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System of nuclei and electrons
if necessary beyond Born-Oppenheimer
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Computational complexity
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@ Separate “classical” and “"quantum” set (mass
ratio, environment vs system)

@ Collapse "nuclear wavepacket” to a point in
phase space (R,P). Determine (or assign) the
type of classical evolution.

@ Evolve the (small) quantum subset according
to quantum mechanics

@ Determine (or assign) coupling mechanism




@ Partial classical limit

Mean field
Surface hopping
Wigner-Liouville propagation
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Quantum electronic evolution

Classical nuclear dynamics
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Coupled evolution in which nuclei move on an average potential

..Even when they are
far from the coupling

region




Electronic evolution integrated according to quantum
mechanics

Ensemble of trajectories propagated classically on a single
adiabatic surface which may change at the crossing
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Transition probability at the crossing region (intuitive but ad

hoc)
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Prescription to ensure energy conservation for the classical
system during an electronic transition
(forbidden hops)

No coherence (electronic or nuclear)




Linear response theory

@ Spectroscopy: dipole-dipole
@ Transport: velocity-velocity

@ Rate Constants: concentration-concentration
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Two steps:

@ Obtain a convenient representation of the individual
propagators (exact)

0 Recast the electronic problem in a suitable form
(Mapping Hamiltonian method)

0 Introduce a path integral expression for the propagator
(nuclear variables)

@ Combine the forward and backwards propagators to
obtain a computable (trajectory based) approximate
expression for the correlation function

o LINEARIZATION in the nuclear variables




Mapping

(1) States ja) — [mqa) = |01, ..., La,

(2) Electronic Hamiltonian
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Insert resolutions of the identity in
nuclear position and momentum
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Hamiltonian is quadratic in mapping operators
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All quantities can be computed, once a nuclear path has
been specified, by solving
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Introduce mean and difference paths
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Expand phase to linear order in the
difference path

Perform integrals on difference variables analytically




Integrals over “end points” generate Wigner transforms
of operators

Integrals over ‘“intermediate” points generate delta
functions (time-stepping prescription for evolution of
nuclear variables)
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@ Initial conditions sampled from quantum densities
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@ Nuclear dynamics classical. Forces determined by final states
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@ Electronic transitions accounted for exactly (but with

“classical” dynamics)

® Complex weights.......Interference
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Phase creates noise at longer times
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Problem is common to both adiabatic and non-
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@ Mixed quantum-classical methods are extremely useful BUT they come in
different flavors each with its advantages and disadvantages (formal or
numerical)

@ The linearized method converges with relatively small ensembles of
trajectories and it is as accurate as the other available approaches

® Nuclei are classical but there is still interference for the observables

@ Most of the computational effort goes in the calculation of the electronic
structure and in controlling the phase factor

@ Sampling of initial conditions from Wigner density




