rate can give rise to dead time and hence to efficiency losses, so that fake trigger rates have to
be kept very low.
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and type-II errors. We call α and β respectively the probabilities associated to the two
kinds of errors:

(64) P (type− Ierrors) = 1− ε = α

(65) P (type− IIerrors) =
1

R
= β

Given the two hypotheses Hs and Hb and given a set of K discriminating variables x1,
x2,...xK , we can define the two ”likelihoods”

(66) L(x1, ..., xK/Hs) = P (x1, ...xK/Hs)

(67) L(x1, ..., xK/Hb) = P (x1, ...xK/Hb)

equal to the probabilities to have a given set of values xi given the two hypotheses, and
the likelihood ratio defined as

(68) λ(x1, ...xK) =
L(x1, ..., xK/Hs)

L(x1, ..., xK/Hb)

that is also a discriminating variable. The Neyman-Pearson Lemma states that, once α
is fixed, a selection based on λ is the one that allows to have the lowest β value. This
theorem, even if of somehow difficult use in practice, shows that the ”likelihood ratio”
is the most powerful quantity to discriminate between hypotheses. In the following we’ll
see several examples of likelihood ratios.
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4. Measurements based on event counting

4.1. Cross-section. Let’s consider a collision experiment. In general it consists of an
initial state with a projectile particle and a target particle, and of a final state
characterized by a number of particles X with, eventually, a well defined kinematics.
In modern EPP experiments at colliders, the distinction between projectile and target
is impossible because the collision is done between two bunches of particles moving in
opposite directions with the same or similar momenta. In the following we’ll distinguish
between fixed target and collider experiments.

In all cases, as a result of the experiment, a sample of Ncand candidate events have
been selected corresponding to the final state X. The overall selection efficiency ε and the
average number of background events Nb have also been estimated. The best estimate
of the number of final states X produced in the experiment is given by:

(69) NX =
Ncand −Nb

ε
In order to compare the result of this experiment with one or more theoretical predic-

tions, we need to define a physical quantity that depends on the features of the process X
we are considering but not on the specific conditions of the experiment. Such a physical
quantity is the process cross-section, normally indicated with the letter σ, dimension-
ally a surface. The cross-section is defined in such a way that the rate of events of type
X, NX is given by:

(70) ṄX = φσX

where φ (flux) is the number of collisions per unit of time and surface.
In case of fixed target experiments the flux φ is defined as

(71) φ = ṄprojNtargδx

where Ṅproj is the projectile rate, Ntarg is the number of targets per unit of volume and
δx is the target thickness10. In terms of target density we have

(72) φ =
Ṅprojρδx

AmN
=
ṄprojρNAδx

A

where A is the mass number of the nuclei of the target, mN is the nucleon mass, ρ the
target density and NA the Avogadro number.

In case of collider experiments the flux φ is called luminosity, indicated with the
letter L, and can be expressed as:

(73) L = nbfrev
N1N2

4πΣxΣy

where frev is the revolution frequency of the particle bunches, nb is the number of bunches
circulating in each beam11, N1 ed N2 are the number of particles in each bunch and Σx

and Σy are the transverse dimensions of the two beams. More specifically Σx and Σy are

10Here the target is assumed to be thin enough, so that the beam intensity reduction within the
target itself can be neglected.

11In particle colliders, each beam consists of nb bunches of particles circulating in opposite directions.
nb is much larger than 1 like in modern ”factories”.
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the widths of the gaussian distributions of the particle positions within the bunches12.
Notice that in the case of linear colliders normally the product nbfrev is called fcoll,
collision frequency, since in that case the concept of ”revolution” is not defined, but
what matters is the number of bunch collisions per unit time.

In order to determine the cross-section of the process X we evaluate σX from eq.70

(74) σX =
ṄX

φ

or, in case we integrate over the time:

(75) σX =
NX∫
φdt

So, we have to measure NX (according to eq.69) and normalize it to the integrated flux
or luminosity. The estimate of the cross-section, expressed in terms of the experimental
quantities accessible to the experimentalist (see eq.69) is:

(76) σX =
Ncand −Nb

ε
× 1∫

φdt

The integrated flux is, in the case of collider experiments the integrated luminosity Lint.
In some cases it is interesting to measure the differential cross-section with respect

to one or more quantities (with respect to momentum, angle, invariant mass, etc...).
From the experimental point of view, once the candidate sample has been obtained, it
has to be divided in bins of the quantity of interest, and we have to count how many
candidates Nk

cand fall in each bin. If we call θ the quantity of interest, k the index of the
bin and ∆θ the bin size, we have:

(77)

(
dσX
dθ

)
k

=
Nk
cand −Nk

b

εk∆θ

1

Lint
Notice that in this case a measurement of the efficiency (εk) and of the number of
background events (Nk

b ) is required for each bin. A specific problem arising when a
differential cross-section is measured, is related to the resolution on θ. If the resolution
on this quantity is larger or of the same order of the bin dimension, transitions of events
between neighboring bins are expected, affecting the shape of the differential cross-
section for the reconstructed events. Unfolding algorithms are needed in these cases.13

The uncertainty on the measured cross-section, depends on the quantities entering
in eq.76 : Ncand, Nb, ε and Lint. By applying the uncertainty propagation law, and
assuming no correlation between the quantities involved in the formula, we get:

(78)

(
σ(σX)

σX

)2

=
σ2(Ncand) + σ2(Nb)

(Ncand −Nb)2
+

(
σ(ε)

ε

)2

+

(
σ(Lint)
Lint

)2

12The assumption of a gaussian shape for the particle beams is normally very well verified.
13Several unfolding algorithms are available. However any unfolding procedure is intrinsically unsta-

ble, so that care has to be used in applying them. When comparing a differential cross-section with a
theoretical model, an alternative method consists in ”folding” the theoretical model with the resolution
function, and comparing it with the ”raw” data. This method has the advantage to be more stable, but
doesn’t allow to see the differential cross-section with resolution effects removed from them.
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where we have also assumed that the number of candidates found is much larger than
the estimated number of background events. The ingredients entering in eq.78 are the
following.

• The uncertainty on Ncand is based on the hypothesys that the counting of the
candidates is well described by a poissonian model, so that σ2(Ncand) = Ncand.
We know that a Poisson distribution with λ larger than 20÷30 is in the gaussian
limit, so that the one-sigma interval has a 68% probability content.
• Nb can be evaluated either through a Montecarlo simulation of the process or

through event counting in the so called control regions. In both cases σ2(Nb)
has a poissonian component related to MC statistics or to the statistics of the
data in the control regions, and an additional component depending on how
well the simulation describes the data or on how well the control regions can
be translated to the signal regions. The estimate of this quantity is in general
analysis-dependent.
• The same considerations done for Nb can be applied for the uncertainty on ε. The

statistical component relies in this case on the binomial statistics14. Suppose that
N MC signal events are generated and that n survive at the end of the selection
procedure, we have:

(79) ε =
n

N
± 1√

N

√
n

N

(
1− n

N

)
• Typical measurements of the luminosity are based on the counting of the events

of a candle process, that is a process whose cross-section is known and possibly
very high. The uncertainty depends on the statistics of the candle events, but
also on the theoretical knowledge of the cross-section and on the efficiency of
that process. In most cases the uncertainty on the luminosity is dominated by
the latter effects.

4.2. Observation of ”small signals”: the effect of the mass resolution. In case
Ncand is comparable with Nb, eq.78 cannot be used anymore and a specific analysis
is required (see sect. 7). The possibility to observe a signal is strictly related to the
capability to reduce the background. To this extent an important role is played by the
resolution as we illustrate now with a simple example.

Suppose that the signal we are looking for is a peak in an invariant mass distribution.
Fig.8 shows two examples of simulated J/ψ peaks over flat backgrounds. The two plots
are generated with the same number of signal events S = 200 and the same level of
unreducible background events per unit of mass b = 50 MeV−1, but with two different
mass resolutions, σM = 2 MeV and σM = 10 MeV respectively. In order to get Ncand,
we count the number of events in the ”signal” regions of mass MJ/ψ ± 3σM as shown in
the figure. On the other hand Nb is given by 6bσM where b is obtained as the number of
events falling in the so called sidebands regions, namely the regions outside the signal
region, and dividing it for the sidebands amplitude. The score function eq.57 returns in
the two cases, 7.1 and 3.4 respectively.

14The correct use of the binomial statistics to estimate the uncertainty on the efficiency has the
consequence that the intervals on ε never go beyond the value of 1.
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Figure 8. Simulation of S = 200 J/ψ events superimposed to a flat
background of 10000 distributed on a range of 200 MeV (b=50 MeV−1).
σM = 2 MeV (left) and σM = 10 MeV (right). The limits of ±3σM
intervals around the expected position of the peak are shown. Outside
these limits are the sidebands.

The resulting uncertainty on S can be written in the present case as:

(80) σ2(S) ∼ N = S +B = S + 6bσM

so that in order to make negligible the effect of the resolution, it should be:

(81) σM <<
S

6b

In the case illustrated in the figure it should be σM << 0.67 MeV, that is not verified
in the two cases. So that in both cases the effect of the resolution is important and the
observation of the signal can be improved by reducing the resolution.

4.3. Branching Ratio. An unstable particle decays in general in several different decay
chains, involving different final states. For each decay chain a branching ratio is defined
as the probability that the particle decays in that chain. If Γ is the total width of the
particle and Γi is the partial width in the decay chain i, we have:

(82) BR(i) =
Γi
Γ

Since the sum of all the partial widths is equal to the total width, the sum of all the
branching ratios of a particle should be equal to 1.
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From the experimental point of view a branching ratio measurement is very similar
to a cross-section measurement. If a sample of Npart decaying particles is produced and
a number Ni of final states corresponding to the decay chain i are counted

(83) BR(i) =
Ni

Npart

that, following the same notation and the same considerations given above for the cross-
section measurement, can be expressed as:

(84) BR(i) =
Ncand −Nb

ε
× 1

Npart

totally similar to eq.76, the only difference being the normalization: the luminosity
is replaced here by the total number of decaying particles produced. Also, the same
considerations apply for the measurement of differential branching ratios, and a formula
similar to eq.78 holds for the uncertainties.

4.4. Asymmetries. Another quantity used in EPP to study important phenomena in
particular related to symmetry violations, is the asymmetry. In general an asymmetry
is defined as follows:

(85) A =
N+ −N−

N+ +N−

where two alternative event configurations have been defined, and the symbols N+ and
N− represent the number of events in each of these configurations. Examples of asymme-
tries are: left-right asymmetries (with respect to a given plane in the detector), charge
asymmetries (how many particles have either positive or negative charge), up-down,
forward-backward, and so on.

Experimentally the two quantities N+ and N− have to be measured and combined
according to eq.85. However possible differences of the efficiencies between the two
configurations have to be taken into account. If, for example, positively charged particles
have higher efficiency with respect to negatively charged particles, the asymmetry has
to be corrected according to:

(86) A =
N+/ε+ −N−/ε−

N+/ε+ +N−/ε−

If ε+ ≈ ε−, eq.85 can be directly used. In this case, the efficiencies completely cancel in
the ratio. Notice that in all cases, no normalization is required for this quantity.

The statistical uncertainty on the asymmetry can be evaluate using a binomial model
where N = N+ +N−, n = N+, f+ = n/N , so that A = 2f+ − 1. We get:

(87) σ2(A) = 4σ2(f+) = 4
f+(1− f+)

N

but, since

(88) f+ =
1 +A

2
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we have also

(89) σ(A) = 2

√
(1 +A)/2(1− (1 +A)/2)

N
=

2√
N

√
1 +A

2

1−A
2

=
1√
N

√
1−A2

The uncertainty on the asymmetry goes as the inverse of the square root of the total
number of events. The same result is obtained by assuming independent poissonian
fluctuations for N+ and N−.

4.5. Statistical and systematic uncertainties. When reporting the uncertainty on
the measured quantities, a distinction is made between two kinds of uncertainties, nor-
mally named statistical and systematic. The most common way to separate the
uncertainty in these two parts, is to call statistical uncertainty all what comes from
the counting of the candidates, and systematics all what doesn’t come from candidate
counting. With reference to eq. 78, the last two terms, the uncertainties on efficiency
and luminosity, are normally included in the systematics term, while the uncertainty on
Ncand is the statistical term. The uncertainty on Nb is also normally included in the
systematic term.

Another way to report the results is to distinguish between uncertainties of type A
and type B. This distinction is supported by metrological institutes but is scarcely
used in EPP. Type A uncertainties are all those uncertainties derived from all forms of
event counting, not only candidate counting, but also control region, Montecarlo event
counting, in other words, all those uncertainties that can be reduced by increasing the
statistics. Type B are all those uncertainties that cannot be reduced by increasing the
statistics.

A good attitude is to explain in detail in the paper all the sources of uncertainty and
the way they are combined.



30

5. Analysis of event distributions: the fit

5.1. Introduction. In the previous section measurements based on event counting have
been described. In general we are also interested in analyzing specific distributions
of variables among the candidate events sample15: particle momenta, emission angles,
invariant masses and many others. These analyses are done essentially for two reasons:
(i) to compare the distributions with expectations from theories, and (ii) to extract from
them physical quantities of interest like masses, widths, couplings, spins and so on. We
call fit the method to do both these important things.

To make the fit, we go through the following ”logical” steps.

(1) First of all we have to define the hypothesis. It can be the theoretical function
y(x/θ), x being the variable or the set of variables, and θ a set of K parameters
. K could be even 0, in this case the theory makes an ”absolute prediction” and
there is no need to adjust parameters to compare it to theory.

(2) Then we have to define a test statistics t, that is a variable depending on the
data that, if the hypothesis is correct, has a known distribution function (in
the following we use pdf to indicate probability distribution functions). The
meaning of this pdf is the following: if we repeat the experiment many times
and if every time we evaluate t, if the hypothesis is correct the histogram of the
sample statistics will follow the pdf within the statistical errors of the sample.

(3) Finally we do the experiment. In case the theory depends on few parameters, we
adjust the parameters in such a way to get the best possible agreement between
data and theory. From this we obtain the estimates of the parameters with their
uncertainties. We evaluate then the actual value of t, let’s call it t∗ from the data
after parameter adjustment, and see if in the t pdf this value corresponds to a
region of high or low probability. In case it is in a region of high probability,
it’s likely that the theory is correct, so that we conclude that the experiment
corroborates the theory. In case it corresponds to a region of low probability
it’s unlikely that the theory is correct, so that we say that the experiment falsifies
the theory, or, in other words, that we have not found any parameter region that
allows an acceptable agreement.

These steps have been described here in a qualitative way. Each step will be described
in detail in the following.

In this section we review first how the different approaches to the fit are founded by
defining how to build the test statistics. Then we’ll see how to proceed for hypothesis
testing (problem (i) above) and for parameter and interval estimation (problem (ii)
above). Finally the frequentist and bayesian approaches in interval estimation will be
presented and compared.

5.2. Choice of the test statistics. We consider separately the case of binned data
(histogram fitting), then the study of the functional dependence between two physical
quantities, the case of unbinned data and finally we consider the case of correlated data.

15Differential cross-sections are examples of distributions on which we can apply our fit procedures.
However in many cases the overall normalization of the distribution is not important, so that non-
normalized distributions are fit.
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5.2.1. Binned data: fit of histograms. Let’s consider the distribution of the variable x
out of a sample of N events. We divide the range of variability of x in M bins, each
of dimension δx. The histogram of the variable x for the actual sample is given by a
sequence of numbers ni, i=1,...,M , each number giving the content of the bin i.

(90)
M∑
i=1

ni = N

On the other hand we have a theory that predicts a x distribution depending on a list
of K parameters θi, i=1,...K, we call y(x/θ) this function16. In the bin i the theory
predicts a number of events yi that can be either the value of the function at the center
xi of the bin, multiplied by δx:

(91) yi = y(xi/θ)δx

or, more exactly the integral of the function in the bin17

(92) yi =

∫ xi+δx/2

xi−δx/2
y(x/θ)dx

In both cases the expected bin content yi depends on the parameters. The sum of the
yi on the bins, gives the predicted total number of events N0.

(93)
M∑
i=1

yi = N0

Now let’s turn to the bin experimental contents ni. Each ni is a random variable,
since if we repeat the experiment and get another sample of events, we will get in general
different values of ni. So we ask which kind of random variable is ni. We distinguish
between two cases.

• We repeat the experiment holding the total number of events N fixed. In this
case ni has a multinomial distribution. The joint distribution of the ni, with
i=1,...,M is

(94) p(n1, ..nM ) = N !
M∏
i=1

pnii
ni!

where pi is the probability associated to the bin i. Notice that the joint distribu-
tion cannot be factorized in a product of single bin probability distributions, since
the fixed value of events N determines a correlation between the bin contents.
• We repeat the experiment holding fixed the integrated luminosity or the obser-

vation time of the experiment. In this case N is not fixed and fluctuates in

16The function y is dimensionally a number of events per units of x. To compare it with the actual
number of events ni it has to be multiplied by δx or integrated in x (see eqs.91 and 92).

17The two definitions of yi are equal in the limit of small bin size, with respect to the typical scale of
variation of the distribution.
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general between an experiment and another. The ni are independent and have
poissonian distributions:

(95) p(n1, ..nM ) =
M∏
i=1

λnii e
−λi

ni!

where λi is the expected counting in each bin.

We remind here the main features of the two mentioned distributions. For the multi-
nomial distribution:

E[ni] = Npi(96)

V ar[ni] = Npi(1− pi)(97)

cov[ni, nj ] = −Npipj(98)

while for the Poisson distribution:

E[ni] = λi(99)

V ar[ni] = λi(100)

cov[ni, nj ] = 0(101)

As already noticed, in the first case the bin contents are correlated, while this doesn’t
happen in the Poisson case. This correlation is induced by the fact that the total
number of events entering the histogram is fixed. However this correlation turns out to
be negligible when the events are distributed out of a large number of bins.

If we want to check the agreement with the theory, using the notation defined above,
we have to impose that in each bin:

(102) yi = E[ni]

Let’s try now to define the test statistics t for these cases.
In many applications two test statistics are defined, named respectively Pearson and

Neyman χ2.

χ2
P =

M∑
i=1

(ni − yi)2

yi
(103)

χ2
N =

M∑
i=1

(ni − yi)2

ni
(104)

In case of ni being poissonian variables in the gaussian limit, the Pearson χ2 is a statistics
following a χ2 distribution with a number of degrees of freedom equal to M −K. Infact
we know that a χ2 variable is the sum of the squares of standard gaussian variables, so
that if eq.102 holds, this is the case for χ2

P . However we know that the gaussian limit
is reached for ni at least above 10÷20 counts. If we have histograms with few counts,
and we are far from the gaussian limit, the pdf of χ2

P is not exactly a χ2 so that care is
needed in the result interpretation.
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The Neyman χ2 is less well defined. In fact a χ2 variable requires the gaussian σ
in each denominator. By putting ni we make an approximation18. However in case of
large values of ni to a good approximation the Neyman χ2 has also a χ2 distribution. A
specific problem of the Neyman χ2 is present when ni = 0. But again, for low statistics
histogram a different approach should be considered.

A more general method to build a sample statistics is the method of the likelihood.
We have already discussed the meaning of this quantity in sect.3. Here we apply the
likelihood method to the fit of an histogram. For an histogram, the likelihood is the
product of the pdf of each bin, assuming a negligible correlation between the bin contents.

In case of a histogram with N fixed (multinomial case), neglecting the bin-by-bin
correlation, we get19 (yi = N0pi):

(105) Lm(n/y) = N !

M∏
i=1

pnii
ni!

= N !

M∏
i=1

ynii
ni!N

ni
0

while in the case of the histogram with floating N (poissonian case), where bin-by-bin
correlations are absent, we get:

(106) Lp(n/y) =

M∏
i=1

e−yiynii
ni!

It is interesting to look at the relation between the two likelihoods. We observe first that
the multinomial likelihood Lm can be written as:

(107) Lm(n/y) = N !
M∏
i=1

ynii
ni!N

ni
0

=
N !

NN
0

M∏
i=1

ynii
ni!

On the other hand

(108) Lp(n/y) = e−N0

M∏
i=1

ynii
ni!

=
e−N0NN

0

N !
Lm(n/y)

that is Lp is essentially Lm multiplied by the poissonian fluctuation of N with mean N0.
Following the general considerations on the fit procedure done at the beginning of

this section, we know that in order to use the likelihood function for doing the fit, we
need to know its pdf. The pdf of a likelihood function in general depends on the specific
problem, and can be evaluated by means of a Montecarlo simulation of the problem
we are considering. In order to evaluate the pdf, the so called ”toy Montecarlo” are
normally done, namely simulations done for different values of the parameters. However
based on a general theorem that we now formulate, we see that in many circumstances
it is possible to define likelihoods with known pdf.

18The Neyman χ2 was widely used in the past, since it makes simpler the calculation, the parameters
being only in the numerator of the formula. With the present computing facilities there are no strong
motivations to use it.

19For the likelihood functions the following notation will be used: L(data/model) that is the proba-
bility of the data given a model.
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The Wilks theorem states the following. Let’s consider our histogram and define
the expectation values νi = E[ni] of the contents of each bin. The quantity

(109) χ2
λ = −2 ln

L(n/y)

L(n/ν)

has a χ2 pdf with M −K degrees of freedom in the asymptotic limit (νi are sufficiently
high to be considered gaussian). This theorem is very important because it allows us
to use likelihood ratios as test statistics of known pdf. Again, like in the case of the
Pearson χ2, the statement is rigorously valid only in the asymptotic limit, but it has
a more general utility than the Pearson χ2, since it is valid whatever is the statistical
model we consider.

In the following we evaluate χ2
λ for the poissonian histogram.

(110) χ2
λ = −2 ln

M∏
i=1

e−yiynii
ni!

+ 2 ln

M∏
i=1

e−νiνnii
ni!

Notice that the first term includes the theory (through the yi), while the second requires
the knowledge of the expectation values of the data. If we make the identification νi = ni,
we get:

(111) χ2
λ = −2

M∑
i=1

(
ni ln

yi
ni
− (yi − ni)

)
= −2

M∑
i=1

(
ni ln

yi
ni

)
+ 2(N0 −N)

By imposing νi = ni eq.109 is the ratio of the likelihood of the theory to the likelihood
of the data. The lower is χ2

λ the better is the agreement between data and theory. For
yi = ni (perfect agreement) χ2

λ = 0.
If we make the same calculation for the multinomial likelihood we obtain the same

expression but without the N0−N term that corresponds to the fluctuation of the total
number of events. This term is only present when we allow the total number of events
to fluctuate, as in the poissonian case.

5.2.2. Study of a functional dependence. A likelihood function can also be easily defined
in another context widely used in experimental physics. We consider the case of M
measurements zi all characterized by gaussian fluctuations with uncertainties σi done
for different values of an independent variable x. If the theory predicts a functional
dependence between z and x given by the function z = f(x/θ) possibly depending
on a set of parameters θ, in case of no correlation between the measurements zi, and
completely neglecting possible uncertainties on x, we can build a gaussian likelihood:

(112) Lg(z/θ) =

M∏
i=1

1√
2πσi

e
− (zi−f(xi/θ))

2

2σ2
i

This likelihood is used in many circumstances (linear fit, polynomial fit,...).
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Let’s now apply the Wilks theorem to this case. For the gaussian measurements we
make the identification νi = E[zi] = zi and we get:
(113)

χ2
λ = −2 ln

M∏
i=1

1√
2πσi

e
− (zi−f(xi/θ))

2

2σ2
i + 2 ln

M∏
i=1

1√
2πσi

e
− (zi−zi)

2

2σ2
i =

M∑
i=1

(zi − f(xi/θ))
2

σ2i

The test statistics obtained here is a χ2, typically used in the context of the so called
least squares method. So we have proved essentially that the least square method
can be derived through the Wilks theorem by a gaussian likelihood ratio model.

5.2.3. Unbinned data. In case we have a limited number N of events so that any binning
will bring us to small values of bin contents, a different approach can be used, equally
relying on the likelihood method: we can fit the unbinned data. In other words we
build our likelihood function directly considering the probability of each single event. If
we call H our hypothesis (eventually depending on a set of K parameters θ), xi with
i=1, ...N the values of the variable x for the N events and f(x/θ) the pdf of x given the
hypothesis H, the likelihood can be written as:

(114) L(x/H) =

N∏
i=1

f(xi/θ)

valid in case the events are not correlated. Notice that in this case the product runs
on the events, not on the bins as in the previous case. If N is not fixed but fluctuates
we can include ”by hand” in the likelihood, the poissonian fluctuation of N around an
expectation value that we call N0 (eventually an additional parameter to be fit)20:

(115) L(x/H) =
e−N0NN

0

N !

N∏
i=1

f(xi/θ)

This is called extended likelihood.
The - logarithm of the likelihood is used in most cases21:

(116) − lnL(x/H) = −
N∑
i=1

ln f(xi/θ)

5.2.4. Fit of correlated data. By using the product of the probability functions to write
down the likelihood, we are assuming no correlation between bins (in case of histograms)
or between events (in case of unbinned fits). In general it is possible to take into account
properly the correlation between measurements in the definition of a likelihood function.
We see how this happens in a simple case. Assume that our gaussian measurements of
zi (see above) are not independent. In this case the likelihood cannot be decomposed in
the product of single likelihoods, but a ”joint likelihood” L(z, /θ) is defined, including
the covariance matrix Vij between the measurements. The covariance matrix has the

20Notice the similarity with the considerations done for eq.108.
21The use of the logarithm of the likelihood that we have seen here and also in previous examples,

is motivated by the logarithm properties. In particular the fact that a product becomes a sum, and the
exponential becomes linear. On the other hand taking the logarithm of a function doesn’t change the
positions of its maxima and minima.
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parameters variances in the diagonal elements and the covariances in the off-diagonal
elements. Starting from the joint likelihood of the measurement, we build the likelihood
ratio and in the end we are left with the final χ2:

(117) χ2 =

M∑
j,k=1

(zj − f(xj/θ))V
−1
jk (zk − f(xk/θ))

that is still a χ2 variable with M −K degrees of freedom.

5.2.5. Summary. We have seen how to build a test statistics to describe the agreement
between the data and a theory. We have seen that under general hypotheses it is possible
to build a test statistics of known pdf (typically a χ2). In case this is not possible, we can
always relay on a Montecarlo simulation including the model and all detector effects, to
get the sample statistics pdf when the hypothesis is verified. In general the Montecarlo
allows to have large statistics, typically much larger than those that can be obtained
using data, so that in the end only systematic errors will be significant for Montecarlo-
based calculations.

Now we have to see how to use this test statistics in a fit. We’ll see first how to use it
to test the hypothesis of our theory, then we’ll see how to use it to get the best estimate
of the parameters θ.

5.3. Goodness-of-fit tests. Suppose we have an hypothesis we want to test, we call
it H0 and we name it null hypothesis. The fit has been done and we have obtained a
value t∗ for the test statistics. In the fit procedure we might have obtained values of the
parameters as will be discussed below. But now we concentrate on the output value of
the test statistics. We want to extract from this value an assessment on the goodness-
of-fit. As discussed in the previous section, in order to make such an assessment, we
have to know the distribution of the test statistics t for the given hypothesis. Suppose we
have it, f(t/H0). Fig.9 shows an example of t distribution, namely a χ2 with 5 degrees
of freedom. For any given value of t = t∗ we can evaluate the so-called ”p-value” p0:

(118) p0 =

∫ ∞
t∗

f (t/H0) dt

that gives the probability that, if H0 is true, the result of the experiment will fluctuate
as much or more than t∗. Let’s concentrate now on the meaning of this p-value. If H0 is
true and we repeat the experiment, p0 corresponds to the fraction of times we will get
t > t∗. If this number is low, either the hypothesis is wrong or there was an anomalous
large fluctuation. In other words we are on the right tail of the distribution. So we can
put a limit on the acceptable values of p0: if p0 is less than, say 5% or 1% we will reject
the null hypothesis, if it is larger than the same limit we will say on the contrary that
the null hypothesis is corroborated. The choice of the limit (5, 1 or 0.1%) depends on
the nature of the problem, and on the degree we decide to be severe with the results we
are considering.

Notice that the p-value, being a function of the data, is a random variable itself. It
is easy to demonstrate that, if H0 is true, p0 has a uniform pdf between 0 and 1. Infact
if we call f(t) a generic pdf of a random variable t, F (t) its integral (normally called
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Figure 9. χ2 distribution for 5 degrees of freedom. The case of t∗ = 8.2
is illustrated. The blue hatched area correspond to the p0 value.

”primitive function” corresponding to the p-value we are talking about) and g(F ) the
pdf of the primitive, we have:

(119) g(F )dF = f(t)dt

so that

(120) g(F ) =
f(t)

dF/dt
=
f(t)

f(t)
= 1

since by definition dF/dt = f(t).
So that by repeating many times the same experiment, all p-values are obtained with

the same probability. From this point of view, very small p-values are as probable as
p-values close to 122.

What can we say if p0 is close to 1? In some situations we can prefer to reject also p0
values close to 1. In this case we have indeed a 2-tails test, where our test statistics is
defined in such a way that only values within a certain range are allowed. For example
we will accept the hypothesis if the p-value is between, say 5% and 95% or any other
interval we define. The choice of making a 2-tails or 1-tail hypothesis test depends

22This statement could be considered paradoxical. One could say that given this fact the p-value is not
useful to discriminate between hypotheses. However we have always to remind that while for the good
hypothesis all p-values are equally probable, for the ”wrong” hypothesis most of them are concentrated
very close to 0, so that low values of p0 correspond to situations that could be easily described by the
alternative hypothesis.
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on the nature of the problem. If the test statistics is a χ2 like in most of the fits, p-
values close to 1 in general correspond to underfluctuations of the experimental points,
or overestimate of the uncertainties on the single measurements. So, while the rejection
of a null hypotheses with small p0 is motivated by the scarce agreement between data
and theory pointing to an alternative hypothesis, the rejection of a large p0 is related to
scarce self-consistency in the data.

Figure 10. One of the results of the ATLAS experiment for the study
of the spin of the Higgs boson. The pdf’s of the test statistics q (defined
as the logarithm of the likelihood ratio) are shown for two alternative
hypotheses: spin 0 and spin 2. The black vertical line corresponds to the
experimental value of the test statistics. The blue hatched area is the
1-p-value. (taken from ATLAS Collaboration, ATLAS-CONF-2013-029).

Let’s consider now the comparison between two alternative hypotheses. Fig.10 shows
an example of the pdf’s of two alternative hypotheses H0 and H1, the null and alternative
hypotheses respectively. Clearly the lower is the overlap between the two pdf’s the
better will be the capability to discriminate between the two alternative theories. Here
the problem becomes very similar to the one outlined in Sect.3, with the difference that
here the two alternative hypotheses are not on a single event, but on a distribution of
events. So we define a cut at a value tcut. If t∗ < tcut we accept the null hypothesis
H0, if t∗ > tcut we accept the alternative hypothesis H1. By applying this cut we accept
two possible errors: the type-I errors when we reject H0 even if it is true; the type-II
errors when we accept H0 even if H1 is true and H0 is wrong. The probabilities α and
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β associated at the two kinds of errors are:

α =

∫ ∞
tcut

f(t/H0)dt(121)

β =

∫ tcut

−∞
f(t/H1)dt(122)

The Neyman-Pearson lemma also applies here, and can be used for the definition of
the test statistics.

We finally remark that the p-value is not the probability of the hypothesis. It is rather
a probabilistic statement on the repetition of the experiment, namely the probability that
by repeating the experiment and if the hypothesis is correct, we obtain a disagreement
larger than the one found. It is possible to evaluate the probability of the hypothesis H,
but for doing that, the Bayes theorem, including priors, has to be used.

5.4. Parameter estimation. If the theory depends on one or more parameters θ, we
have to determine the best values of the parameters θ̂23. The value of the sample
statistics t∗ will depend in this case on the estimated values of the parameters t∗(θ̂).

The most important method for parameter estimation is the maximum likelihood
(ML) method. Suppose we have the likelihood of our data L(x/θ). Once the experimen-
tal data have been taken and are fixed, L can be considered a function of the parameters,
L(θ). It is reasonable to think that the best values of the parameters are those corre-
sponding to the maximum value of the function L(θ). With this method the problem
of finding parameter estimators becomes essentially a problem of finding the maxima
of a K-dimensional function, K being the number of parameters. This problem can be
approached in two ways.

• Analytically, by doing the derivatives of the function (of the logarithm of the
function to simplify the calculations) with respect to the parameters and putting
them equal to 0.

(123)
∂ lnL

∂θk
= 0

This is possible in several cases, like the linear fits or other situations that will be
described in the following. It results in a system of M equations in M unknowns.
• Numerically, in all cases. The ”hystorical” program MINUIT developed at CERN

in the ’70s is still now the most used package for this kind of problems.

The Maximum Likelihood method is not the unique method used, but is a robust
method widely used. Another popular method, the Least Squares method, can be derived
under general hypotheses from the maximum likelihood method. Other methods are not
discussed in these notes.

An estimator θ̂ is a random variable with its own pdf, a mean E[θ̂] and a variance

V ar[θ̂]. It is required to have some properties. We quote here the most important of
them that typical ML estimators have.

23Here and in the following when we put the ”hat” on a parameter, it means it is the estimator of
the parameter.
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(1) Unbiasness: the mean of the estimator should be equal to the ”true” value of

the parameter E[θ̂] = θtrue.
(2) Consistency: the estimator should converge to the ”true” value once the num-

ber of measurements increases V ar[θ̂]→ 0 for N →∞.
(3) Efficiency: the estimator variance should be the minimum, any other estimator

of the same parameter should have a larger variance.

5.5. Interval estimation.

5.5.1. Introduction. Since every estimator is a random variable, an assessment on its
uncertainty is required. In general the result for the parameter has to be given as an
interval, typically θ̂ ± σθ̂. Moreover to such an interval a probability content has to
be associated. The meaning of this probability content depends on the approach used,
either frequentist or bayesian, as it will be clarified in the next chapter. For the moment
we take this probability content as a statement about the probability that the true value
θtrue of the parameter is contained in the interval.

Assume the data are characterized by a likelihood function L(x/θ), and suppose we

have determined the best values of the parameters by maximizing L, let’s call θ̂ the
estimated values of the parameters. They are also called the ”central values” of the pa-
rameters. Now we are interested in the determination of the variances of the parameters
or, in a more general sense, the covariance matrix Vjk = cov[θ̂j , θ̂k].

5.5.2. The Cramer-Rao inequality. An important result from the theory of estimators is
the so called Cramer-Rao inequality. We omit the proof that can be found in spe-
cialistic text-books. We enunciate the Cramer-Rao inequality first for a single parameter
case than for K parameters.

(K=1). The variance of an unbiassed estimator θ̂ obeys the following inequality:

(124) V ar[θ̂] ≥ 1

E
[
−∂2 lnL

∂θ2

]
the denominator is also called Fisher information factor, and is usually indicated as
I(θ).

(K >1). Given the ”Fisher information” matrix

(125) I(θ)jk = E

[
−∂

2 lnL

∂θjθk

]
each term of the covariance matrix Vjk obeys the following inequality

(126) Vjk ≥ I−1(θ)jk
The Fisher information matrix is also called Hessian matrix of the function L24.

The Cramer-Rao inequality states that the inverse of the Fisher information is the
minimum variance attainable for an estimator. When the inequality becomes an equality,
the estimator is said to be fully efficient.

A few theorems are valid for the ML estimators.

24Notice that I−1(θ)jk in eq.126 is the inverse matrix of the Hessian. So, it has to be evaluated using
the rules of matrix inversion.
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• If, for a given parameter, at least a fully efficient estimators exists, such an
estimator is the ML estimator.
• For estimators based on a large number of observation N → ∞, ML estimators

are fully efficient.
• In case of fully efficient estimators, it is possible to replace the mean of the second

derivative with the second derivative evaluated at the estimator central value:

(127) E

[
−∂

2 lnL

∂θ2

]
= −∂

2 lnL

∂θ2

∣∣∣∣
θ=θ̂

The last two theorems are particularly important in practice. Second derivatives evalu-
ated at the central values allow to get the covariance matrix for all ML estimators with
a reasonably large number of observations. This method is extensively used to get the
covariance matrix of the parameters.

A simple argument can be used to understand the relation between the inverse of
the second derivative and the parameter variance. We present it in the simple case of
K = 1. In this case the − lnL function is a simple function of the parameter θ, f(θ)

with a minimum at θ = θ̂. The Taylor expansion around the minimum truncated at the
2nd order is:

(128) f(θ) = f(θ̂) +
df

dθ

∣∣∣∣
θ=θ̂

(θ − θ̂) +
1

2

d2f

dθ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2 + ...

that represents a parabolic shape around the minimum. The first order term vanishes,
while the coefficient of the second order is inversely proportional to the ”width” of the
parabola. This is an analytic property of the parabola equation: the larger is the x2

coefficient, the narrower is the parabola. On the other hand, using eqs.124, 125 and 127,
we have:

(129)
d2f

dθ2
=

1

σ2θ

In the following we’ll see how this feature of the likelihood shape around the minimum
can be used to assess graphically the variance of the estimator.

5.5.3. Profile Likelihood. The argument reported above suggests a graphical method to
assess the variance of the estimator. We refer here again at the case K = 1. Following
the plot shown in Fig.11 we report the function − lnL around the minimum that has a
parabolic shape if the terms of order larger than 2 can be neglected.

Then we draw horizontal lines at heights

(130) − lnLmax +
1

2
n2

with n=1,2,... Each horizontal line intercepts the parabola defining θ intervals centered
in θ̂. By equating eq.130 with eq.128, and assuming eq.129 we get

(131)
1

2
n2 =

1

2

(θ − θ̂)2

σ2θ

so that the intervals are delimited by

(132) θ̂ ± nσθ
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Figure 11. Scheme of principle of a profile likelihood method. A − lnL
with parabolic shape is shown for a given variable X. Horizontal lines
are shown for − lnLmax + 1

2n
2 for n = 0, 1, 2, 3 and a ± 1 σ is shown for

the X variable.

If the terms of order larger than the 2nd can be neglected, we are essentially in the
gaussian limit25. So these intervals have gaussian probability contents: 68% (n=1), 95%
(n=2) and 99.7% (n=3). This graphical method is said profile likelihood method
and is widely used in the fit procedures to get intervals for the parameters with a given
probability content.

If we are not in the gaussian limit, the profile likelihood method can be used as well,
and the probability content remains to a good approximation the same of the gaussian
case. In this case, as shown in the example of fig.12, the intervals can be asymmetric
and the result will be written as

(133) θ̂
+σ+

θ

−σ−θ

A classical example of a profile likelihood analysis, is the estimate of the Higgs boson
mass before its discovery, based on a Standard Model fit. The so called ”blue-band”
plot is shown in fig.13.

In general a minimization program will provide both parabolic intervals through es-
timate of the second derivatives matrix, and non parabolic intervals through profile
likelihood methods. The MINUIT program output provides both kind of intervals. If

25Notice infact that the logarithm of a gaussian function is essentially a parabola.
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Figure 12. Example of a profile likelihood method when − lnL has not
a parabolic shape. As in fig.11, horizontal lines are shown for − lnLmax+
1
2n

2 for n = 0, 1, 2, 3. A ”2sigma” interval is shown for X clearly asym-
metric.

the two kinds of intervals coincide, it means that we are in a gaussian parabolic situa-
tion. If there is a large discrepancy, it means that the minimum of the likelihood is not
parabolic and we are far from the gaussian limit.

5.5.4. Contour Likelihood. The Profile Likelihood method described above can be ap-
plied to the single parameter case only. However when K = 2 a graphical method is
also available providing an interesting insight into the fit result: the so called contour
likelihood method. The function − lnL is, in this case, a 2D function f(θ1, θ2) that,

around the minimum θ̂1, θ̂2 has a 2-D paraboloid shape. For a given probability content
β, regions Sβ can be defined in the θ1 − θ2 plane with the property:

(134) p([θ1, θ2] ⊂ Sβ) = β

that is regions containing the point θ1, θ2 with probability β. Such regions can be
obtained by intersecting the surface f(θ1, θ2), with planes of constant − lnL at values
(compare to eq.130)

(135) − lnLmax + ∆ lnLβ

The equivalent of eq.128 for the two parameters case, is, in the gaussian limit

(136) − lnL = − lnLmax +
1

2
(θ − θ̂)TV −1(θ − θ̂)
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Figure 13. 1-dimensional χ2 of the Standard Model fit to get an interval
for the unknown Higgs boson mass. Notice that the horizontal axis is in
logarithmic scale, so that the minimum is strongly asymmetric. (very
”popular” plot, taken e.g. from www.zfitter.com).

where we have used directly the matrix formalism (T means transposed). By comparing
eq.136 with eq.117 we see that − lnL+ lnLmax has a χ2 distribution with 2 degrees of
freedom. This allows to evaluate the values of ∆ lnLβ of eq.135. Table 2 gives the values
of ∆ lnLβ for K = 1, 2 and 3 for three different values of β. For K = 3 or more, the
graphical contour representation is not available, but regions Sβ can be built with the
same method.

The regions in the 2D case have in general an elliptical shape as shown in fig.14, the
inclination of the two axis being a measure of the correlation between θ1 and θ2.

An important point to notice is the following: the probability content β of an ellipse,
corresponds to the probability that both parameters are in the region. On the other side,
the projection of the ellipse on each single axis (e.g. on the θ1 axis see fig.14) corresponds
to the probability that θ1 is in the range whatever is the value of θ2. Such probability is
of course larger than β. To give the size of this effect we quote the following numbers:
an interval for θ1 built as a projection from a 2D ellipse with β=68.3% has a probability
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Table 2. For 3 different values of probability levels (corresponding to
the usual 1,2 and 3 gaussian std.deviations) the values of ∆ lnLβ are
given for one-parameter (K=1) and two or three-parameters fits.

β (%) 2∆ lnLβ (K=1) 2∆ lnLβ (K=2) 2∆ lnLβ (K=3)
68.3 1 2.30 3.53
95.4 4 6.18 8.03
99.7 9 11.83 14.16
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Figure 14. Contour plot of two correlated parameters in the gaussian
limit. The ellipse shown in yellow, is the Sβ region described in the text.
The horizontal and vertical bands allow to get 1-dimensional intervals for
the two variables. The probability contents of these intervals is different
from β.

content of 97%. On the other hand if the projection has a probability content of 68.3%,
the β of the corresponding ellipse is 39.3%.

Finally, non-elliptical contours are built when the gaussian limit is not reached. Ex-
amples of highly non-elliptical 2D contours are shown in fig.15.

5.6. Frequentist vs. bayesian intervals. In the previous sections, methods to ex-
tract estimators of the parameters characterized by an uncertainty from data samples
have been presented and discussed. However we have not yet defined the meaning of
the uncertainty intervals. In order to define the conceptual scheme within which these
intervals acquire a well defined meaning we have to distinguish between two alternative
approaches: the frequentist (also said classical) approach, and the bayesian approach.
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Figure 15. From the ATLAS experiment. Results of the fits of 3 differ-
ent Higgs decay channels (namely γγ, ZZ and WW ) in a 2-dimensional
plane, mass vs. signal strength. For each fit, both 68% and 95% probabil-
ity regions are shown. Notice that in all the cases apart from the γγ, we
are very far from the gaussian limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29).

For most of the problems that are normally encountered in data analysis, the two ap-
proaches give the same practical results. However for a certain number of applications,
like the analysis of small signals, or the analysis of parameters close to the physical limit,
(some of these problems will be considered below), different results can be obtained de-
pending on the approach used.

In this section we briefly outline the two approaches putting in evidence the main
differences between the two.

5.6.1. Bayesian intervals. We consider for simplicity the measurement of a physical
quantity x and a likelihood depending on a single parameter θ, L(x/θ). x can be either
a single measurement or a set of measurement, and we call x0 the outcome of the mea-
surement. We aim to estimate θtrue with its uncertainty. The idea is to use directly the
Bayes theorem:

(137) p(θtrue/x0) =
L(x0/θtrue)π(θtrue)∫

dθtrueL(x0/θtrue)π(θtrue)

where π(θtrue) is the prior probability of θtrue. The Bayes theorem provides a pdf
of θtrue. Through the Bayes formula, the result of a measurement allows to update the
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a-priori pdf, giving an a-posteriori pdf of θtrue. Notice the key-point of the bayesian
approach: the true value of the parameter is regarded as a random variable and the aim
of the analysis is to get informations on its pdf. Based on the pdf, it is possible to build
probability intervals for θtrue with content β:

(138)

∫ θ2

θ1

p(θtrue/x0)dθtrue = β

The interval [θ1, θ2] is called credible interval. Eq.138 doesn’t define the edges of the
interval θ1 and θ2 in an unique way. For a given β several choices can be done to define
θ1 and θ2. We quote here the most typical.

• Central intervals: the pdf integral is the same above and below the interval:∫ θ1

−∞
p(θtrue/x0)dθtrue =

1− β
2

(139) ∫ +∞

θ2

p(θtrue/x0)dθtrue =
1− β

2
(140)

• Upper limits: θtrue is below a certain value. In this case the interval is between
0 (if θ is a non-negative quantity) and θup:

(141)

∫ θup

0
p(θtrue/x0)dθtrue = β

• Lower limits: θtrue is above a certain value θlow:

(142)

∫ +∞

θlow

p(θtrue/x0)dθtrue = β

We insist that the key-point of this approach is that the true value of the parameter is
considered as a random variable, with a pdf, a mean and a variance.

5.6.2. Frequentist intervals. In order to define the frequentist confidence intervals we
use the so called Neyman construction. We start from the same experimental situa-
tion described above: a physical quantity, or a set of physical quantities x, a parameter
θ and a likelihood function L(x/θ). For each value of θ it is possible to evaluate an
interval [x1(θ), x2(θ)] characterized by a probability content β:

(143)

∫ x2(θ)

x1(θ)
L(x/θ)dx = β

This interval is not unique, we can consider a central interval (see above), but the
argument applies to any specified kind of interval.

Eq.143 is expressed graphically in fig.16. The measured quantity x is on the horizontal
axis while the parameter θ is on the vertical axis. For each θ we draw the segment
[x1(θ), x2(θ)] according to eq.143. We have obtained in this way the so called confidence
belt. Now we perform the measurement of x and we get x0. We draw a vertical line
at x0 and the intercepts of this line with the confidence belt give rise to an interval
[θ1(x0), θ2(x0)]. What is the meaning of such an interval? The position of θtrue is not
known, however we know, by construction, that if we repeat the measurement a certain
amount of times, in a fraction β of the experiments x0 will be in the [x1(θtrue), x2(θtrue)]
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interval so that in the same fraction of experiments, [θ1(x0), θ2(x0)] will contain θtrue.
How it is normally said, the interval defined in this way, covers the true value with a
probability β.

(144) p(θ1(x0) < θtrue < θ2(x0)) = β

The frequentist interval is built in such a way that, by repeating several times the
experiment, in a fraction β of the experiments the interval covers the true value of the
parameter. This property of the frequentist confidence intervals is called coverage.

Figure 16. Neyman construction. A segment between x1(θ) and x2(θ) is
evaluated for each value of the parameter θ as described in the text. The
segments define the confidence belt. Once a value of x, x0 is obtained,
the interval [θ1(x0), θ2(x0)] is built.

It is important to understand properly eq.144. The probability statement is not
relative to θtrue that, in this context, is not a random variable but a fixed parameter.
The probability statement is referred to the outcome of the experiment: the probability
that our interval covers θtrue is β.

5.6.3. Comparison of the approaches. At first view the bayesian method appears simpler
and more similar to the logic of our normal reasoning. However the main criticism to
the bayesian method, is the fact that it requires the prior pdf of the parameter. This is
considered by the frequentists a problem, since it means that intervals can be defined only
if one has a prejudice on the parameter. Several authors have addressed the problem
of defining the ”non-informative” prior pdf, that is that pdf that corresponds to no
prejudice at all. It can be shown that a uniform pdf is not necessarily non-informative.
Priors with dependence like 1/θ or 1/

√
θ can be considered for specific problems. But

there is not consensus on how a non-informative prior can be defined.
On the other hand the frequentist approach has problems in some specific cases, when

the confidence intervals under-covers or over-covers the true value, that is in other words
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have probability contents different from the expected ones. Several pathologies of this
kind have been considered in the literature.
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6. Fit examples

In this section few simple examples of fits are presented. The aim is to show ap-
plications of the methods discussed in the previous section. All examples are solved
analytically apart from the last one, where a general case encountered in EPP experi-
ments is discussed but not solved.

6.1. Rate measurement. A number N of counting measurements have been done all
in time intervals ∆t, the results of the countings being ni, i=1,...,N . We are interested
in giving the best estimate of the rate with its uncertainty.

First we define the unbinned likelihood:

(145) L(n/λ) =
N∏
i=1

e−λλni

ni!

where λ is the parameter we aim to estimate. We take the logarithm and evaluate first
and second derivatives:

lnL =

N∑
i=1

(−λ+ ni lnλ− lnni!)(146)

∂ lnL

∂λ
= −N +

N∑
i=1

ni
λ

(147)

−∂
2 lnL

∂λ2

∣∣∣∣
λ=λ̂

=

∑N
i=1 ni
λ2

(148)

By equating to 0 the first derivative we get:

(149) λ̂ =

∑N
i=1 ni
N

that is the arithmetic average of the single counts, and from the second derivative we
get:

(150) V ar[λ̂] =
λ̂2∑N
i=1 ni

=
λ̂

N

that is essentially the variance of a single counting measurement, divided by the number
of measurement as expected. It is clearly a consistent estimator.

The best estimate of the rate r̂ is

(151) r̂ =
λ̂

∆t
±

√
λ̂√

N∆t

6.2. Lifetime measurement. In this case a number N of particles have been produced
and N decay times ti have been measured for this particle. We want to get the best
estimate of the lifetime τ of the particle with its uncertainty. We proceed as in the
previous example, by evaluating the unbinned likelihood function and then by taking
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the derivatives.

L(t/τ) =
N∏
i=1

1

τ
e−ti/τ(152)

lnL =

N∑
i=1

(
− ln τ − ti

τ

)
(153)

∂ lnL

∂τ
= −N

τ
+

1

τ2

N∑
i=1

ti(154)

−∂
2 lnL

∂τ2

∣∣∣∣
τ=τ̂

= − 1

τ̂2

(
N − 2

∑N
i=1 ti
τ̂

)
=
N

τ̂2
(155)

from which we get:

τ̂ =

∑N
i=1 ti
N

(156)

V ar[τ̂ ] = −τ̂2 1

N − 2N
=
τ̂2

N
(157)

again the average of the measurements the variance of the single measurement divided
by N .

6.3. Mean and Sigma of a guassian. A number N of measurements of a physical
quantity x have been done. The hypothesis is that all these measurements come from
a gaussian population of mean µ and variance σ2. We consider two situations: in the
first, we know the σ of each measurement (possibly different among each other) and we
want to get the best estimate of µ; in the second we assume to know µ and we want to
estimate the σ (assuming that all measurements have the same σ). The likelihood is, in
both cases:

(158) L(x/µ, σ) =

N∏
i=1

1√
2πσi

e
− (xi−µ)

2

2σ2
i

Let’s consider now the first case.

∂ lnL

∂µ
=
∑
i

(xi − µ)

σ2i
(159)

−∂
2 lnL

∂µ2
=
∑
i

1

σ2i
(160)

from which we get:

µ̂ =

∑
i
xi
σ2
i∑

i
1
σ2
i

(161)

V ar[µ̂] =
1∑
i

1
σ2
i

(162)

the well known formulas of the weighted average and its uncertainty.
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For the second case:

∂ lnL

∂σ
= −N

σ
+

∑
i(xi − µ)2

σ3
(163)

−∂
2 lnL

∂σ2
=
N

σ2
− 3

∑
i(xi − µ)2

σ4
(164)

from which we get:

σ̂2 =

∑
i(xi − µ)2

N
(165)

V ar[σ̂] =
σ̂2

2N
(166)

We notice here that, if in the evaluation of σ̂ we use as µ the value estimated by the
data, µ̂, the estimator of σ has a bias. Infact in that case the denominator requires N−1
rather than N to take into account the fact that µ̂ is determined by the same data. If,
on the other hand, µ is taken from an independent data sample or from a theory, the
estimator is unbiassed.

6.4. Slope and intercept measurement: the linear fit. N experimental points
have been taken. Each point is the measurement of a physical quantity yi, i=1,...,N for
N different values of another physical quantity xi. We make the following assumptions:

• each measurement of yi is characterized by a gaussian pdf with a known variance
σ2i ;
• the xi values are assumed to be known with no or negligible uncertainty26;
• the yi measurements are not correlated;
• we make the hypothesis that the two physics quantities y and x are related by

(167) y = mx+ c

where m (the slope) and c (the intercept) are free parameters we want to measure
from the data.

According to these hypotheses, the likelihood of this measurements can be written as:

(168) L(y/m, c) =
N∏
i=1

1√
2πσi

e
− (yi−mxi−c)

2

2σ2
i

by taking the negative logarithm (multiplied by 2) and neglecting all the terms not
explicitly depending on the parameters we get the well known ”least square” formula:

(169) χ2 =

N∑
i=1

(yi −mxi − c)2

σ2i

that we have called χ2 since, within the hypotheses done and discussed above, it is a
test statistics with a χ2 pdf with N − 2 degrees of freedom. In this case, since we have 2

26The independent variable x of the linear fit has a negligible uncertainty when, if we call m̂ the
estimate of the slope between y and x, we have that σ(xi) << σ(yi)/m̂.
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parameters, the minimization has to be done with respect to both parameters. So that
we get a linear system of 2 equations in 2 variables (m and c):

x2m+ xc = xy(170)

xm+ c = y(171)

where with the generic symbol z we mean a weighted average of any z27:

(172) z =

∑N
i=1

zi
σ2
i∑N

i=1
1
σ2
i

Notice that in these weighted averages, the weights are always the σ on the y, whatever
is z. The solutions of this system are:

m̂ =
xy − x · y
x2 − x2

(173)

ĉ =
x2 · y − x · xy

x2 − x2
(174)

The covariance matrix of the 2 parameters is determined evaluating first the Hessian
matrix (see eq.125), and by inverting it with the usual methods of matrix inversions.
The Fisher matrix is:  ∑

i
x2i
σ2
i

∑
i
xi
σ2
i∑

i
xi
σ2
i

∑
i

1
σ2
i


and the covariance matrix is:( 1∑

i(1/σ
2
i )V ar[x]

−x∑
i(1/σ

2
i )V ar[x]

−x∑
i(1/σ

2
i )V ar[x]

x2∑
i(1/σ

2
i )V ar[x]

)
where the variance of x is not the uncertainty on x but the lever arm of the fit, namely
the spread of the x values on the x axis.

The covariance matrix of the parameters gives us a complete view of the fit results.
The diagonal terms give us the uncertainties on the 2 parameters, and the off-diagonal
terms the covariance between the two parameters. Assuming for simplicity that all the
σi are equal we have:

σ(m̂) =
σ√

N
√
V ar[x]

(175)

σ(ĉ) =

√
x2σ√

N
√
V ar[x]

(176)

cov(m̂, ĉ) = −
√
xσ√

N
√
V ar[x]

(177)

We see that the uncertainties on the parameters depend inversely on the number of
experimental points N and on the lever arm V ar[x], and directly on the uncertainty on

27Here by z we mean any of the quantity entering eq. 171, namely x, y, x2, xy. In all cases the
weights in the averages are based on the σi of the single yi.
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the single measurements. A negative correlation is expected in case the centroid of the
x values is not 0.

6.5. Generic linear fit. The case considered in the previous section can be easily
generalized to the linear fit, that is when the relation between the two physical quantities
is linear in the parameters. If we call θ the M parameters, a linear function in the
parameters, is any expression like:

(178) y = f(x/θ) =
M∑
k=1

θkfk(x)

where fk(x) are generic functions of x. Assuming the same hypotheses of the previous
sections on the measured quantities, the χ2 is:

(179) χ2 =
N∑
i=1

(yi −
∑

k θkfk(xi))
2

σ2i
= −2lnL

from which we get, by equating to 0 the M derivatives, the M equations:

(180)
∂χ2

∂θj
=
∑
i

−2fj(xi)(yi −
∑

k θkfk(xi))

σ2i
= 0

The linear system of equations can be written as (equation j):

(181)
∑
k

[∑
i

fj(xi)fk(xi)

σ2i

]
θk =

∑
i

yifj(xi)

σ2i

The solution of this system gives the best estimates of the M parameters:

(182) θ̂k =
∑
i

∑
j

Vkj
yifj(xi)

σ2i

where the matrix Vkj is the inverse of the coefficient matrix of the linear system

(183)
(
V −1

)
kj

=
∑
i

fk(xi)fj(xi)

σ2i

The matrix Vkj is also the covariance matrix of the parameters. Infact the second term
of 183 is equal to the second derivative of the χ2 with respect to θiθj that, based on the
Fisher recipe described above, corresponds to the covariance matrix of the parameters.

It is important to notice that these kinds of linear fits can be resolved analytically.
Typical examples of these fits are the polynomial fits that are used in several contexts.

6.6. Fit of a signal+background data sample. A typical situation encountered in
EPP is the analysis of a mass distribution like the one shown in fig. 17. A sample
of events has been selected and for each event an invariant mass has been evaluated.
The invariant mass distribution shows one or more peaks (2 in the case of the figure)
over a continuum background. The aim of the analysis is to evaluate the masses of the
particles corresponding to the peaks, and the number of events in the peaks. The latter
information can be used to extract the cross-section for the inclusive production of the
observed particles.
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Figure 17. Invariant mass spectrum of the combination Λ0
bπ

+π− ob-
tained by the LHCb experiment at CERN. The two peaks observed are
interpreted as the discovery of 2 new excited states of the Λb family. The
histogram is described by a signal + background fit. (taken from LHCb
collaboration, Phys.Rev.Lett. 109 (2012) 172003)

The fit can be either an histogram fit or an unbinned fit. We see how the test statistics
can be defined in the two cases.

We define28 Ns and Nb the total number of signal and background events respectively,
fs(x/M) and fb(x/α) the two functions of the mass x describing the signal and back-
ground respectively. fs is assumed to be gaussian with mean M and a width σ assumed
to be known29:

(184) fs(x/M) =
1√
2πσ

e−
(x−M)2

2σ2

fb is assumed to be a polynomial function30, α being the vector of parameters describing
the polynomial background (together with Nb). Both functions are normalized to 1. The
parameters describing the background are free parameters and have to be evaluated by
the fit or have to be known independently (e.g. from Montecarlo). However, since they

28We consider, for simplicity the case of a single signal, that is a peak over a continuum background.
29The gaussian assumption means that the particle width Γ is negligible with respect to the mass

resolution of the experiment. This is the case in many situations, e.g. J/ψ production but also in the
case of the Higgs boson.

30In general a polynomial background can be considered, in the case of the figure a linear function is
almost sufficient to describe the background. The expected distribution based on phase space kinematics
can also be used.
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have not a deep physical meaning they are called generically nuisance parameters.
On the other hand Ns and M are the parameters we are interested in.

Let’s consider first the unbinned case. The test statistics can be written as an extended
likelihood (N is the number of events entering the histogram):

(185) L(x/Ns, Nb,M, α) =
e−(Ns+Nb)(Ns +Nb)

N

N !

N∏
i=1

[Nsfs(xi/M) +Nbfb(xi/α)]

For the histogram fit we have to define the signal and background contents si and bi
in each of the M bins of width δx:

si = Ns

∫ xi+δx/2

xi−δx/2
fs(x/M)dx(186)

bi = Nb

∫ xi+δx/2

xi−δx/2
fb(x/α)dx(187)

so that:

(188) L(n/Ns, Nb,M, α) =

M∏
i=1

e−(si+bi)(si + bi)
ni

ni!

where ni is the experimental content in the bin i.
In both cases the minimization and the evaluation of the hessian matrix of this like-

lihood will be done numerically. As a result we’ll have estimates of the 2 relevant
parameters Ns and M and of the nuisance parameters. Moreover the value of L at the
minimum will be used for hypothesis test.

The possibility to move the nuisance parameters in the fit, allows to obtain a better
agreement between data and theory at the expense of having larger uncertainties on
the relevant parameters Ns and M . Any knowledge of the nuisance parameters can
be added in the likelihood as additional constraint. For example if Nb is known to be
Nb ± σ(Nb) with a gaussian shape, an additional gaussian factor can be added to the
likelihood forcing Nb to stay within its gaussian limits. The lower is σ(Nb) the lower will
be its impact on the final uncertainties on Ns and M . From this example we see that the
method of the nuisance parameters can be used to include the evaluation of systematic
uncertainties directly in the fit. In the following more examples will be given.
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7. Search for ”new physics”: upper/lower limits

7.1. Introduction. Several analyses of experimental data in Elementary Particle Physics
concern the search for new physics. This means to set-up an experiment to identify
new phenomena that cannot be accounted for by the Standard Model. Common ex-
amples are all the searches for new particles where one has to find a ”signal” out of a
known background, or the detection of unpredicted decays.

In general a distinction is done between ”discovery” and ”exclusion”.

• Discovery: the Null Hypothesis H0, based on the Standard Model is falsified
by a goodness-of-fit test. This means that new physics should be included to
account for the data. This is an important discovery.
• Exclusion: the Alternative Hypothesis H1, based on an extension of the Stan-

dard Model (or on a new theory at all), doesn’t pass the goodness-of-fit test. H1

is excluded by data.

Both require goodness-of-fit tests as discussed in the previous section.
Exclusion means that the search has given a negative result. However a negative result

is not a complete failure of the experiment, but it gives important informations that have
to be expressed in a quantitative way so that theorists or other experimentalists can use
them for further searches. These quantitative statements about negative results of a
search for new phenomena are normally the ”upper limits” or the ”lower limits”.

By upper limit we mean a statement like the following: such a particle, if it exists,
is produced with a rate (or cross-section) below this quantity, with a certain probability.
On the other hand, by lower limit statements like: this decay, if exists, takes place
with a lifetime larger than this quantity, with a certain probability. Both statements
concern an exclusion.

We have already seen above how, in the context of the interval estimation, upper/lower
limits can be defined together with central intervals. In this Section we outline the meth-
ods to evaluate upper/lower limits in present experiments. We refer to the most common
case, namely the case of a counting experiment, where we want to make statements about
the rate of signal events out of a background.

First, the bayesian and frequentist approaches to the problem are briefly presented
and compared. Then the so called ”modified frequentist” CLs method will be described,
based on the profile likelihood ratio, and finally the case of the search for the Higgs
boson in the LHC experiments is discussed with some detail.

7.2. Bayesian limits. In the bayesian context, the result of the search is given as the
pdf of the variable we are looking for, that can be s (signal rate), or τ (particle lifetime).
We define first the Likelihood function for the problem, and then we evaluate the pdf of
the signal rate using the Bayes theorem.

Let’s start with the simple case of a search where b = 0, b being the expected back-
ground. We call s the number of signal events. In this case the likelihood is:

(189) L(n0/s) =
e−ssn0

n0!

If we count n0 = 0 in a certain amount of time, the likelihood is:

(190) L(0/s) = e−s
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In order to use the Bayes theorem we need to have the prior probability π(s). We have
already discussed this point above and we have seen that it is difficult to define in a
general sense a non-informative prior. However in this case we assume a prior that is
flat for positive values of s and 0 for negative values of s. In this case the Bayes theorem
simplifies to:

(191) p(s/0) =
L(0/s)π(s)∫
L(0/s)π(s)ds

= L(0/s) = e−s

Given a probability content α (e.g. α=95%) the upper limit sup will be such that:

(192)

∫ ∞
sup

p(s/0)ds = 1− α

that gives:

(193)

∫ ∞
sup

e−sds = e−sup = 1− α

We easily find sup=2.3 for α=90% and sup=3 for α=95%.
In case b is not equal to 0 (but is known with negligible uncertainty), and n0 is any

value, assuming the same prior for s, the Bayes theorem gives

(194) p(s/n0) =
e−(s+b)(s+ b)n0

n0!

The upper limit sup will be in this case such that:

(195)

∫ ∞
sup

e−(s+b)(s+ b)n0

n0!
ds = 1− α

Numerical solutions of sup are given as a function of b for different values of n0 in fig.18.
In case n0 = 0 the results given above are still valid even if b is larger than 0.

If b is known with a given uncertainty (e.g. we know that b is defined between bmin
and bmax and has a pdf f(b)), eq.194 can be modified by including a convolution with
f(b):

(196) p(s/n0) =

∫ bmax

bmin

e−(s+b
′)(s+ b′)n0

n0!
f(b− b′)db′

The width of the function f(b) affects the limit. A large uncertainty on the background

increases sup for any given value of b and n0. If b is a Poisson variable, σ(b) =
√
b, an

increase in sup of about 10% for a given n0-b point is expected.
If a different prior is used (e.g. 1/s or 1/

√
s) different numerical results are obtained

for the same n0, b point. Only in case n0 = 0, b = 0, the result doesn’t depend on the
prior.

We remind that the result of this analysis is essentially the pdf p(s/n0). When n0
is significantly larger than b, it means that we are observing a signal, so that a central
interval for s should be given rather than an upper limit. In general a good interval will
be

(197) ŝ = n0 − b±
√
n0 + σ2(b)



59

Figure 18. 90% limit sup (A in the figure) vs. b (B in the figure) for
different values of n0. These are the upper limits resulting from a bayesian
treatment with uniform prior. (taken from O.Helene, Nucl.Instr. and
Meth. 212 (1983) 319)

The transition between an upper limit statement and a central interval statement de-
pends on the problem we are considering and is arbitrary (see below).

7.3. Frequentist limits. We go back here to the Neyman construction presented in
sect. 5.6. Another way to consider the meaning of eq.144 is the following. The two
extremes θ1(x0) and θ2(x0) of a central interval have the following properties: if θtrue =
θ1(x0) the probability of obtaining a value of x larger than x0 is (1−β)/2; if θtrue = θ2(x0)
the probability of obtaining a value of x smaller than x0 is also (1− β)/2.

Now let’s consider the Neyman construction for the case of an upper limit and apply
the same considerations given here. We call s the parameter (namely the amount of sig-
nal) and n0 the result of the measurement (a counting experiment). The construction is
shown in fig.19. The belt is limited on one side only, and for any result of a measurement
n0 we identify sup in such a way that if strue = sup, the probability to get a counting
smaller than n0 is 1 − β31. By considering the Poisson statistics without background
(b=0) we get:

(198)

n0∑
n=0

e−supsnup
n!

= 1− β

31Since we are dealing with upper limits we have to omit here the 1/2, see for instance eqs.141 even
if these equations refer to the bayesian case.
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Figure 19. Neyman construction for the case of an upper limit. In
this case a segment between n1(θ) and ∞ is drawn for each value of the
parameter θ. The segments define the confidence region. Once a value
of n, n0 is obtained, the upper limit sup is found. (For simplicity the
discrete variable n is considered as a real number here).

If n0 = 0 we have

e−sup = 1− β(199)

sup = ln
1

1− β
(200)

from which we get the same numbers for sup obtained in the bayesian case.
If b is not equal to 0 but is known, eq.198 becomes:

(201)

n0∑
n=0

e−(sup+b)(sup + b)n

n!
= 1− β

and from this equation upper limits can be evaluated for the different situations.
It has been pointed out that the use of eq.201 gives rise to some problems. In particular

negative values of sup can be obtained using directly the formula32. This doesn’t happen
in the bayesian context where the condition s > 0 is put directly by using the proper
prior.

Another general problem affecting both bayesian and frequentist approach is the so
called flip-flop problem. When n0 is larger than b, at a given point the experimentalist

32A rate is a positive-definite quantity. However, if a rate is 0 or very small with respect to the
experimental sensitivity, the probability that n0 is larger than b is exactly equal to the probability that
n0 is lower than b. This implies that a negative rate naturally comes out from an experimental analysis
based on a difference between two counts. The acceptance of such results is a sort of ”philosophical”
question and is controversial. In the following another example of negative result for a positive-definite
quantity is presented.
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decides to present the result as a number ± an uncertainty rather than an upper limit.
Such a decision is somehow arbitrary. A method to avoid this problem is the so called
unified approach due to Feldman and Cousins, developed in the frequentist context.

Fig.20 shows the frequentist upper limits obtained as a function of b using the unified
approach that can be directly compared with the bayesian limits shown in Figs.18.

Figure 20. 90% limit sup (Upper end of confidence interval for µ in the
figure) vs. b for different values of n0. These are the upper limits resulting
from a frequentist treatment in the framework of the so called ”Unified
approach”. The dotted portions of the lines correspond to configuration
where central intervals rather than upper limits should be given. The
dashed portions of the lines correspond to very unlikely configuration
(very small n0 when b is quite large, so that p(n0) is below 1%). (taken
from G.Feldmann, R.Cousins, Phys.Rev.D57 (1998) 3873)

A well known example of a different result from a bayesian and a frequentist approach
to the same problem is provided by the limit on the electron neutrino mass, based on
the data available in the nineties. In the electron neutrino mass analysis the square mass
m2 is obtained by a fit. In the 1994 edition of PDG a weighted average m2 = −54± 30
eV2 was reported33, the full 1σ interval (68%) being in the negative ”unphysical” region.
Is this result ”wrong” ? No, because we know that if the true mass value m2

t is equal
to 0, 16% of the experiments will find a 1σ interval entirely in the unphysical region.

33In the last PDG edition the current number is m2 = −0.6± 1.9 eV2.
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The question is how to translate this result in an upper limit. Let’s consider the two
approaches, in both cases the likelihood function is a gaussian with σ = 30 eV2.

In the frequentist approach, the 95% CL upper limit is the value of m2, let’s call it m2
up

such that if m2
t = m2

up, the probability to get a value lower than the one experimentally

found of -54 eV2, is 5%. We obtain m2 < 4.6 eV2. The same argument for a 90% CL
gives the quite ”disturbing” result m2 < −16 eV2.

In the bayesian approach it is possible to constraint m2
t to be positive by using a prior

π(m2
t )constant for m2

t > 0 and 0 for m2
t < 0. From the Bayes theorem the resulting pdf

of m2
t is:

(202) p(m2
t /m

2) =
L(m2/m2

t )π(m2
t )∫

dm2
tL(m2/m2

t )

The 95% CL upper limit is m2
t < 34 eV2 (m2

t < 27 eV2 at 90% CL).
The construction of the upper limit is shown in fig.21 for both approaches.
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Figure 21. Example of the square neutrino mass. Construction of the
upper limit in the frequentist approach (left plot) and in the bayesian
approach (right plot). (left) The red gaussian is the experimental like-
lihood, the blue gaussian corresponds to the 95% CL upper limit that
leaves 5% of possible the experiment outcomes below the present experi-
mental average. (right) The blue curve is the result of the Bayes theorem
when a prior forcing to positive values is applied (eq.202).

7.4. A modified frequentist approach: the CLs method. Now we consider a
method, developed in the last years and applied in many analyses especially from LHC
experiments, including the search for the Higgs boson. It is the modified frequentist
approach to the problem of setting upper/lower limits in search experiments.
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7.4.1. The test statistics. A selection procedure has been applied and for the N selected
events an histogram of the variable x (e.g. an invariant mass) is done with M bins of size
δx. Let’s call ni the number of events in the bin i and yi the number of expected events
in the same bin. yi will be the sum of a number of events due to all known processes
based on the Standard Model bi that we call background and of a number of events due
to the searched particle or new phenomenon, si that we call signal. So we write:

(203) yi = µsi + bi

where we have multiplied the number of signal events by a quantity µ that we call signal
strength that has the following properties: µ = 1 corresponds to the theory expectation,
µ = 0 corresponds to no effect at all, any other value corresponds to a different rate for
the theory. If we call σth the expected cross-section according to the searched theory,
and σ the actual observed cross-section:

(204) µ =
σ

σth

Following sect. 6.6 we can write the likelihood function for this histogram:

(205) L(n/µ, θ) =

M∏
i=1

(µsi + bi)
nie−(µsi+bi)

ni!

where we have separated the parameter µ from all the other parameters θ. µ is the
parameter on which we are interested in making our inference (e.g. estimating an interval
for it) while all other parameters are the nuisance parameters: as already stated, we have
to evaluate them but they are less interesting. The nuisance parameters can be either
known or estimated by MC or, in many cases they have to be evaluated from the data
themselves. From this point of view the technique of the control regions can be very
useful. It consists in selecting events with a background-enriched selection34 and,
once counted, in transferring them to the signal region. This transfer makes use of
”transfer factors” that have to be evaluated based on Montecarlo. The control regions
can be also used to constrain the nuisance parameters in such a way to reduce their
uncertainty and hence to reduce their impact on the final result on µ. The control
regions can be considered as K additional bins35 with contents mj , with j=1,...,K and
expected values E[mj ] = uj(θ) depending on the nuisance parameters (and not on µ),
so that the likelihood can be rewritten as:

(206) L(n/µ, θ) =

M∏
i=1

(µsi + bi)
nie−(µsi+bi)

ni!

K∏
j=1

u
mj
j e−uj

mj !

Any constraint on the nuisance parameters can be added as additional terms to ac-
count for systematic uncertainties. For example the expected number of signal events
si depends on the efficiency for signal events, on the integrated luminosity and on the

34A background-enriched selection is designed in such a way that the probability that signal events
are selected is very low, possibly negligible, so that only Standard Model predictable events are present.
A typical approach consists in reverting one or more cuts of the baseline selection.

35The side-bands defined in sect.4 are an example of background-enriched sample, and are widely
used to constraint the background average value in the signal region.
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theory uncertainties. All these are sources of systematic uncertainties that will affect
the resulting value of µ and its uncertainty, if properly added to the likelihood.

Starting from eq.206, or any similar likelihood we can define the test statistics qµ:

(207) qµ = −2 ln
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)

Here we have first of all omitted for simplicity from the arguments of L the ni (so that
we now consider L a function of the parameters) and we have introduced the following

symbols: µ̂ and θ̂ are the best values of the parameters obtained by maximizing L;
ˆ̂
θ are

the values of the nuisance parameters obtained by maximizing L at µ fixed. The test
statistics defined in eq. 207 is a function of µ and is called profile likelihood ratio. Its
value, once plotted as a function of µ shows the behavior of the likelihood for different
possibile values of the parameter.

In the following the notation f(qµ/µ
′
) is used. It represents the pdf of the test statistics

qµ (defined in eq. 207) for a sample of simulated events generated assuming µ = µ
′
.

The Wilks theorem (see sect.5) has the consequence that under general hypotheses
and in the large sample limit, since qµ is a likelihood ratio, the pdf f(qµ/µ) has a χ2

distribution with 1 degree of freedom. In particular the distribution of q0 for a sample
of purely background simulated events has a χ2

1 pdf. It is interesting to notice that a χ2
1

variable is essentially the square of a standard gaussian variable:

(208) χ2
1 =

(
x− µ
σ

)2

so that its square root is a standard gaussian variable. This allows to use the quantity

(209)
√
q0 =

√√√√−2 ln
L(0,

ˆ̂
θ)

L(µ̂, θ̂)

as a measure, in number of standard deviation, of the agreement of the data with the
null hypothesis. Such a quantity is used in many circumstances to define the statis-
tical significance that can be reached by an experiment to reject the background-only
hypothesis. The ”score function” defined by eq.59 is an application of this formula.

7.4.2. Discovery. In order to falsify a null hypothesis H0 we need to test the background-
only hypothesis. This can be done by using the test statistics q0, that is eq. 207 for
µ = 0

(210) q0 = −2 ln
L(0,

ˆ̂
θ)

L(µ̂, θ̂)

If we call qobs0 the value of q0 obtained using the data, we can easily define a p-value

(211) p0 =

∫ ∞
qobs0

f(q0/0)dq0

that, for what we have seen in the previous paragraph, is essentially a χ2 test. If p0 is
below the defined limit we falsify the hypothesis and we have done the discovery.
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7.4.3. Signal exclusion: CLs+b. We consider now how the test statistics shown in eq.
207 can be used for the exclusion of a given theory. Eq. 207 is rewritten with µ = 136

(212) q1 = −2 ln
L(1,

ˆ̂
θ)

L(µ̂, θ̂)

The lower is q1, the more compatible the data are with the theory, and the less compatible
the data are with the pure background expectations. The pdf of q1 can be evaluated
starting from MC samples, either generated with µ = 1 or for samples of pure background
events generated with µ = 0. We call respectively f(q1/1) and f(q1/0) the two pdf’s. A
graphical example of these pdf’s is shown in Figure 22. The separation between the two
pdf’s determines the capability to discriminate the searched model with respect to the
background37.
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Figure 22. Example of q1 distributions in the two hypotheses, namely
µ = 1 and µ = 0. The separation between the two distributions indicate
the capability to discriminate the two hypotheses.

First we evaluate the sensitivity of the experiment. Before doing the measurement,
we want to determine, using the simulation, at which confidence level we can exclude the
signal hypothesis. This expected exclusion of the signal is an important parameter in
the design of the experiment itself and can be obtained using the Montecarlo simulation.
Let’s define how such a sensibility can be determined. With reference to Figure 23 we

36Alternative likelihood ratios can be used for this exclusion test, in particular the L(s + b)/L(b)
likelihood ratio is generally used giving very good performance based on the Neyman-Pearson lemma.

37All the considerations done for the test of hypotheses apply here in the same way.
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define q̃1 as the median of the f(q1/0) function38. This is a sort of average outcome
for a background-only experiment. The hatched area in Figure 23(a) corresponds to a
probability content that we call CLexps+b:
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Figure 23. For the same example of alternative hypotheses shown in
Fig. 22: construction of CLexps+b (upper plot) and of CLobss+b (lower plot).
In both cases the CL is given by the blue area. In the upper plot the
median q1 from background experiments is indicated as q̃1; in the lower
plot the q1 obtained by data is indicated as qobs1 .

(213) CLexps+b =

∫ ∞
q̃1

f(q1/1)dq1

38The use of the median rather than the mean, is motivated by the fact that we are interested in
evaluating p-values so that integrals of the pdf’s have to be considered.
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that has the following meaning: it is the median CL with which we exclude the signal
in case of a background-only experiment. Clearly, the smaller is the CLexps+b obtained in
this way, the higher is the capability of the experiment to exclude the signal.

However, we have determined the median CL only. In actual background-only ex-
periments, we will have background fluctuations, in such a way that q1 values will be
obtained distributed according to f(q1/0). So we can evaluate an interval of confidence

levels, by repeating the procedure above for two positions of q1 , q̃
(1)
1 and q̃

(2)
1 such that

respectively: ∫ q̃
(1)
1

−∞
f(q1/0)dq1 =

1− β
2

(214)

∫ q̃
(2)
1

−∞
f(q1/0)dq1 =

1 + β

2
(215)

with e.g. β = 68.3% to have a gaussian one-std.deviation interval. Confidence levels are

then evaluated applying eq. 213 to q̃
(1)
1 and q̃

(2)
1 .

Up to now only the expected CL’s have been defined. Now we consider the CL that
is obtained once the data have been taken. After data taking, we get a value qobs1 . At
this point we evaluate directly

(216) CLobss+b =

∫ ∞
qobs1

f(q1/1)dq1

and this is the observed confidence level. If it is below, say 5% we exclude the signal
at 95% CL.

7.4.4. Signal exclusion: CLs. A problem in the procedure outlined in the previous sec-
tion has been put in evidence, and a correction to it, the so called modified frequentist
approach has been proposed. We discuss now this method, also called CLs method that
is now widely employed for exclusion of new physics signals.

Let’s consider the situation shown in Figure 24 where the two pdf’s f(q1/0) and
f(q1/1) have a large overlap signaling a small sensitivity. If we evaluate in this situation
CLexps+b we find a large value, so that we do not expect to be sensitive to exclusion.

However what happens if qobs1 is the one shown in the same Figure ? The observed
CLobss+b is well below 5% and the signal has to be excluded at 95% CL. But, are we sure

that we have to exclude it ? In the same Figure the quantity CLobsb is reported:

(217) CLobsb =

∫ ∞
qobs1

f(q1/0)dq1

that is also very small in this case. Apparently the signal is small and the background
”under-fluctuates”, so that qobs1 is scarcely compatible with the signal+background hy-
pothesis but also with the background-only hypothesis. So, we are excluding the signal,
essentially because the background has fluctuated.

In order to avoid this somehow unmotivated exclusion, the CLs procedure has been
defined. The idea is to use, as confidence level, the CLs quantity, either expected or
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Figure 24. Same construction of Fig. 23 for a situation where the
discrimination between the two hypotheses is particularly poor and the
overlap between the two distributions is high. The CLexps+b is high (up-
per plot) but for a particular experiment with a under fluctuation of the
background the CLobss+b can be small in such a way to reject the signal

hypothesis (lower plot). In the lower plot the magenta area shows CLobsb
from which CLs is built. In this case using the CLs prescription rather
than the CLs+b one the signal is not rejected.

observed, defined as

(218) CLs =
CLs+b
CLb

rather than CLs+b. CLs is always larger than CLs+b so that this is a ”conservative
choice”. With this prescription it is more difficult to exclude signals. In the example of
Figure 24, eq. 218 returns a value above 5% so that the signal is not excluded.
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The CLs method is also said modified frequentist approach. In fact, the confidence
interval obtained in this way has not the coverage properties required by the ”orthodox”
frequentist paradigm. So if we build a confidence interval with a CLs of α, the coverage
is in general larger than α, so that the Type-I errors are less than 1− α.

7.4.5. The upper limit. Using the same approach, upper limits on the signal strength
can be obtained. Let’s go back to the likelihood ratio given in eq. 207. qµ is a function
of µ, the profile likelihood ratio, with a minimum for µ = µ̂. Now we are interested in
determining that value of µ, let’s call it µ∗ for which CLs is equal to 1− α.

For each value of µ the analysis illustrated above for the case µ = 1 has to be repeated.

So that we need the pdf’s f(qµ/µ) and f(qµ/0). From these pdf’s we get expected CL
(µ)
s+b,

CL
(µ)
b and hence CL

(µ)
s values. Then once qobsµ is obtained from the data, we get the

observed CL
(µ)
s :

CL
(µ)
s+b =

∫ ∞
qobsµ

f(qµ/µ)dqµ(219)

CL
(µ)
b =

∫ ∞
qobsµ

f(qµ/0)dqµ(220)

CL(µ)
s =

CL
(µ)
s+b

CLb
(µ)

(221)

By increasing µ, CL
(µ)
s decreases, and the value µ∗ such that CL

(µ∗)
s = 1−α is the upper

limit on µ at the required confidence level α.

7.5. The Look-Elsewhere effect. Several analyses in elementary particle physics ex-
periments concern the inspection of an invariant mass distribution where a ”peak” over a
background is searched. For these kinds of searches, a distinction has to be done between
two different situations: when the searched peak is expected to appear at a well-defined
value of the mass, or when the search is done in the full mass range because the mass of
the searched particle is unknown. In case we are searching for a rare or forbidden decay
of a known particle, we look for a peak at the known particle mass in the invariant mass
spectrum of the searched for final state. On the other hand, if we are looking for a new
particle of unknown mass, never observed before, the peak has to be searched in the full
mass range.

Let’s now concentrate on the second situation. The probability to have a positive
event fluctuation at any point in the mass range is larger than the probability to have
the same fluctuation in a defined place. So, in order to make an assessment on the
discovery of a new particle, it is needed to evaluate such probability enhancement to
account properly possible event fluctuations in a large mass range. In order words, given
a local p0 we have to evaluate a global p0. The occurrence of this enhancement is
normally called Look-Elsewhere effect.
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It is reasonable to think that, if ∆M is the mass range and σM is the experimental
mass resolution39 the enhancement LEE will be:

(222) LEE =
pglobal0

plocal0

∼ ∆M

σM

In fact the mass range can be considered as given by a number ∆M/σM of independent
observations.

More specifically, if q0 is used as test statistics for the particle discovery, this quantity
will be a function of the mass q0(m). Given a specified CL α corresponding to a threshold
c on q0, the Look-Elsewhere enhancement, also called trial factor is defined as:

(223) LEE =
p(qmax0 (m) > c)

p(q0(m) > c)

where qmax0 (m) is the maximum value of the test statistics in the full explored range.
The trial factor can be evaluated in several ways. However the results do not differ too
much from the simple evaluation given in eq. 222.

A generally accepted estimate is

(224) LEE =
1

3

∆M

σM
Zfix

where Zfix is the local ”significance” in number of gaussian standard deviations of the
assumed threshold Zfix ∼

√
c. This becomes equal to eq. 222 for Zfix = 3, that is for a

3 std. deviation local signal.
Let’s consider a resonance search on a 100 GeV wide mass range where a 3σ signal is

found at a given mass, with a resolution of 2 GeV. If we apply eq. 224 we get a trial of

50, so that: plocal0 = 1.34 × 10−3 → pglobal0 = 6.7%. On the other hand, in case of a 5σ

local effect, the trial is 80 but plocal0 = 2.86× 10−7 → pglobal0 = 2.3× 10−5. This explains
why, in the search for an unknown particle, a 5σ effect is normally required, a 3σ one
not being considered sufficient.

7.6. Example: the Higgs observation. The methods described in the previous sec-
tion are well illustrated by the Standard Model Higgs exclusion and discovery analysis.
In the following, the main plots of the ATLAS analysis published in July 2012, at the
time of the first announce of the Higgs boson observation are reported and described.

The plots reported below refer to the ”combined analysis” using the most sensitive
channels only. A profile likelihood ratio method is used, the likelihood being the product
of the likelihoods of the single channels. The likelihood is built combining the channels
and including several constraints on the nuisance parameters so that the obtained results
take directly into account all systematic effects. The signal strength µ together with some
of the nuisance parameters are common in the likelihoods, other parameters are related
to single channels only.

In the plots each variable is reported as a function of the Higgs Mass MH . For each
value of the Higgs Mass, the shape of the Higgs mass reconstructed in each channel,

39In case the mass resolution is smaller than the resonance width, σM is the resonance width. In
intermediate cases it will be a combination of the two.
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Figure 25. Discovery plot. Observed (solid) and expected (dashed)
local p0s as a function of the Higgs mass. The corresponding gaussian
significance is shown in the right hand scale. At MH=125 GeV a large
and narrow fluctuation is observed. The probability that the background
only can give rise to an equal or larger fluctuation than the one observed,
is of order 10−9 and corresponds to slightly less than 6 gaussian standard
deviations. The observed fluctuation is larger than the one expected
for a Standard Model Higgs boson. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)

and the relative weight of each channel in the combination changes, hence affecting the
likelihood value.

The notation developed in the previous section is used here. In particular we refer to
the general test statistics qµ defined in eq. 207, and we’ll make use of the two particular
realizations of the test statistics q0 and q1 corresponding respectively to no signal and
Standard Model signal.

7.6.1. Local p0. Figure 25 shows the local p0. For each value of MH , the observed p0
(solid line) is defined by:

(225) pobs0 =

∫ ∞
qobs0

f(q0/0)dq0

corresponding to the p-value for the background-only hypothesis. qobs0 is the q0 value
obtained by the data. Small values of p0 correspond to regions of the spectrum where the
background-only hypothesis has small chance. This is the typical ”discovery plot”. The
presence of a negative peak signals clearly an effect not described by the background.
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The dashed line shows the ”expected” p0. It is defined by:

(226) pexp0 =

∫ ∞
q̃0

f(q0/0)dq0

where q̃0 is the median q0 of a MC sample of pseudo-experiments all with µ = 1. The
meaning of pexp0 is the following: the p0 that we would obtain at each mass if there
was a SM signal with µ = 1 at that mass. The lower is pexp0 the more sensitive is the
experiment to the signal.

Looking at figure 25 one understands the following: at MH = 125 GeV a very low
pobs0 is observed, smaller than pexp0 at the same mass. This means that the data suggest
a value of µ larger than 1.

Figure 26. Same as figure 25 but expressed in terms of significance,
namely in number of gaussian standard deviations. (taken from ATLAS
collaboration, Phys.Lett. B716 (2012) 1-29)

7.6.2. Local significance. Figure 26 shows the local significance. This plot contains
essentially the same informations of figure 25, with the p0s translated in significance,
namely in ”number of gaussian std.deviations”. The relation between p0 value and
significance Z (number of standard deviations) is

(227) p0 =

∫ ∞
Z

G(x/0, 1)dx

where G(x/0, 1) is a standardized gaussian distribution. The most common values are
reported in Table 3. At MH=125 GeV a significance of 5.9σ is observed. The global
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significance is 5.1σ if we consider the full explored mass range 110÷600 GeV. It is 5.3σ
if we consider only the mass range not yet excluded before the measurement 110÷150
GeV.

Table 3. For a number of standard deviations between 1 and 7, the cor-
responding gaussian p0 is reported (see eq. 227). The probability to have
a fluctuation equal or larger than the one observed can be equivalently
expressed using both ”metrics”.

significance Z p0
1 15.8%
2 2.27%
3 1.34×10−3

4 3.16×10−5

5 2.86×10−7

6 9.87×10−10

7 1.28×10−12

7.6.3. CLs. Figure 27 shows the values of CLs as a function of MH . We repeat here the
definitions of the observed and expected CLss.

CLobss =

∫∞
qobs1

f(q1/1)dq1∫∞
qobs1

f(q1/0)dq1
(228)

CLexps =

∫∞
q̃1
f(q1/1)dq1∫∞

q̃1
f(q1/0)dq1

(229)

where, q̃1 is the median q1 of a MC sample of pseudo.experiments all with µ = 0. Notice
that the denominator of eq. 229 is by definition equal to 1/2.

This is the first exclusion plot, since all the values of MH with a CLs below e.g. 5%
are excluded at the 95% CL. Almost the full mass range considered by the experiment
is excluded apart from the region around the signal.

7.6.4. Upper limits on µ. Figure 28 shows the upper limit on µ as a function of MH .
The solid line shows the observed 95% upper limit on µ, that is that value of µ for which
the observed value of CLs (given by eq. 228) is equal to 5%. The dashed line shows the
expected 95% upper limit, based on the median value of q1 (according to eq. 229).

The two coloured bands40 represent ± 1 and 2 std.deviations variations of the expected
upper limit, evaluated according to the method described with eqs. 214-215.

7.6.5. Signal Strength. Figure 29 shows the best value of the signal strength µ as a
function of MH . For each mass value, the profile likelihood ratio (eq. 207) is minimized
with respect to µ, and a central confidence interval with a probability content of 68.3%
is evaluated. The size of the interval is evaluated according to the prescription given in
eq. 130 (see also insert in the figure). The value of µ̂ at MH = 125 GeV is the best
estimate of the signal strength of the observed signal. Notice that the central value of µ̂

40The yellow and green colors is the reason why these plots are also called ”Brazilian plots”.
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Figure 27. Exclusion plot. The CLs is plotted vs. MH . For all the
masses where CLs is below a fixed confidence level (95% and 99% are
explicitly indicated in the plot), the Standard Model signal is excluded
at that CL. Using a 95% limit only the region around 125 GeV is not
excluded. (taken from ATLAS collaboration, Phys.Lett. B716 (2012)
1-29)

is larger than 1 as expected based on the local p0 plot. The difference with the Standard
Model value µ = 1 is slightly larger than 1 std. deviation.
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Figure 28. Exclusion ”Brazilian plot”. Observed (solid) and ex-
pected(dashed) 95% CL upper limits on the signal strength µ as a
function of MH . ±1 (green) and ±2 (yellow) std.deviations bands are
also shown for the expected limit. (taken from ATLAS collaboration,
Phys.Lett. B716 (2012) 1-29)

8. Kinematic fits

8.1. Introduction. We go back to the subject described in the first section, namely
the event selection, describing an additional method used in several circumstances that
consists in applying a fitting procedure to each single event: the kinematic fit. As in
all the fits described above, even in this case the aim is two-fold: define a test statistics
that can be used to select the event and at the same time evaluate unknown or poorly
known kinematic parameters of the event.

Let’s consider the reaction41 e+e− → φ → ηγ with the subsequent decay η → γγ.
The final state consists of three photons coming from the same point in the space, the
interaction vertex42. The detector allows to select events with three photons and to
measure for each of them, energy, flight direction and eventually time of flight, all with
some resolutions. Not all the selected 3-photons events are φ → ηγ decays, several
other processes can mimic this decay providing background sources. However we know
that, if the 3-photon final state is really due to the reaction we are hypothesizing, some
conditions should be verified. First of all the quadri-momentum conservation should

41This example is taken from the KLOE experiment.
42We assume that the φ is produced at rest in the laboratory frame and the decay length of the η

meson is negligible.
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Figure 29. Best estimate of the signal strength with a confidence inter-
val of 1 std.deviation as a function of MH . For all the excluded region,
the result is compatible with 0. In the signal region µ̂ deviates from the
Standard Model expected value of 1 by slightly more than 1 st. devia-
tion.(taken from ATLAS collaboration, Phys.Lett. B716 (2012) 1-29)

hold, namely:

Eγ1 + Eγ2 + Eγ3 =
√
s(230)

~pγ1 + ~pγ2 + ~pγ3 = 0(231)

with [Eγi , ~pγi ] being the i-th photon quadri-momentum and s is the square of the center
of mass energy. Then, by combining two out of the three photons an invariant mass
equal to the η mass should be found. We have three choices for the photon pairings, and
for one of them, say the i-j pair, we have:

(232) EγiEγj (1− cos ∆αij) = M2
η

∆αij being the angular separation between the two photons. Eqs. 230, 231 and 232
provide three conditions that the kinematics of the decay have to match if the decay is
the one we are hypothesizing. The third should be verified for at least one of the three
possible photon combinations.

The kinematic fit is a method that allows to use the constraints to make a fit of the
event. The outcome of such a fit will be a test statistics, normally a χ2 allowing to
test the final state hypothesis (the 3-photon event is an ηγ final state or a background
event) and estimates of the particle momenta and energies improved with respect to the
original measurements.
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Let’s turn now to a second example. We consider the kaon decay KL → πeνe. We
assume that the quadri-momentum of the KL is known43 and that we are able to measure
the quadri-momenta of the pion and of the electron but not the one of the neutrino. We
can guess that the missing particle is a neutrino, but we are not in condition to measure
it. If we assume that the lost particle has a mass equal to 0, we are left with three free
parameters, namely the three components of ~pνe . On the other hand, we can use the four
constraints coming from the quadri-momentum conservation so that we have a number
of constraints exceeding the number of ”unknowns”. If we have two neutrinos rather
than one (like e.g. in the decay K+ → π+νν44 the number of unknowns is larger than the
number of constraints. So that we see that to apply a kinematic fit, we need a number
of constraints larger than the number of unknowns. When this happens normally we say
that the kinematics is ”closed” and the kinematic fit is possible.

In general as we’ll see below, the number of degrees of freedom of the kinematic fit,
is the difference between the number of constraints and the number of unknowns. If no
unknowns is present, like in the first example above, the number of degrees of freedom
is equal to the number of constraints.

8.2. Typical constraints. A list of the most common constraints used in kinematic
fits is given here. In the following with Nc we indicate the number of constraints.

• Quadri-momentum conservation (Nc = 4). To apply this constraint the initial
state has to be known. In e+e− collisions the initial state is known (apart from
initial state radiation effects) while in pp collisions the initial state can be to a
good approximation known only in the transverse plane. In fact the interaction
takes place between 2 partons, so that the longitudinal momentum of the initial
state is not defined at all.
• Mass constraint (Nc = 1). When several combinations are possible, the con-

straint allows to determine the ”good” combination.
• Vertex constraint (Nc = 2Np − 3 Np is the number of particles). Two or more

particles are constrained to converge in the same point, the vertex. Several
methods have been developed to apply the vertex constraint.
• Velocity constraint (Nc = Np). If the particle time of flight is measured, and the
β of the particle is independently measured (or the particle is a photon so that
β = 1), the constraint T − L/(cβ) can be applied to each particle.

8.3. The method of the Lagrange Multipliers: an example. The most widely
used implementation of the kinematic fit is based on the Lagrange Multipliers.

We consider here a purely ”mathematical” example to illustrate the main features of
the method. Suppose that two variables, a and b are measured, the values a0 ± σa and
b0 ± σb are obtained. We assume for simplicity that the a and b are not correlated and
that the two uncertainties are equal, σa = σb = σ.

43In the case of KLOE the quadri-momentum of the KL can be estimated with the technique of the

”tagging” due to the special kinematic configuration of the φ→ K0K
0

decays.
44This is a very interesting decay because the expected branching ratio is rather well known from the

Standard Model, however models beyond the Standard Model predict in general large deviations from
the SM prediction.
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On the other hand we know that the sum of the two variable should satisfy the relation:

(233) a+ b = s

with s a known fixed number. We apply the Lagrange Multiplier method to this very
elementary example.

The following χ2 variable is introduced:

(234) χ2 =
(a− a0)2

σ2
+

(b− b0)2

σ2
+ 2λ (a+ b− s)

where to the usual χ2 an additional term has been added multiplied by a new parameter
λ. The meaning of such an additional term is clear: it imposes directly the constraint
233. The χ2 variable is now minimized with respect to the three parameters: a, b and
λ. From the system we get:

â =
s

2
+
a0 − b0

2
(235)

b̂ =
s

2
− a0 − b0

2
(236)

λ̂ = − 1

2σ2
(s− a0 − b0)(237)

â and b̂ are the best estimates of a and b taking into account the constraint. It is useful
to rewrite the solutions for â and b̂ in the following form:

â = a0 +
s− a0 − b0

2
(238)

b̂ = b0 +
s− a0 − b0

2
(239)

as the sum of the measured quantities a0 and b0 and a term that vanishes if the constraint
is satisfied by the measurements. In other words we see that the kinematic fit pulls a
and b away from the measured values by a quantity depending on the constraint.

Since the two estimates â and b̂ are functions of the measured a0 and b0, in order to
evaluate the covariance matrix of â and b̂, the formula for the uncertainty propagation
is used45. We get:

σâ =
σ√
2

(240)

σb̂ =
σ√
2

(241)

cov
[
â, b̂
]

= −σ
2

2
(242)

45In case of M functions yi depending on N variables xk we have

cov [yi, yj ] =
∑
k,h

∂yi
∂xk

∂yj
∂xh

cov [xk, xh]
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or, expressing it as a covariance matrix:(
σ2

2 −σ2

2

−σ2

2
σ2

2

)
The results are very interesting and illustrate the main features of the kinematic fit.

As already said, the constraint pulls the estimates of a and b from the measured
values a0 and b0 to other values depending on the constraint. The uncertainties on the
parameters decrease with respect to the measurement uncertainties and the estimates
have a correlation even if the original measurements are not correlated.

By substituting the values of a and b in eq.234 with â and b̂ given in eqs.241 and 242,
the following χ2 is obtained:

(243) χ2 =
2

σ2

(
s

2
− a0 + b0

2

)
Since the uncertainty on (a0 + b0)/2 is σ/

√
2, it is a χ2 with one degree of freedom, as

expected since we have posed a single constraint.
If an additional variable c not measured (a sort of ”neutrino”) is introduced, it can

be verified that with a single constraint only a trivial solution is obtained :

â = a0(244)

b̂ = b0(245)

ĉ = s− a0 − b0(246)

with χ2 identically equal to 0. No fit is obtained clearly, the number of unknowns being
equal to the number of constraints. Additional constraints are needed in this case.

8.4. The method of the Lagrange Multipliers: general formulation. Let’s as-
sume that the final state we are analyzing depends on N variables αi

46. All these
variables have been measured and the values αi0 have been obtained, with Vij being
the experimental covariance matrix of the measurements. Then we suppose to have R
constraints, each of the form Hk(~α) = 047, with the Hs being general functions. The χ2

function including the Lagrange multipliers is:

(247) χ2 =
∑
ij

(αi − αi0)V −1ij (αj − αj0) + 2
∑
k

λkHk(~α)

The constraints can be expanded around a certain N -dimensional point ~αA

(248) Hk(~α) = Hk(~αA) +
∑
j

∂Hk

∂αj
(αj − αjA)

46If the final state consists of K particles, in the most general case N = 7K since each particle have
to be described in the most complete form by 7 variables: 3 coordinates of a point, three components of
a vector and a mass.

47In this section we use the vecto symbol ~α to identify vectors and the notation V to identify matrices.
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in such a way that eq.247 becomes:

(249) χ2 =
∑
ij

(αi − αi0)V −1ij (αj − αj0) + 2
∑
k

λk

Hk(~αA) +
∑
j

∂Hk

∂αj
(αj − αjA)


The linearization of the constraints allows to have an analytically solvable system. The
details of the derivation of the solution are not given here, the final results are shown.

Using a matrix formalism the following vectors and matrices are defined:

∆~α = ~α− ~αA(250)

~d = ~H( ~αA)(251)

Dki =
∂Hk

∂αj

∣∣∣∣
αj=αjA

(252)

where the first is a vector of dimension N , the second of dimension R, the third is a
R×N matrix. The χ2 can be written as

(253) χ2 = (~α− ~α0)
TV −1(~α− ~α0) + 2~λT (D∆~α+ ~d)

The minimization gives the following solution for the variables ~α:

(254) ~̂α = ~α0 − V DT (DVDT )−1(D∆~α0 + ~d)

and the covariance matrix of the estimates is

(255) V ′ = V − V DT (DVDT )−1DV

Finally the χ2 can be expressed as the sum of R terms:

(256) χ2 = ~λT (D∆~α0 + ~d)

one per constraint.
Eq.254 shows that the best estimate of the kinematic variables of the event are equal

to the measured values minus terms that depend on the constraints. The variables are
”pulled” from the measured values. The covariance matrix of the estimated variables is
also pulled (see eq.255) from the measurement covariance matrix. It can be demonstrated
that the diagonal terms of V ′ are always smaller than the corresponding diagonal terms
of V , so that the outcome of the kinematic fit is an improved kinematic reconstruction
of the event.

Finally the so called pulls are defined as measures of how each single variable is pulled
away from the measured values:

(257) pulli =
α̂i − αi0√
σ2αi0 − σ2αi

the denominator is the uncertainty on the difference between the two variables. If the
kinematic fit is working correctly, the distribution of the pulls should have a standardized
gaussian shape.
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