Esercitazione 11 e 12

Marco Bonvini

26 Marzo 2019

1 Pallina in semisfera

Una pallina di massa m e dimensioni trascurabili può scorrere senza attrito sulla parete interna di una semisfera di raggio r=15cm, fissata a un piano tale che il piano aperto sia orizzontale (e ovviamente rivolto verso l'alto). Nell'istante iniziale, la pallina ha una velocità orizzontale e tangente alla parete, e la sua posizione è definita da un angolo $\theta_0=60^\circ$ rispetto alla verticale. Si determini:

- 1. il valore v_0 della velocità iniziale per il quale la pallina non varia la sua quota durante il moto;
- 2. il momento totale $\vec{\tau}_O$ delle forze che agiscono sulla pallina nel corso di un moto per θ generico rispetto al centro O della (semi)sfera;
- 3. il valore minimo v_{\min} della velocità iniziale necessario affinché la pallina raggiunga il bordo superiore della semisfera.

[Sol: 1. $v_0 = \sqrt{rg\sin\theta_0\tan\theta_0} = 1.5\text{m/s}$; 2. $\tau = rmg\sin\theta$ diretto tangenzialmente alla sfera e giacente nel piano ortogonale all'asse z; 3. $v_{\min} = \sqrt{2gr/\cos\theta_0} = 2.4\text{m/s}$ (usando conservazione dell'energia e del momento angolare lungo z)]

2 Molla con attrito

Si consideri una molla ideale di lunghezza di riposo ℓ e di costante elastica $m\omega^2$, e un corpo puntiforme di massa m tale che, se appeso alla molla in verticale, l'elongazione della molla sia il doppio della lunghezza di riposo. Adesso si appoggi la molla e il corpo su un piano, ancorando la molla sia al corpo che ad una parete fissa. Si assuma che tra il corpo e il piano vi sia attrito, con coefficiente dinamico $\mu_d = 1/5 = 0.2$. Comprimendo la molla fino ridurne la lunghezza a zero, determinare il moto che ne segue. Che valore minimo deve avere il coefficiente di attrito statico μ_s affinché il corpo smetta di oscillare dopo mezzo periodo?

[Sol: Chiamando $m\omega^2$ la costante elastica della molla, si trova dal primo punto che $\ell\omega^2/g=1$. Usando un sistema di coordinate centrato nella posizione iniziale della massa, l'equazione del moto dipende dalla direzione della velocità ed è data da

$$\begin{cases} \ddot{x} = -\omega^2(x - x_-) & \text{per } \dot{x} > 0\\ \ddot{x} = -\omega^2(x - x_+) & \text{per } \dot{x} < 0 \end{cases}$$
 (1)

con

$$x_{\pm} = \ell \left(1 \pm \frac{g\mu_d}{\omega^2 \ell} \right). \tag{2}$$

Il moto generico è

$$x(t) = \ell \left[1 - (-1)^n \frac{g\mu_d}{\omega^2 \ell} - \left(1 - (2n+1) \frac{g\mu_d}{\omega^2 \ell} \right) \cos(\omega t) \right], \qquad n = \left\lfloor \frac{\omega t}{\pi} \right\rfloor, \tag{3}$$

valido finché la forza elastica vince su quella di attrito. Ignorando l'attrito statico (ovvero assumendo che $\mu_s = \mu_d$), la condizione per cui il moto prosegua dopo un turning point (ovvero un punto per cui $\dot{x}=0$) è che x in quel puno sia maggiore di x_+ o minore di x_- (infatti, la regione $x_- < x < x_+$ è quella per cui il moto sicuramente non parte). I turning points sono ogni mezzo periodo, $t_k = k\pi/\omega$, e la condizione è soddisfatta per tutti i k tali che

$$k < \frac{\omega^2 \ell}{2q\mu_d} - \frac{1}{2}.\tag{4}$$

La soluzione sarà dunque valida fino al tempo $t_{k_{\text{max}}+1}$, dove k_{max} è il più grande k che soddisfa l'equazione sopra, ovvero la soluzione è valida per

$$t \leqslant \frac{\pi}{\omega} \left[\frac{\omega^2 \ell}{2g\mu_d} - \frac{1}{2} \right]. \tag{5}$$

Dopo tale tempo vince l'attrito e il corpo resta fermo. In generale, l'attrito statico è maggiore di quello dinamico, $\mu_s > \mu_d$, per cui è possibile che il corpo si fermi prima. A tal fine occorre verificare qual'è il primo turning point per cui l'attrito statico vince sulla forza elastica. La posizione al turning point è data da

$$x(t_k) = \ell \left[1 - (-1)^k + (-1)^k 2k \frac{g\mu_d}{\omega^2 \ell} \right], \tag{6}$$

da cui segue che la condizione $mg\mu_s \ge |F_{\text{a.s.}}| = |-m\omega^2(x(t_k)-\ell)|$ diventa

$$\frac{g\mu_s}{\omega^2\ell} \geqslant \left| 1 - 2k \frac{g\mu_d}{\omega^2\ell} \right|. \tag{7}$$

La condizione Eq. (4) garantisce che il modulo è sempre positivo nel range temporale in cui la soluzione è valida, per cui si trova

$$k \geqslant \frac{\omega^2 \ell}{2g\mu_d} - \frac{\mu_s}{2\mu_d}$$
 oppure $\mu_s \geqslant \frac{\omega^2 \ell}{g} - 2k\mu_d$. (8)

La prima disuguaglianza ci dice per quale valori di k il corpo non si muoverà più, e quindi il minimo k che soddisfa l'equazione determina la posizione in cui il corpo si ferma. La seconda disuguaglianza permette di determinare quanto grande deve essere μ_s affinché il corpo non si muova dal punto $x(t_k)$. Con i dati del problema, si trova $\mu_s \ge 1 - 2\mu_d = 3/5$. Deve anche essere $\mu_s < 1$ affinché il corpo cominci a muoversi dalla posizione iniziale.]