Introduzione ai fenomeni quantistici

Tratto da: The Feynman lectures on physics, vol. 3

Marco Bonvini Nicodemo Magnoli

Fisica classica

Meccanica:

Keplero (1608-1619) Galilei (1630) Newton (1687)

Termodinamica: Kelvin (1848) Joule (1850)

Elettro-Magnetismo: Talete (-600) Maxwell (1864)

"Questa velocità è così vicina a quella della luce che ho ragione di supporre che la luce stessa sia un'onda elettromagnetica" (Maxwell)

Oltre la fisica classica

Azoto Idrogeno

Rutherford, 1909

1887 Michelson e Morley

Domini della fisica

Relatività generale Teoria delle stringhe?

Le due fenditure

http://en.wikipedia.org/wiki/Double-slit_experiment

Proiettili

Sulla parete si sovrappongono 2 onde: 0 RAVE SHERITS $A_{I}(t) = A \cos(\omega t)$ $A_2(t) = A \cos(\omega t + \delta)$ (lo sfasamento δ dipende dalla posizione lungo x) Usando le formule di prostaferesi $A_1(t) + A_2(t) = 2A \cos(\delta/2) \cos(\omega t + \delta/2)$ che è un segnale di ampiezza $2 A cos(\delta/2)$. L'intensità è $[2 A \cos(\delta/2)]^2 = A^2 + A^2 + 2A A \cos(\delta)$

Sulla parete si sovrappongono 2 onde: 0 RAVE SULFCE $A_{I}(t) = A_{I} \cos(\omega t)$ $A_2(t) = A_2 \cos(\omega t + \delta)$ (lo sfasamento δ dipende dalla posizione lungo x) Usando le formule di prostaferesi $A_1(t) + A_2(t) = 2A \cos(\delta/2) \cos(\omega t + \delta/2)$ $A_1^2 + A_2^2 + 2A_1 A_2 \cos(\delta)$

Pattern produced from a double slit.

Riassumendo

- Proiettili: si sommano le distribuzioni $P_{12} = P_1 + P_2$
- Onde: si sommano le ampiezze

 $|P_{12} = |A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2|A_1||A_2|\cos\delta$

 δ = sfasamento tra le onde

Interferenza

Tonomura utilizzò un apparato con un filo elettrico carico positivamente che deviava gli elettroni simulando le due fenditure.

1000 elettroni /s v ~ 10⁸ m/s

⇒ 100 km di distanza tra due elettroni !

Gli elettroni arrivano uno a uno sulla parete.

Particella o Onda?

L'elettrone è una particella, ma si comporta come un'onda.

De Broglie: associare un'onda all'elettrone

lunghezza d'onda: $\lambda = h/mv$

h = 6.6 10^{-34} Js = costante di Planck m = 0.9 10^{-31} kg = massa elettrone v = velocità elettrone

Se v ~ 10⁸ m/s allora λ ~ 0.1 nm

Funzione d'onda

Schrödinger: funzione d'onda $\Psi(x,t)$ Ψ deve essere una funzione in campo complesso $|\Psi(x,t)|^2 = densità di probabilità$ $|\Psi(x,t)|^2 \Delta x = probabilità di trovare l'elettrone$ $tra x - \Delta x/2 = x + \Delta x/2$ al tempo t

Interpretazione probabilistica

Neutroni

l neutroni hanno massa 2000 volte più grande degli elettroni

⇒ lunghezza d'onda di De Broglie più piccola

È più difficile vedere fenomeni di interferenza.

Neutroni

Atomi

I Fotoni

Si può fare l'esperimento mandando un fotone alla volta (come con gli elettroni)

Un altro esperimento

Ipotizziamo che valga l'affermazione:

"L'elettrone passa per una fenditura o per l'altra"

Se fosse vera, si otterrebbe inevitabilmente che le probabilità si sommano:

 $P_{12} = P_1 + P_2$

Se proviamo a guardare dove passano gli elettroni?

Se so da che fenditura passa l'elettrone sparisce l'interferenza!

(b)

(c)

(a)

Particella di quantità di moto p=mv eposizione x ha un'indeterminazione $\Delta x e \Delta p$

Particella di quantità di moto p=mv e posizione x ha un'indeterminazione $\Delta x \in \Delta p$ $\Delta x \Delta p \ge \hbar/2$

Particella di quantità di moto p=mv e posizione x ha un'indeterminazione $\Delta x \in \Delta p$ $\Delta x \Delta p \ge \hbar/2$

 $\hbar = h/2\pi$ = costante di Planck ridotta

Particella di quantità di moto p=mv e posizione x ha un'indeterminazione $\Delta x \in \Delta p$ $\Delta x \Delta p \ge \hbar/2$

 $\hbar = h/2\pi = costante di Planck ridotta$

Le traiettorie non esistono

La diffrazione

Si può spiegare la diffrazione col principio di indeterminazione:

 $\Delta x = B \qquad \Delta p = p \ \Delta \theta = \Delta \theta \ h/\lambda \ (De \ Broglie)$ $\Delta x \ \Delta p \sim h$ $\Rightarrow \ \Delta \theta \sim \lambda \ / B$ legge della diffrazione

La diffrazione

legge della diffrazione

Le ampiezze

Nell'esperimento delle fenditure l'ampiezza è

A = $\langle \text{ part. arriva in } x | \text{ part. parte da } s \rangle = \langle x | s \rangle$

L'ampiezza A sarà composta di due ampiezze

- $A_{1} = \langle \mathbf{x} | \mathbf{s} \rangle_{\text{tramite I}} = \langle \mathbf{x} | \mathbf{I} \rangle \quad \langle \mathbf{I} | \mathbf{s} \rangle$ $A_{2} = \langle \mathbf{x} | \mathbf{s} \rangle_{\text{tramite 2}} = \langle \mathbf{x} | \mathbf{2} \rangle \quad \langle \mathbf{2} | \mathbf{s} \rangle$
- $A = A_1 + A_2$ probabilità = |A|²

ll collasso

Se si osserva dove passa l'elettrone $\langle x|s \rangle = \langle x|1 \rangle \langle 1|s \rangle$

> oppure $\langle x|s \rangle = \langle x|2 \rangle \quad \langle 2|s \rangle$

Si dice che la funzione d'onda $\langle x|s \rangle$ è collassata in uno dei due percorsi possibili.

Gli stati

I simboli $\langle ... | e | ... \rangle$ rappresentano STATI del sistema quantistico.

Il sistema può trovarsi in uno stato che è sovrapposizione di altri stati più elementari.

Il gatto di Schrödinger

- Se l'elettrone passa per la fenditura 2
 morto >
- Se l'elettrone passa per la fenditura l vivo >

Visto che l'elettrone passa con eguale probabilità dalle due fenditure

$$| \text{gatto} \rangle = \frac{1}{\sqrt{2}} (| \text{vivo} \rangle + | \text{morto} \rangle)$$

