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Università “La Sapienza” and INFN, Roma, Italia

(giulio.dagostini@roma1.infn.it, http://www.roma1.infn.it/~dagos)

Abstract

The properties of the normal distribution under linear transformation, as well the
easy way to compute the covariance matrix of marginals and conditionals, offer a unique
opportunity to get an insight about several aspects of uncertainties in measurements.
The way to build the overall covariance matrix in a few, but conceptually relevant cases
is illustrated: several observations made with (possibly) different instruments measuring
the same quantity; effect of systematics (although limited to offset, in order to stick to
linear models) on the determination of the ‘true value’, as well in the prediction of future
observations; correlations which arise when different quantities are measured with the
same instrument affected by an offset uncertainty; inferences and predictions based
on averages; inference about constrained values; fits under some assumptions (linear
models with known standard deviations). Many numerical examples are provided,
exploiting the ability of the R language to handle large matrices and to produce high
quality plots. Some of the results are framed in the general problem of ‘propagation of
evidence’, crucial in analyzing graphical models of knowledge.

“So far as the theories of mathematics are about reality, they are not certain;
so far as they are certain, they are not about reality.

(A. Einstein)

“If we were not ignorant there would be no probability,
there could only be certainty.

But our ignorance cannot be absolute,
for then there would be no longer any probability at all.”

(H. Poincaré)

“Probability is good sense reduced to a calculus”
(S. Laplace)

“All models are wrong but some are useful”
(G. Box)

∗Note based on lectures to PhD students in Rome.

http://arxiv.org/abs/1504.02065v1
http://www.roma1.infn.it/~dagos


1 Introduction

The opening quotes set up the frame in which this paper has been written: in the sciences
we always deal with uncertainties; being in condition on uncertainty we can only state
‘somehow’ how much we believe something; in order to do that we need to build up prob-
abilistic models based on good sense. For example, if we are uncertain about the value we
are going to read on an instrument, we can make probabilistic assessments about it. But
in general our interest is the numerical value of a physics quantity. We are usually in great
condition of uncertainty before the measurement, but we still remain with some degree of
uncertainty after the measurement has been performed. Models enter in the construction
of the the causal network which connects physics quantities to what we can observe on
the instruments. They are also important because it is convenient to use, whenever it is
possible, probability distributions, instead than to assign individual probabilities to each
individual ‘value’ (after suitable discretization) that a physics quantity might assume.

As we know, there are good reasons why in many cases the Gaussian distribution (or
normal distribution) offers a reasonable and convenient description of the probability that
the quantity of interest lies within some bounds. But it is important to remember that,
as it was clear to Gauss [1] when he derived the famous distribution for the measurement
errors, one should not take literally the fact that the variable appearing in the formula can
range from minus infinite to plus infinite: an apple cannot have infinite mass, or a negative
one!

Sticking hereafter to Gaussian distributions, it is clear that if we are only interested to
the probability density function (pdf) of a variable at the time, we can only describe our
uncertainty about that quantity, and nothing more. The game becomes interesting when we
study the joint distribution of several variables, because this is the way we can learn about
some of them assuming the values of the others. For example, if we assume the joint pdf
f(x1, x2 | I) of variables X1 and X2 under the state of information I (on which we ground
our assumptions), we can evaluate f(x1 |x2 , I), that is the pdf adding the extra condition
X2 = x2, which is usually not the same as f(x1 | I), that is the pdf of X1 for any value X2

might assume.1

Let us take for example the three diagrams of Fig. 1 to which we give a physical inter-
pretation:

1. In the diagram on the left the variable X1 might represent the numerical value of a
physics quantity, on which we are in condition on uncertainty, modelled by

X1 ∼ N (X0, σ1) , (1)

where X0 and σ1 are suitable parameters to state our ‘ignorance’ about X1 (‘complete
ignorance’, if it does ever exist, is recovered in the limit σ1 → ∞). Instead, X2 is
then what we read on an instrument when we apply it to X1. That is, even if we
knew X1, we are still uncertain about what we can read on the instrument, as it is

1The pdf f(x1 | I) is called marginal, although there is never special about this name, since all distri-
butions of a single variable can be thought as being ‘marginal’ to all other possible quantities which we
are not interested about. f(x1 |x2 , I) is instead ‘called’ conditional, although it is a matter of fact that all
distributions are conditional to a given state of information, here indicated by I . Note that throughout this
paper will shall use the same symbol f() for all pdf’s, as it is customary among physicists – I have met
mathematics oriented guys getting mad by the equation f(x, y) = f(x|y) ·f(y) because, they say, “the three
functions cannot be the same”...
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Figure 1: Basic models of joint probabilities

well understood. Modelling this uncertainty by a normal distribution we have, for
any value of X1

X2|X1
∼ N (X1, σ2|1) , (2)

where σ2|1 is a compact symbol for σ(X2|X1
) and which is in general different from

σ2 ≡ σ(X2). In fact our uncertainty about X2 (for any possible value of X1 ) must be
larger than that about X1 itself, for obvious reasons – we shall see later the details.

2. In the diagram on the center X3 might represent a second observation done indepen-

dently applying in general a second (possibly different) instrument to the identical
value X1. This means that X2|X1

and X3|X1
are independent, although X2 and X3

are not, as we shall see.

3. In the diagram on the right X3 is the observation read on the instrument applies to
X1, but possibly influenced by X2, that might then represent a kind of systematics.

Note, how it has been precisely stated, that X2 of the first and of the second diagrams,
as well as X3 of the other two, are the readings on the instruments and not the result of
the measurement! This is because by “result of the measurement” we mean statements
about the quantity of interest and not about the quantities read on the instruments (think
for example at the an experiment measuring the Higgs boson mass, making use of the
information recorded by the detector!). In this case the “result of the measurement” would
be f(x1 |data , I) where data stands for the set of observed variables.

The diagrams of the figure can be complicated, using sets of data, with systematics
effects common to observations in each subset. The aim of this paper is to help in developing
some intuition of what is going on in problems of this kind, with the only simplification
that all pdf’s of interest are normal.
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2 Technical premises (with some exercises)

We assume that the reader is familiar with some basic concepts related to uncertain numbers

and uncertain vectors, usually met under the name of “random variables”.

2.1 Normal (Gaussian) distribution

X ∼ N (µ, σ):

f(x |N (µ, σ)) =
1√
2π σ

exp

[

−(x− µ)2

2σ2

]

(3)

with

E[X] = µ (4)

Var[X] = σ2 (5)

σ[X] =
√

Var[X] = σ . (6)

(We remind that in most physics applications x → ±∞ simply means |x− µ|/σ ≫ 1.)
In the R language [2] there are functions (dnorm(), pnorm() and qnorm(), respectively)

to calculate the pdf, the cumulative function, usually indicated with “F (x)”, as well as its
inverse, as shown in the following, self explaining examples2 (‘>’ is the R console prompt):
> dnorm(0, 0, 1)
[1] 0.3989423
> 1/sqrt(2*pi) # (just a check)
[1] 0.3989423
> pnorm(0, 0, 1)
[1] 0.5
> pnorm(7, 5, 2) - pnorm(3, 5, 2)
[1] 0.6826895
> qnorm(0.5, 5, 2)
[1] 5
> qnorm(1, 5, 2)
[1] Inf
> qnorm(0, 5, 2)
[1] -Inf
Note the capability of the language to handle infinities, as it can be cross checked by
> pnorm(Inf, 5, 2)
[1] 1
And here are the instructions to produce the plots of figure 2.

mu <- 5; sigma <- 2; x <- seq(mu-5*sigma, mu+5*sigma, len=101)

plot(x, dnorm(x, mu, sigma), ty=’l’, ylab=’f(x)’, col=’blue’)

points(x, dnorm(x, mu, sigma*1.5), ty=’l’, lty=2, col=’blue’)

points(x, dnorm(x, mu, sigma*2), ty=’l’, lty=3, col=’blue’)

plot(x, pnorm(x, mu, sigma), ty=’l’, ylab=’F(x)’, col=’red’)

points(x, pnorm(x, mu, sigma*1.5), ty=’l’, lty=2, col=’red’)

points(x, pnorm(x, mu, sigma*2), ty=’l’, lty=3, col=’red’)

2For information about the language see one of the many tutorial available on the web. Most functions
we shall use here have self explaining names. For an help, for example about dnorm(), just enter
> ?dnorm
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Figure 2: Gaussian probability density function (above) and cumulative function (below)
for µ = 5 and σ = 2, 3 and 4 (solid, dashed and pointed).

2.2 Bivariate and multivariate normal distribution

The joint distribution of a bivariate normal distribution is given by

f(x |N (µ,V )) =
1

2π σ1 σ2
√

1− ρ212
exp

{

− 1

2 (1− ρ212)

[

(x1 − µ1)
2

σ2
1

−2 ρ12
(x1 − µ1)(x2 − µ2)

σ1 σ2
+

(x2 − µ2)
2

σ2
2

]}

, (7)

where

x = (x1, x2) (8)

µ = (µ1, µ2) (9)

E[Xi] = µi (10)

Var[Xi] = σ2
i (11)

σ[Xi] ≡
√

Var[Xi] = σi (12)

ρ12 =
Cov[X1,X2]

σ1 σ2
, (13)

with variances and covariances forming the covariance matrix

V =





Var[X1] Cov[X1,X2]

Cov[X1,X2] Var[X2]



 =





σ2
1 ρ12 σ1 σ2

ρ12 σ1 σ2 σ2
2



 (14)
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The bivariate pdf (7) can be rewritten in a compact form as

f(x |N (µ,V )) = (2π)−n/2|V |−1/2 exp

[

−1

2
(x− µ)T V −1 (x− µ)

]

, (15)

where |V | stands for det(V ). This expression is valid for any number n of variables and it
turns, in the case V is diagonal, into

1

(2π)n/2
∏

i σi
exp

[

−1

2

∑

i(xi − µi)
2

σ2
i

]

. (16)

(For an extensive, although mathematically oriented treatise on multivariate distribution
see Ref. [3], freely available online.)

2.2.1 Multivariate normals in R

Functions to calculate multivariate normal pdf’s, as well as cumulative functions and ran-
dom generators are provided in R via the package mnormt3 that needs first to be installed4

issuing
> install.packages("mnormt")

and then loaded by the command
> library(mnormt)

Then we have to define the values of the parameters and built up the vector of the central
values and the covariance matrix. Here is an example:
> m1=0.4; m2=2; s1=1; s2=0.5; rho=0.6

> mu <- c(m1, m2)

> ( V <- rbind( c( s1^2, rho*s1*s2), c(rho*s1*s2, s2^2) ) )

[,1] [,2]

[1,] 1.0 0.30

[2,] 0.3 0.25

Then we can evaluate the joint pdf in a point (x1, x2), e.g.
> dmnorm(c(0.5, 1.5), mu, V)

[1] 0.1645734

Or we can evaluate P (X1 ≤ 0.5 & X2 ≤ 1.5), or P (X1 ≤ µ1 & X2 ≤ µ2), respectively, with
> pmnorm(c(0.5, 1.5), mu, V)

[1] 0.140636

and
> pmnorm(mu, mu, V)

[1] 0.3524164

2.3 Graphical representation of normal bivariates

If we like to visualize the joint distribution we need a 3D graphical package, for example
rgl5 or plot3D.6 We need to evaluate the joint pdf on a grid of values ‘x’ and ‘y’ and

3http://cran.r-project.org/web/packages/mnormt/
4For all technical details about R (open source and multi-platform!) see the R web site [2].
5https://r-forge.r-project.org/projects/rgl/
6http://www.r-bloggers.com/3d-plots-in-r/
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provide them to the suited function. Here are the instructions that use the persp3d() of
the rgl package:
> library(rgl)

> fun <- function(x1,x2) dmnorm(cbind(x1, x2), mu, V)

> x1 <- seq(m1-3*s1, m1+3*s1, len=51)

> x2 <- seq(m2-3*s2, m2+3*s2, len=51)

> f <- outer(x1, x2, fun)

> persp3d(x1, x2, f, col=’cyan’, xlab="x1", ylab="x2", zlab="f(x1,y2)")

After the plot is shown in the graphics window, the window can be enlarged and the plot
rotated at wish. Figure 3 shows in the upper two plots two views of the same distribution.

Here are also the instructions to use plot3D():
> library(plot3D)

> M <- mesh(x1, x2)

> surf3D(M$x, M$y, f, bty=’b2’, phi = 30, theta = -20,

+ xlab=’x1’, ylab=’x2’, zlab=’f(x1,x2)’)

The result is shown in the lower plot of Fig. 3.
Another convenient and often used representation of normal bivariates is to draw iso-

pdf contours, i.e. lines in correspondence of the points in the plane (x1, x2) such as
f(x1, x2 | I) = const. This requires that the quadratic form at the exponent of Eq. (7)
[that is what is written in general as (x − µ)T V −1 (x − µ)] has a fixed value. In the two
dimensional case of Eq. (7) we recognize the expression of an ellipse. We have in R the
convenient package ellipse7 to evaluate the points of such an ellipse, given the vector of
expected values, the covariance matrix and the probability that a point falls inside it. Here
is the script that applies the function to the same bivariate normal of Fig. 3, thus producing
the contour plots of Fig. 4:

plot( ellipse(V, centre=mu, level=0.9973), ty=’l’, lty=2, col=’red’,

asp=1, xlab=expression(x[1]), ylab=expression(x[2]) )

points( ellipse(V, centre=mu, level=0.99), ty=’l’, col=’blue’)

points( ellipse(V, centre=mu, level=0.954), ty=’l’, lty=2, col=’red’)

points( ellipse(V, centre=mu, level=0.5), ty=’l’, col=’blue’)

points( ellipse(V, centre=mu, level=0.683), ty=’l’, lty=2, col=’red’)

points( ellipse(V, centre=mu, level=0.90), ty=’l’, col=’blue’)

points(mu[1], mu[2], pch=3, cex=1.5, col=’blue’)

for(k in 1:3) {

abline(v=mu[1]-k*sqrt(V[1,1]), lty=3, col=’magenta’)

abline(v=mu[1]+k*sqrt(V[1,1]), lty=3, col=’magenta’)

abline(h=mu[2]-k*sqrt(V[2,2]), lty=3, col=’magenta’)

abline(h=mu[2]+k*sqrt(V[2,2]), lty=3, col=’magenta’)

}

The probability to find a point inside the ellipse contour is defined by the argument level.
The ellipses drawn with solid lines define, in order of size, 50%, 90% and 99% contours. For
comparison there are also the contours at 68.3%, 95.5% and 99.73%, which define the highly
confusing 1-σ , 2-σ and 3-σ contours. Indeed, the probability that each of the variable falls
in the interval of E[Xi]±k σ[Xi] has little to do with these ellipses. If we are interested to the
probability that a point falls in a rectangles defined by (E[X1]± k σ[X1] &E[X2]± k σ[X2])
the probability needs to be calculated making the integral of the joint distribution inside
the rectangle (some of these rectangles are shown in Fig. 4 by the dotted lines, that indicate
1-σ , 2-σ and 3-σ bound in the individual variable).

7http://cran.r-project.org/web/packages/ellipse/
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Figure 3: Three views of the bivariate normal distribution obtained with the R code pro-
vided in the text (µ1 = 0.4, µ2 = 2, σ1 = 0.1, σ2 = 0.5, ρ12 = 0.6). The above two are
obtained by perp3d() of the package rgl, producing interactive 3D plots. The one below is
produced by surf3D() of the package plot3D.
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Figure 4: Contour plots of the same bivariate normal of Fig. 3. The solid lines show the
ellipses inside which there is, from the smaller to the larger, 50%, 90% and 99% probability
that a point (x1, x2) falls inside them. The dashed ellipses define instead the 68.3%, 95.5%
and 99.73% probability contours [these are the (in-)famous 1-σ, 2-σ and 3-σ contours, not
simply related to the standard deviations of the individual variable, whose 1-σ, 2-σ and 3-σ
bounds are indicated by the dotted vertical and horizontal lines].

Let us see how to evaluate in R the probability that a point falls in a rectangle, making
use of the cumulative probability function pmnorm(). In fact the probability in a rectangle
is related to the cumulative distribution by the following relation

P [ (x1m ≤ X1 ≤ x1M )& (x2m ≤ X2 ≤ x2M ) ] = P [ (X1 ≤ x1M )& (X2 ≤ x2M )]

−P [ (X1 ≤ x1M )& (X2 ≤ x2m)]

−P [ (X1 ≤ x1m)& (X2 ≤ x2M )]

+P [ (X1 ≤ x1m)& (X2 ≤ x21)] , (17)

that can be implemented in an R function:

p.rect.norm <- function(xlim, ylim, mu, V, sigmas=FALSE, ...) {

# The argument ’...’ might be useful to pass extra arguments to pmnorm.

if ( (length(mu) != 2) | sum( dim(V) != c(2,2) ) # some check

| (length(xlim) != 2) | (length(ylim) != 2) ) {

print("wrong dimensions in one of parameters")

return(NULL)

} else if ( sum( eigen(V)$values <= 0 ) > 0) {

cat( sprintf("V is not positively defined\n") )

return(NULL)

}

# If argument ’sigmas’ is TRUE:

if( sigmas ) { # rectangular defined in units of individual sigma around mu

xlim <- mu[1] + xlim * sqrt(V[1,1])

9



ylim <- mu[2] + ylim * sqrt(V[2,2])

}

library(mnormt)

p.rect <- pmnorm( c(xlim[2], ylim[2]), mu, V, ...) -

pmnorm( c(xlim[2], ylim[1]), mu, V, ...) -

pmnorm( c(xlim[1], ylim[2]), mu, V, ...) +

pmnorm( c(xlim[1], ylim[1]), mu, V, ...)

return(p.rect)

}

For example8

> p.rect.norm(c(m1-s1, m1+s1), c(m2-s2, m2+s2), mu, V)

[1] 0.5138685

> p.rect.norm(c(-1, 1), c(-1, 1), mu, V, sigmas=TRUE)

[1] 0.5138685

As a cross check, let us calculate the probabilities in strips of plus/minus one standard
deviations around the averages (the ‘strips’ provide a good intuition of what a ‘marginal’
is):
> p.rect.norm(c(-1, 1), c(-10, 10), mu, V, sigmas=TRUE)

[1] 0.6826895

> p.rect.norm(c(-10, 10), c(-1, 1), mu, V, sigmas=TRUE)

[1] 0.6826895

2.4 Marginals (and ‘multivariate marginals’) of multivariate normals

A nice feature of the multivariate normal distribution is that if we are just interested to a
subset of variables alone, neglecting which value the other ones can take (‘marginalizing’),
we just drop from µ and from V the uninteresting values, or the relative rows and columns,
respectively. For example, if we have – see subsection 6.1.2 –

µ =





1.96
0.02
1.98



 V =





1.96 −0.98 0.98
−0.98 0.99 0.01
0.98 0.01 1.99



 (18)

marginalizing over the second variable (i.e. being only interested in the first and the third)
we obtain

µ′ =

(

1.96
1.98

)

V ′ =

(

1.96 0.98
0.98 1.99

)

(19)

Here is a function that returns expected values and variance of the multivariate ‘marginal’

marginal.norm <- function(mu, V, x.m) {

# x.m is a vector with logical values (or non zero) indicating

# the elements on which to marginalise (the others are 0, NA or FALSE)

x.m[is.na(xm)] <- FALSE

v <- which( as.logical(x.m) )

list(mu=mu[v], V=V[v, v])

}

8For Monte Carlo oriented guys, here is how to cross check the results (don’t expect to reproduce 51313!):
> xy <- rmnorm(100000, mu, V)

> length( xy[,1][ xy[,1] > m1 - s1 & xy[,1] < m1+s1 & xy[,2] > m2 - s2 & xy[,2] < m2+s2 ] )

[1] 51313
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(Note how the function has been written in a very compact form, exploiting some peculiar-
ities of the R language. In particular, the elements of x.m to which we are interested can
be TRUE, or can be a numeric value different from zero; the others can be FALSE, 0 or NA.)

2.5 Conditional distribution of a variable, given its bivariate distribution
with another variable

A different problem is the pdf of one of variables, say X1, for a given value of the other.
This is not as straightforward as the marginal (and for this reason in this subsection we only
consider the bivariate case). Fortunately the distribution is still a Gaussian, with shifted

central value and squeezed width:

X1|x2
∼ N

(

µ1 + ρ12
σ1
σ2

(x2 − µ2) , σ1

√

1− ρ212

)

, (20)

i.e.

E[X1] = µ1 + ρ12
σ1
σ2

(x2 − µ2) (21)

Var[X1] = σ2
1 · (1− ρ212) (22)

σ[X1] = σ1 ·
√

1− ρ212 . (23)

And, by symmetry,

X2|x1
∼ N

(

µ2 + ρ12
σ2
σ1

(x1 − µ1) , σ2

√

1− ρ212

)

. (24)

Mnemonic rules to remember Eqs. (21) and (22) are

• the shift of the expected value depends linearly on the correlation coefficient as well
on the difference between the value of the conditionand (x2) and its expected value
(µ2); the ratio σ1/σ2 can be seen as a minimal dimensional factor in order to get
a quantity that has the same dimensions of µ1 (remember that X1 and X2 have in
general different physical dimensions);

• the variance is reduced by a factor which depends on the absolute value of the cor-
relation coefficient, but not on its sign. In particular it goes to zero if |ρ12| → 1,
limit in which the two quantities become linear dependent, while it does not change
if ρ12 → 0, since the two variables become independent and they cannot effect each
other. (In general independence implies ρ = 0. For the normal bivariate it is also true
the other way around.)

An example of a bivariate distribution (from [5], with x1 and x2 indicated as customary
with x and y) is given in Fig. 5, which shows also the marginals and some conditionals.

2.5.1 Evaluation of a conditional from a given bivariate normal

As an exercise, lets prove (20), with the purpose of show some useful tricks to simplify the
calculations. If we take literally the rule to evaluate f(x1 x2 | I) knowing that f(x1, x2 | I)
is given by (7) we need to calculate

f(x1 |x2, I) =
f(x1, x2 | I)
f(x2 | I)

. (25)
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Figure 5: Example of bivariate normal distribution.
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The trick is to make the calculations neglecting all irrelevant multiplicative factors, starting
from the whole denominator f(x2 | I), which is a number given X2 = x2 (whatever its value
might be!).

Here are the details (note that additive terms in the exponential are factors in the
function of interest!):9

f(x1 |x2, I) ∝ f(x1, x2 | I)

∝ exp

{

− 1

2 (1− ρ212)

[

(x1 − µ1)
2

σ2
1

− 2 ρ12
(x1 − µ1)(x2 − µ2)

σ1 σ2
+

(x2 − µ2)
2

σ2
2

]}

∝ exp

{

− 1

2 (1− ρ212)σ
2
1

[

(x1 − µ1)
2 − 2 ρ12

σ1
σ2

(x1 − µ1)(x2 − µ2)

]}

∝ exp

{

− 1

2 (1− ρ212)σ
2
1

[

x21 − 2µ1x1 + µ2
1 − 2 ρ12

σ1
σ2

(x2 − µ2)x1

]}

,

∝ exp

{

− 1

2 (1− ρ212)σ
2
1

[

x21 − 2x1 [µ1 + ρ12
σ1
σ2

(x2 − µ2)]

]}

∝ exp

{

− 1

2 (1− ρ212)σ
2
1

[

x21 − 2x1 [µ1 + ρ12
σ1
σ2

(x2 − µ2)] + [µ1 + ρ12
σ1
σ2

(x2 − µ2)]
2

]}

∝ exp

{

− 1

2 (1− ρ212)σ
2
1

(

x1 − [µ1 + ρ12
σ1
σ2

(x2 − µ2)]

)2
}

(26)

in which we recognize a Gaussian with expected value µ1 + ρ12
σ1

σ2
(x2 − µ2) and standard

deviation σ1
√

1− ρ212 (and therefore the normalization factor can be obtained without any
calculation).

2.6 Linear combinations

Linear transformations of variables are important because there are several practical prob-
lems to which they apply. There are also other cases in which the transformation is not
rigorously linear, but it can be still approximately linearized in the region of interest, where
the probability mass is concentrated. There are well known theorems that relate expected
values and covariance matrix of the input quantities to expected values and covariance ma-
trix of the output quantities. The most famous case is when a single output quantity Y
depends on several variables X. So, given

Y =
∑

i

ci Xi , (27)

there is a relation which always holds, no matter if the Xi are independent or not and
whichever are the pdf’s which describe them:

E[Y ] =
∑

i

ci E[Xi] . (28)

9Essentially the trick consists in observing that if we have a pdf proportional to exp [−h2 (x2 + αx)],
then it is also proportional to

exp

[

−h2

(

x2 + 2
α

2
x+

(α

2

)2
)]

= exp

[

−h2

(

x−
(

−
α

2

))2
]

,

that is a Gaussian with µ = −α/2 and σ2 = 1/(2 h2).
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In the special case that the Xi are also independent, we have

Var[Y ] =
∑

i

c2i Var[Xi]. (29)

Instead it is not always simple to calculate the pdf of Y in the most general case. There
are however two remarkable cases, which we assume known and just recall them here, in
which is Y is normally distributed:

1. linear combinations of normally distributed variables are still normal;

2. the Central Limit Theorem states that if we have ‘many’10 independent vari-
ables their linear combination is normally distributed with variance equal to

∑

i c
2
i Var[Xi]

if none of the non-normal components dominates the overall variance, i.e. if c2j Var[Xj ] ≪
∑

i c
2
i Var[Xi], where j denotes any of those non-normal components.

Since in this paper we only stick to normal pdf’s, the only task will be to evaluate the
covariance matrix of the set of variables of interest, depending on the problem.

The general transformation from n input variables to m output variable is given by11

Yi = cijXj , (30)

or, in a compact form that use the transformation matrix C, whose elements are the cij ,

Y = CX . (31)

Expected value and covariance matrix of the output quantities are given by

E[Y ] = C E[X] (32)

V Y = C VX CT (33)

For example, if µX = (2,−3), with σX1
= 0.2, σX2

= 0.5 and ρX12
= −0.8, and the

transformation rule is given by

Y1 = X1 + 2X2 (34)

Y2 = −X1 +X2 , (35)

i.e.

C =

(

1 2
−1 1

)

(36)

we get in R: 12

10The theorem says “for n that goes to infinity”! Some practice is then needed to judge when it is large
enough – often n around 10 is can be considered ‘large’, in other cases even 106 is not enough! (Think of
one million of variables described by a Poisson distribution with λ = 10−6.)

11We neglect a possible extra constant term in the linear combination because this plays no role in the
uncertainty.

12The function outer() produces by default a matrix which is by default is the outer product of two
vectors, i.e. v1 v

T
2 . But it has a third parameter FUN which which it is possible to evaluate different function

on the ‘grid’ defined by the Cartesian product of the two vector. Try for example
> outer(1:3, 1:3, ’+’)

> outer(1:3, 1:3, function(x,y) x + y^2))

> round( outer(0:10, 0:10, function(x,y) sin(x)*cos(y)), 2 )

14



> mu.X <- c(2, -3)

> s.X <- c(0.2, 0.5)

> rho.X <- -0.8

> V.X <- outer(s.X, s.X)

> V.X[1,2] <- V.X[2,1] <- V.X[1,2]*rho.X

> V.X

[,1] [,2]

[1,] 0.04 -0.08

[2,] -0.08 0.25

> ( cor.X <- V.X / outer(s.X,s.X) )

[,1] [,2]

[1,] 1.0 -0.8

[2,] -0.8 1.0

> ( C <- rbind( c(1,2), c(-1,1) ) )

[,1] [,2]

[1,] 1 2

[2,] -1 1

> ( mu.Y <- as.vector( C %*% mu.X ) )

[1] -4 -5

> ( V.Y <- C %*% V.X %*% t(C) )

[,1] [,2]

[1,] 0.72 0.54

[2,] 0.54 0.45

> ( s.Y <- sqrt(diag(V.Y)) )

[1] 0.8485281 0.6708204

> ( cor.Y <- V.Y / outer(s.Y,s.Y) )

[,1] [,2]

[1,] 1.0000000 0.9486833

[2,] 0.9486833 1.0000000

Let us get a visual representation of the probability distribution of X and Y using this time,
instead of iso-pdf ellipses, points in the X − Y plane produced by the random generator
provided by the package mnormt (see result in Fig. 6):

> n=5000; r.X <- rmnorm(n, mu.X, V.X); r.Y <- rmnorm(n, mu.Y, V.Y)

> plot(r.X, col=’magenta’, xlim=c(-7,2), ylim=c(-8,-1), cex=0.2,

+ asp=1, xlab=’X1 , Y1’, ylab=’X2 , Y2’)

> points(r.Y, col=’cyan’, cex=0.2)

2.7 Conditional distributions in many dimensions

Instead, a less known rule is that which gives the covariance matrix of a conditional dis-
tribution with a number of variables above two. For example we might have 5 variables
X1,X2, . . . X5 and could be interested in the expected values and the covariance matrix
of (X1, X4 X5), given (X2, X3). Problems of this kind might look a mere mathematical
curiosity, but they are indeed important to understand how we learn from data and we
make probabilistic predictions using probability theory.

Compact formulae to solve this problems can be found in Ref. [3]. If we partition µ and
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Figure 6: Monte Carlo sampling of two multivariate normal distributions (see text).

V into the the subsets of variable on which we want to condition and the other ones, i.e.

µ =

(

µ1

µ2

)

(37)

V =

(

V 11 V 12

V 21 V 22

)

(38)

the result is

E
[

X1|X2=a

]

= µ1 + V 12 V
−1
22 (a− µ2) (39)

V
[

X1|X2

]

= V 11 − V 12 V
−1
22 V 21 (40)

(And analogous formulae for E
[

X2|X1=b

]

and Var
[

X2|X1=b

]

.)

In the case of a bivariate distributions we recover easily Eqs. (21)-(22), as it follows.

Expected value: V 12 is the off-diagonal term ρ12σ1σ2, while V 22 is equal to σ2
2 . Eq. (39)

becomes then

E[X1|X2
] = µ1 + ρ12 σ1 σ2

1

σ2
2

(a− µ2)

= µ1 + ρ12
σ1
σ2

(a− µ2) (41)

Variance: The remaining two terms of interest are also very simple: V 11 is σ2
1, while V 21,
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equal to V 12, is ρ12σ1σ2. It follows

Var[X1|X2
] = σ2

1 − ρ12 σ1 σ2
1

σ2
2

ρ12 σ1 σ2

= σ2
1 − ρ212 σ

2
1

= σ2
1 (1− ρ212). (42)

Note that, while the conditioned expected value depends on the conditionand vector a,
the conditioned variance does not.

3 R implementation of the rule to condition multivariate
normal distributions

At this point, having set up all our tools, here is the R function which implements the
above formulae:13

norm.mult.cond <- function(mu, V, x.c, full=TRUE) {

out <- NULL

n <- length(mu)

# Checks dimensions of mu and V

if ( sum(dim(V) != n) ) {

cat( sprintf("dimensions of V incompatible with length of mu\n") )

return(out)

}

# number of conditionand variables

nc <- length(x.c[!is.na(x.c)])

# peculiar/anomalous cases

if( (length(x.c) > n) | (nc > n) ) {

cat( sprintf("x.c has more elements than mu\n") )

return(out)

} else if (nc == 0) { # No condition

out$mu <- mu

out$V <- V

return(out)

} else if(nc == n) {

out$mu <- x.c # exact values

out$V <- NULL # covariance matrix is meaningless

return(out)

}

# Apply Eaton’s formulae

v.c <- which(!is.na(x.c)) # conditioning variables

v <- which(is.na(x.c)) # variables of interest

V11 <- V[v, v]

V22 <- V[v.c, v.c]

V12 <- V[v, v.c]

V21 <- V[v.c, v]

13As it will be mentioned in the footnote 23 of Sec. 10, a more numerically stable way to invert a matrix
in R would be using the Choleski decomposition, but for the purpose of this note the difference is slightly
appreciable.
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mu.cond <- mu[v] + V12 %*% solve(V22) %*% (x.c[!is.na(x.c)] - mu[v.c])

V.cond <- V11 - V12 %*% solve(V22) %*% V21

if(!full) { # returns only interesting part

out$mu <- as.vector(mu.cond)

out$V <- V.cond

} else { # returns all (better to understand!!)

mu1 <- mu

V1 <- V

mu1[v] <- mu.cond

mu1[v.c] <- x.c[!is.na(x.c)]

V1[v, v] <- V.cond

V1[v.c, v.c] <- 0

V1[v, v.c] <- 0

V1[v.c, v] <- 0

out$mu <- as.vector(mu1)

out$V <- V1

}

return(out)

}

The conditionand vector x.c has to contain numbers in the positions corresponding to the
variables on which we want to condition, and NA, that is ‘not available’ or ‘unknown’, in the
others, as we shall see in the examples. The code of parameter full is to return the vector
of expectation and the covariance having the initial dimensionality. The expectation of
the variable used as condition is the condition itself. All elements of the covariance matrix
related to conditionals are instead zero, and the utility of this convention will be clear going
through the examples.

Let us try with a simple case of two normal quantities µX = (2,−3) of section 2.6. The
question is how our uncertainty on µX1

change if we assume µX2
= −2:

> ( V.X.cond <- norm.mult.cond(mu.X, V.X, c(NA, -2)) )

$mu

[1] 1.68 -2.00

$V

[,1] [,2]

[1,] 0.0144 0

[2,] 0.0000 0

> sqrt(diag(V.X.cond$V))

[1] 0.12 0.00

The effect of the conditions to shift the expected value of µX1
from 2 to 1.68 and to squeeze

its standard uncertainty to 0.12. If we provide our result in the conventional form “expected
value ± standard uncertainty”, the assumption (or ‘knowledge’) X2 = −2 updates our
‘knowledge’ about X1 from ‘2.00 ± 0.20’ to ‘1.67 ± 0.12’.
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4 The ‘simplest experiment’

Let us go back to the first diagram of Fig. 1, that we repeat here for convenience:

X1

X2

This diagram describes the situation in which we have the physical quantity X1, that is a
parameter of our physical model of reality, and the reading on an instrument, X2, caused
by X1.

The instrument has been well calibrate, such to give X2 around X1, but it is not
perfect, as usual. In other words, even if we knew exactly the value x1 we were not sure
about the value x2 we would read. For simplicity, let us model this uncertainty by a normal
distribution, i.e.

X2|X1
∼ N (X1, σ2|1) . (43)

But we usually do not know X1, and therefore we are even more uncertain about what we
shall read on the instrument. In fact we are dealing with a joint distribution describing the
joint uncertainty about the two quantities, that is

f(x1, x2 | I) = f(x2 |x1, I) · f(x1 | I) . (44)

Our knowledge about X2 will be given, instead, by f(x2 | I) =
∫

{x1}
f(x1, x2 | I) dx1, a

distribution characterized by Var[X2] 6= Var[X2|X1
].

It is convenient to model our uncertainty about X1 with a normal distribution, with a
standard deviation σ1 much larger than σ2|1 – if we make a measurement we want to gain
knowledge about that quantity! – and centered around the values we roughly expect.14

In order to simplify the calculations, in the exercise that follows let us assume that X1

is centered around zero. We shall see later how to get rid of this limitation.

The joint distribution f(x1, x2 | I) is then given by

f(x1, x2 | I) =
1√

2π σ2|1
exp

[

−(x2 − x1)
2

2σ2
2|1

]

× 1√
2π σ1

exp

[

− x21
2σ2

1

]

(45)

As an exercise, let us see how to evaluate f(x1, x2 | I). The trick, already applied before,
is to manipulate the terms in the exponent in order to recover a well known pattern. Here

14For extensive discussions about modelling prior knowledge of physical quantities see Ref. [5] and refer-
ences therein. As a practical example, think at the width of the table at which a sit in the very moment
you read these lines (or any other object), and about the reading on a ruler when you try to measure it.

19



are the details, starting from (45) rewritten dropping all irrelevant factors:

f(x1, x2 | I) ∝ exp

[

−(x2 − x1)
2

2σ2
2|1

− x21
2σ2

1

]

(46)

∝ exp

[

−1

2

(

x22 − 2x1x2 + x21
σ2
2|1

+
x21
σ2
1

)]

(47)

∝ exp

[

−1

2

(

x22
σ2
2|1

− 2x1x2
σ2
2|1

+ x21 ·
(

1

σ2
2|1

+
1

σ2
1

))]

(48)

∝ exp

[

−1

2

(

x22
σ2
2|1

− 2x1x2
σ2
2|1

+ x21 ·
σ2
2|1 + σ2

1

σ2
2|1 · σ2

1

)]

(49)

∝ exp

[

−1

2

σ2
2|1 + σ2

1

σ2
2|1

(

x22
σ2
2|1 + σ2

1

− 2x1x2
σ2
2|1 + σ2

1

+
x21
σ2
1

)]

(50)

∝ exp






−1

2

1
σ2

2|1

σ2

2|1
+σ2

1

(

x22
σ2
2|1 + σ2

1

− 2x1x2
σ2
2|1 + σ2

1

+
x21
σ2
1

)






(51)

In this expression we recognize a bivariate distribution centered around (0, 0), provided we
interpret

σ2
2|1 + σ2

1 = σ2
2 (52)

σ2
2|1

σ2
2|1 + σ2

1

= 1− ρ212 , (53)

and after having checked the consistency of the terms multiplying x1 x2. Indeed we have

ρ212 = 1−
σ2
2|1

σ2
2|1 + σ2

1

=
σ2
1

σ2
2|1 + σ2

1

(54)

ρ12 =
σ1

√

σ2
2|1

+ σ2
1

=
σ1
σ2

(55)

and then the second term within parenthesis can be rewritten as

2x1x2
σ2
2|1 + σ2

1

=
2x1x2
σ2 · σ2

=
2 ρ12 x1x2
σ1 · σ2

. (56)

Then

f(x1, x2 | I) ∝ exp

[

− 1

2 (1− ρ212)

(

x21
σ2
1

− 2 ρ12 x1x2
σ1 · σ2

+
x22
σ2
2

)]

(57)

is definitively a bivariate normal distribution with

µ =

(

0
0

)

(58)

V =

(

σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2|1

)

(59)
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As a cross check, let us evaluate expected value and variance of X2 if we assume a certain
value of X1, for example X1 = x1:

E[X2|X1=x1
] = 0 +

σ2
1

σ2
1

· (x1 − 0) = x1 (60)

Var[X2|X1=x1
] = σ2

1 + σ2
2|1 −

σ2
1

σ2
1

σ2
1 = σ2

2|1 , (61)

as it should be: provided we know the value of X1 our expectation of X2 is around its value,
with standard uncertainty σ2|1.

More interesting is the other way around, that is indeed the purpose of the experiment:
how our knowledge about X1 is modified by X2 = x2:

E[X1|X2=x2
] = 0 +

σ2
1

σ2
1 + σ2

2|1

· (x2 − 0) = x2 ·
1

1 + σ2
2|1/σ

2
1

(62)

Var[X1|X2=x2
] = σ2

1 −
σ2
1

σ2
1 + σ2

2|1

σ2
1 = σ2

1|2 ·
1

1 + σ2
2|1/σ

2
1

, (63)

Contrary to the first case, this second result is initially not very intuitive: the expected
value of X1 is not exactly equal to the ‘observed’ value x2, unless σ1, that models our
prior standard uncertainty about X1, is much larger than the experimental resolution σ2|1.
Similarly, the final standard uncertainty is in general a smaller than σ2|1, unless, again,
σ1|2/σ1 ≪ 1.15 Although initially surprising, these result are in qualitative agreement with
the good sense of experienced physicists [5].

15You might recognize in Eq. (63)

1

Var[X1|X2=x2
]

=
1

σ2

1

+
1

σ2

2|1

,

which stems naturally from probability theory and tells how a new observation squeezes the uncertainty on
the true value of a quantity. Indeed, it easy to show that Eq. 62 can be written, as rather well known (see
e.g. Ref. [5]), as

E[X1|X2=x2
] =

E[X1] · σ
−2

1
+ x2 σ

−2

2|1

σ−2

1
+ σ−2

2|1

,

weighted average of the prior expected value and observation, with weights equal to the prior variance and
the instrument variance.

En passent we can rewrite Eqs. (62)-(63) as

E[X1|X2=x2
] = E[X1] +

σ2

1

σ2

1
+ σ2

2|1

(x2 − E[X1])

Var[X1|X2=x2
] = σ2

1 −
σ2

1

σ2

1
+ σ2

2|1

σ2

1 ,

or

E[X1|X2=x2
] = E[X1] + k (x2 − E[X1])

Var[X1|X2=x2
] = σ2

1 − k σ2

1 = σ2

1 (1− k) ,

with

k =
σ2

1

σ2

1
+ σ2

2|1

,

in order to emphasize the Kalman filter’s updating rules. [4]
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5 Several independent measurements on the same physics

quantity

The next step is to see what happens when we are in the conditions to make several
independent measurements on the same quantity X1, possibly with different instruments,
each one characterized by a conditional standard uncertainty σi|1 and perfectly calibrated,
that is E[Xi|X1=x1

] = x1. The situation can be illustrated with the diagram at the center
of Fig. 1, reported here for convenience, extended to other observations:

X1

X2 X3 X4 X5 X6

We have learned that if we are able to build up the covariance matrix of the joint distribution
f(x1, x2, x3, . . . | I) the problem is readily solved, at least in the normal approximations we
are using throughout the paper.

In principle we should repeat the previous exercise to evaluate, sticking to the first two
observations x2 and x3,

f(x1, x2, x3 | I) = f(x1 | I) · f(x2 |x1, I) · f(x3 |x1, x2 I) (64)

= f(x1 | I) · f(x2 |x1, I) · f(x3 |x1, I) , (65)

where in the last step we have made explicit that f(x3 |x1 I) does not depend on X2, once
X1 is known. But this does not implies that X2 and X3 are independent, as we shall see
later! They are simply conditionally independent, i.e. independent under the condition (to
be meant in general as an hypothesis) that X1 has a precisely known value.

In reality we do not need to go through a similar derivation, that indeed was just

an exercise. The easy solution arises, going back to the previous case, noting that the
observation oi is the sum of the value of the physics quantity v and the instrumental error
ei (a ‘noise’, as you might like to see it), i.e.

oi = v + ei , (66)

with ei modelled, as usual, by a normal distribution, that is, in general

ei ∼ N (0, σei) . (67)

The general uncertain vector X will be then X = (v, o1, o2), as clarified by the following
diagram:

v

o1

e1

o2

e2

o3

e3

o4

e4

o5

e5
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These are then the first terms the transformation rules:

X1 = v (68)

X2 = o1 = v + e1 (69)

X3 = o2 = v + e2 (70)

from which the calculation of the covariance matrix is straightforward:

• the i-th element diagonal is given by the variance of Xi, that is σ2
1, (σ

2
1 + σ2

e1), and
so on;

• the off-diagonal elements are all equal to σ2
1 , because the only element in common in

all linear combinations is v.

Hence here is the covariance matrix of interest:

V =







σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2|1 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

3|1






(71)

5.1 Getting some insights with numerical examples

At this point, instead of trying to get analytic formulae for all conditional probabilities of
interest, we prefer to use the properties of the multivariate normal distribution implemented
in the function norm.mult.cond() seen before. And, since the game is now automatic,
we enlarge our space to 6 variables, X1 for the ‘true value’ and X2 -X6 for four possible
‘readings’. Although it is not any longer needed, we still set out prior central value about
X1 around 0, which is equivalent to set to 0 all expected values. (For didactic purposes
we have set σ1 only 10 larger than the experimental resolutions σi|1, as we shall discuss
commenting the results.) Here is the R code, with some comments:
> n=6; muX1=0; sigmaX1=10 # set size and initial uncertainty on X1

> mu <- rep(muX1, n) # set expected values (all equal!)

> ( sigma <- c(sigmaX1, rep(1,n-1)) ) # standard deviations

[1] 10 1 1 1 1 1

> V <- matrix(rep(sigma[1]^2, n*n), c(n,n))

> diag(V)[2:n] <- diag(V)[2:n] + sigma[2:n]^2

> V # covariance matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 100 100 100 100 100 100

[2,] 100 101 100 100 100 100

[3,] 100 100 101 100 100 100

[4,] 100 100 100 101 100 100

[5,] 100 100 100 100 101 100

[6,] 100 100 100 100 100 101

> (su <- sqrt(diag(V))) # standard deviations

[1] 10.00000 10.04988 10.04988 10.04988 10.04988 10.04988

> V/outer(su,su) # correlation matrix

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 0.9950372 0.9950372 0.9950372 0.9950372 0.9950372

[2,] 0.9950372 1.0000000 0.9900990 0.9900990 0.9900990 0.9900990

[3,] 0.9950372 0.9900990 1.0000000 0.9900990 0.9900990 0.9900990

[4,] 0.9950372 0.9900990 0.9900990 1.0000000 0.9900990 0.9900990

[5,] 0.9950372 0.9900990 0.9900990 0.9900990 1.0000000 0.9900990

[6,] 0.9950372 0.9900990 0.9900990 0.9900990 0.9900990 1.0000000
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As we can see, all variables are correlated! The reason is very simple: any precise informa-
tion we get about one of them changes the pdf of all others. In physics terms, a reading on
a instrument changes our opinion about the value of the quantity of interest as well as of
all other readings we have not yet done (or we not yet aware of their values – in probability
theory what matters is not time ordering, but ignorance).

Let us now see what happens if we condition on a precise value of the true value
X1, for example X1 = 2:

> ( mu.c <- c(2, rep(NA, n-1)) ) # conditionand

[1] 2 NA NA NA NA NA

> ( out<- norm.mult.cond(mu, V, mu.c) ) # resulting multivariate

$mu

[1] 2 2 2 2 2 2

$V

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0 0 0

[2,] 0 1 0 0 0 0

[3,] 0 0 1 0 0 0

[4,] 0 0 0 1 0 0

[5,] 0 0 0 0 1 0

[6,] 0 0 0 0 0 1

As we see, the expected values are all equal, X1 is not longer uncertain, and all other
variables become independent, more precisely “conditional independent”

Let’s now see what happens if we condition instead on the observation X2 = 2:

> ( mu.c <- c(NA, 2, rep(NA, n-2)) )

[1] NA 2 NA NA NA NA

> ( out<- norm.mult.cond(mu, V, mu.c) )

$mu

[1] 1.980198 2.000000 1.980198 1.980198 1.980198 1.980198

$V

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.990099 0 0.990099 0.990099 0.990099 0.990099

[2,] 0.000000 0 0.000000 0.000000 0.000000 0.000000

[3,] 0.990099 0 1.990099 0.990099 0.990099 0.990099

[4,] 0.990099 0 0.990099 1.990099 0.990099 0.990099

[5,] 0.990099 0 0.990099 0.990099 1.990099 0.990099

[6,] 0.990099 0 0.990099 0.990099 0.990099 1.990099

> ( out.s <- sqrt(diag(out$V)) ) # standard deviations

[1] 0.9950372 0.0000000 1.4107087 1.4107087 1.4107087 1.4107087

> out$V / outer(out.s, out.s) # correlation matrix (besides NaN)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 NaN 0.7053456 0.7053456 0.7053456 0.7053456

[2,] NaN NaN NaN NaN NaN NaN

[3,] 0.7053456 NaN 1.0000000 0.4975124 0.4975124 0.4975124

[4,] 0.7053456 NaN 0.4975124 1.0000000 0.4975124 0.4975124

[5,] 0.7053456 NaN 0.4975124 0.4975124 1.0000000 0.4975124

[6,] 0.7053456 NaN 0.4975124 0.4975124 0.4975124 1.0000000

The ‘measurement’ has had the effect of changing all our expectations, becoming all ‘prac-
tically equal’ to the observed value of 2. But the uncertainties about the possible ’future
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Figure 7: Normal distributions describing our uncertainty about X1 and X3 before (dashed
line) and after (solid line) the observation X2 = 2 (see text).

observations’ are different than that of the true value X1. They are in fact larger by a
factor

√
2 (see also Fig. 7). The reason is that X2 and X3 (i.e. o1 and o2) and all other

possible readings o3, o4 and o5 ‘communicate’ each other via X1: their uncertainty is than
the combination (quadratic combination!) of that assigned to X1 and that of the readings
Xi if we new exactly X1 (that is σei).

Let us see if we add another observation, e.g. X3 = 1, that is we recondition now
simultaneously on X2 = 2 and X2 = 1
> mu.c <- c(NA, 2, 1, NA, NA, NA)

> ( out<- norm.mult.cond(mu, V, mu.c) )

$mu

[1] 1.492537 2.000000 1.000000 1.492537 1.492537 1.492537

$V

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.4975124 0 0 0.4975124 0.4975124 0.4975124

[2,] 0.0000000 0 0 0.0000000 0.0000000 0.0000000

[3,] 0.0000000 0 0 0.0000000 0.0000000 0.0000000

[4,] 0.4975124 0 0 1.4975124 0.4975124 0.4975124

[5,] 0.4975124 0 0 0.4975124 1.4975124 0.4975124

[6,] 0.4975124 0 0 0.4975124 0.4975124 1.4975124

> ( out.s <- sqrt(diag(out$V)) )

[1] 0.7053456 0.0000000 0.0000000 1.2237289 1.2237289 1.2237289

> out$V / outer(out.s, out.s)
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[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 NaN NaN 0.5763904 0.5763904 0.5763904

[2,] NaN NaN NaN NaN NaN NaN

[3,] NaN NaN NaN NaN NaN NaN

[4,] 0.5763904 NaN NaN 1.0000000 0.3322259 0.3322259

[5,] 0.5763904 NaN NaN 0.3322259 1.0000000 0.3322259

[6,] 0.5763904 NaN NaN 0.3322259 0.3322259 1.0000000

As we can see, after the second observation the expected values are practically equal
to 1.5, average between the two readings. The uncertainty about the true value has de-
creased by a factor 1.41, that is

√
2, while the uncertainties about the forecasting decrease

only by a factor 1.15, going from 1.41 to 1.22. This latter number can be understood as√
0.7052 + 12 = 1.22, as it will be justified in a while.
Let us see what happens if we suppose that also X1 is precisely known, namely X1 = 3

(different from X1 = 2 previously used, not only “just to change” but also to use a value
different from that of X2 and X3):

> mu.c <- c(3, 2, 1, NA, NA, NA)

> ( out<- norm.mult.cond(mu, V, mu.c) )

$mu

[1] 3 2 1 3 3 3

$V

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 0 0 0.000000e+00 0.000000e+00 0.000000e+00

[2,] 0 0 0 0.000000e+00 0.000000e+00 0.000000e+00

[3,] 0 0 0 0.000000e+00 0.000000e+00 0.000000e+00

[4,] 0 0 0 1.000000e+00 -2.302158e-12 -2.302158e-12

[5,] 0 0 0 -2.302158e-12 1.000000e+00 -2.302158e-12

[6,] 0 0 0 -2.302158e-12 -2.302158e-12 1.000000e+00

If X1 is perfectly known the observations X2 and X3 are irrelevant, as it has to be.16

Finally, going back to the physical case of interest, in which X1 is unknown, let us add
a third observation, e.g. X4 = 0

> mu.c <- c(NA, 2, 1, 0, NA, NA)

> ( out<- norm.mult.cond(mu, V, mu.c) )

$mu

[1] 0.9966777 2.0000000 1.0000000 0.0000000 0.9966777 0.9966777

$V

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.3322259 0 0 0 0.3322259 0.3322259

[2,] 0.0000000 0 0 0 0.0000000 0.0000000

[3,] 0.0000000 0 0 0 0.0000000 0.0000000

[4,] 0.0000000 0 0 0 0.0000000 0.0000000

[5,] 0.3322259 0 0 0 1.3322259 0.3322259

[6,] 0.3322259 0 0 0 0.3322259 1.3322259

> ( out.s <- sqrt(diag(out$V)) )

[1] 0.5763904 0.0000000 0.0000000 0.0000000 1.1542209 1.1542209

16And if X2 and X3 are ‘very far’ from X1? In this simple model we are using, there is little to do, because
any observation from minus infinite to plus infinite is never incompatible with a any Gaussian. But we know
by experience that something strange might be happened. It this case we need to put in mathematical form
the model we have in mind.

26



> out$V / outer(out.s, out.s)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0000000 NaN NaN NaN 0.4993762 0.4993762

[2,] NaN NaN NaN NaN NaN NaN

[3,] NaN NaN NaN NaN NaN NaN

[4,] NaN NaN NaN NaN NaN NaN

[5,] 0.4993762 NaN NaN NaN 1.0000000 0.2493766

[6,] 0.4993762 NaN NaN NaN 0.2493766 1.0000000

As we can see, the value of X1 is with very good approximation the average of the three
observations, that is 1, with a the standard uncertainty decreasing with 1/

√
n, passing from

1.00 to 0.71 to 0.58. This is because the three pieces of information enter with the same
weight, since σi|1, related to the ‘precision of the instrument’, is the same in all cases and
equal to 1.

As far as the prediction of future observations, obviously they must be centered around
the value we believe X1 is, at the best of our knowledge, a value which changes with the
observations. As far as uncertainty and correlation coefficient are concerned, they decrease
as follows (starting from the very beginning, before any observation):

Standard uncertainty: 10.05, 1.41, 1.22, 1.15.
We can see that they are a quadratic combination of the uncertainty with which we
know X1 and that with which we expect the observation given a precise value of X1.
If we indicate the state of information at time t as I(t), the rule is

Var[Xi | I(t)] = Var[X1 | I(t)] + σ2
i|1 . (72)

Asymptotically, when after many measurements the determination of X1 is very ac-
curate, it only remains σ2

ei , as it has to be.

Correlation coefficient: 0.990, 0.50, 0.33, 0.25.
It is initially very high because any new observation changes dramatically our expec-
tation about the others. But then, when we have already made several observations,
a new one has only very little effect on our forecasting. Asymptotically, when we have
made a very large number of observations and X1 is very well ‘determined’, all future
observations become essentially “conditionally independent”.

5.2 Follows up

At this point the game can be continued with different options. One has only to re-build
the initial covariance matrix and play changing the conditions.

An interesting exercise is certainly that of increasing σ1, for example to 100, i.e. 100
times large than the ‘precision’ of our instrument, or even 1000, to see how our conclusions
change. The result will be that true value and future measurements are ‘practically’ only
determined by the observations.

It could also interesting to see what happens if the different observations come from
instruments having different precisions.

Finally, one could produce a (relatively) large random sample of observations measuring
the same true value. Beingm the number of observations, the dimensionality of our problem
will be m = n+ 3, because we have to add – obviously – X1 and we want to have at least
two future observations (X1+m+1 and X1+m+1) in order to check their degree of correlation.
Here is the R session in which we have been playing with a sample of 100 observations (for
obvious reasons we shall focus only on the uncertain variables, i.e. X1, X101 and X102):
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> m <- 100; n <- m + 3 # dimensionality of the problem

> mu <- rep(0,n)

> sigma <- c(10, rep(1,n-1))

> V <- matrix(rep(sigma[1]^2, n*n), c(n,n))

> diag(V)[2:n] <- diag(V)[2:n] + sigma[2:n]^2

> ( X1.God <- 2 ) # the exact value of the quantity we are going to measure

[1] 2

> sample <- rnorm(m, X1.God, sigma[2]) # random sample

> mean(sample) # sample mean

[1] 2.094649

> mu.c <- c(NA, sample, NA, NA)

> out <- norm.mult.cond(mu, V, mu.c) # no printouts, for obvious reasons

> ( out <- marginal.norm(out$mu, out$V, c(1, rep(0, m), 1, 1)) ) # interesting part

$mu

[1] 2.094439 2.094439 2.094439

$V

[,1] [,2] [,3]

[1,] 0.009999 0.009999 0.009999

[2,] 0.009999 1.009999 0.009999

[3,] 0.009999 0.009999 1.009999

> ( su <- sqrt(diag(out$V)) )

[1] 0.099995 1.004987 1.004987

> out$V /outer(su,su)

[,1] [,2] [,3]

[1,] 1.00000000 0.09949879 0.09949879

[2,] 0.09949879 1.00000000 0.00990001

[3,] 0.09949879 0.00990001 1.00000000

Expected values of the true value and of the future measurements are now equal to the
average of the sample, with excellent approximation. This is due to the fact that the initial
uncertainty of 10 is in this case much larger than the final one of 0.10. This value is indeed
equal to σi|1/

√
n = 1/10, the famous standard deviation of the mean. This means that the

standard deviation of the sample, that is
> sd(sample)

[1] 0.08263812

is not used. This is not a surprise, since in our model σi|1 are assumed to be perfectly
known.17

We see that the uncertainty on the future observations is a bit larger than that on the
true value, as it must be. This is because they depends on the uncertain value of the true
value and the experimental resolution, combining in quadrature (

√
0.12 + 12 = 1.00499).

The correlations become small, in particular those among the future observations, which
practically become ‘conditionally independent’. Indeed, the covariance matrix is that shown
in Eq. (71), with σ1 replaced by σ1|sample (what matters is the uncertainty about X1, not

its source!).

17A model that would allow to infer the σi|1’s is not any longer linear, thus going beyond the purpose of
this note.
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Figure 8: Diagrams to model a systematic effect.

6 Adding a simple systematic effect (‘offset’ type)

Let us now move to the second diagram of Fig. 1, which we repeat her for convenience, in

X1 X2

X3

whichX3 is caused by bothX1 andX2: This diagram can model the presence of a systematic
effect, because we expect that the possible values of X3 are caused by both X1 and X2, and
it will be then influenced by how uncertain is the quantity X2 that acts as a systematic. The
simplest case of systematic effect is an additive one, of unknown value, but with expected
value 0 (the instrument has been calibrated ‘at the best’ !) and a standard uncertainty
σ2. Needless to say, we also model this uncertainty with a normal distribution, with much
simplification in the calculations (and also because this is often the case).

The model can be extended to several observations, as shown in the left diagram of
Fig. 8. In the figure it is also shown a different interpretation of the effect of the systematic
error, which is very close to the physicist intuition. The observations X3, X4 and X5

are normally distributed around a kind of ‘virtual state’ XV determined by the unknown

true value X1 and the unknown offset X2, i.e. the true ‘zero’ of the instrument. The
transformation rule to build the initial covariance matrix will be then, starting from symbols
that have a physical meaning [value v, ‘zero’ z, and the others as in Eqs. (70)-(70]

X1 = v (73)

X2 = z (74)

(XV = v + z = X1 +X2) (75)

X3 = o1 = XV + e3 = X1 +X2 + e3 (76)

X4 = o2 = XV + e4 = X1 +X2 + e4 (77)

X5 = o3 = XV + e5 = X1 +X2 + e5 (78)
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The calculation of the variances is trivial. As far as the covariances we have

Cov[X1,X2] = 0 (79)

Cov[X1,Xi] = σ2
1 (i > 2) (80)

Cov[X2,Xi] = σ2
2 (i > 2) (81)

Cov[Xi,Xj ] = σ2
1 + σ2

2 (i > 2, j > 2) (82)

This is then the covariance matrix of interest, limited to the five variables shown in the
figure (and than it is easy to continue):

V =













σ2
1 0 σ2

1 σ2
1 σ2

1

0 σ2
2 σ2

2 σ2
2 σ2

2

σ2
1 σ2

2 σ2
1 + σ2

2 + σ2
e3 σ2

1 + σ2
2 σ2

1 + σ2
2

σ2
1 σ2

2 σ2
1 + σ2

2 σ2
1 + σ2

2 + σ2
e4 σ2

1 + σ2
2

σ2
1 σ2

2 σ2
1 + σ2

2 σ2
1 + σ2

2 σ2
1 + σ2

2 + σ2
e5













, (83)

where σe3 stands for σ(e3), i.e. σ(X3|X1+X2
), and so on, later also indicated with the short

hand σi|1,2.
From such an interesting matrix we can expect interesting results, useful to train our

intuition. But before analyzing some cases, as done in the previous section, let us make
the exercise to build up the covariance matrix in a different way. The transformation rules
(73)-(78) can be rewritten using the transformation matrix

C =













1 0 0 0 0
0 1 0 0 0
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1













(84)

to be applied to the diagonal matrix of the independent variables,

V 0 =













σ2
1 0 0 0
0 σ2

2 0 0 0
0 0 σ2

e3 0
0 0 0 σ2

e4 0
0 0 0 0 σ2

e5













(85)

Applying then the transformation rule of the covariance matrix we reobtain the above result
– an implementation in R will be shown in the next subsection.

6.1 Numerical examples

Let set up the covariance matrix for 5 possible ‘observations’

> n=7; muX1=0; sigmaX1=10; muZ=0; sigmaZ=1 # set parameters

> mu <- c(muX1, muZ, rep(muX1+muZ, n-2)) # set expected values

> ( sigma <- c(sigmaX1, sigmaZ, rep(1,n-2)) ) # standard deviations

[1] 10 1 1 1 1 1 1

> V <- matrix(rep(0, n*n), c(n,n)) # cov matr # step 0

> V[(1:n)[-2], (1:n)[-2]] <- sigma[1]^2 # step 1

> V[(2:n), (2:n)] <- V[(2:n), (2:n)] + sigma[2]^2 # step 2

> diag(V)[3:n] <- diag(V)[3:n] + sigma[3:n]^2 # step 3
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> V

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 100 0 100 100 100 100 100

[2,] 0 1 1 1 1 1 1

[3,] 100 1 102 101 101 101 101

[4,] 100 1 101 102 101 101 101

[5,] 100 1 101 101 102 101 101

[6,] 100 1 101 101 101 102 101

[7,] 100 1 101 101 101 101 102

> (su <- sqrt(diag(V)))

[1] 10.0000 1.0000 10.0995 10.0995 10.0995 10.0995 10.0995

> round( V/outer(su,su), 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.0000 0.000 0.9901 0.9901 0.9901 0.9901 0.9901

[2,] 0.0000 1.000 0.0990 0.0990 0.0990 0.0990 0.0990

[3,] 0.9901 0.099 1.0000 0.9902 0.9902 0.9902 0.9902

[4,] 0.9901 0.099 0.9902 1.0000 0.9902 0.9902 0.9902

[5,] 0.9901 0.099 0.9902 0.9902 1.0000 0.9902 0.9902

[6,] 0.9901 0.099 0.9902 0.9902 0.9902 1.0000 0.9902

[7,] 0.9901 0.099 0.9902 0.9902 0.9902 0.9902 1.0000

Let us also show the alternative way to build up the covariance matrix

> C <- matrix(rep(0, n*n), c(n,n)) # transf. matrix

> C[,1] <- c(1, 0, rep(1, n-2))

> C[,2] <- c(0, rep(1, n-1))

> diag(C) <- rep(1, n)

> C

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0

[3,] 1 1 1 0 0 0 0

[4,] 1 1 0 1 0 0 0

[5,] 1 1 0 0 1 0 0

[6,] 1 1 0 0 0 1 0

[7,] 1 1 0 0 0 0 1

> V0 <- matrix(rep(0, n*n), c(n,n)) # initial diagonal matrix

> diag(V0) <- sigma^2

> ( V <- C %*% V0 %*% t(C) ) # joint covariance matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 100 0 100 100 100 100 100

[2,] 0 1 1 1 1 1 1

[3,] 100 1 102 101 101 101 101

[4,] 100 1 101 102 101 101 101

[5,] 100 1 101 101 102 101 101

[6,] 100 1 101 101 101 102 101

[7,] 100 1 101 101 101 101 102

As we see the result is identical to that obtained setting the elements ‘by hand’.
Then let us now repeat the steps previously followed without systematic offset.

6.1.1 Condition on X1 = 2 (“known true value”)

> ( mu.c <- c(2, rep(NA, n-1)) )

[1] 2 NA NA NA NA NA NA
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> ( out <- norm.mult.cond(mu, V, mu.c) )

$mu

[1] 2 0 2 2 2 2 2

$V

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 0 0 0 0 0 0

[2,] 0 1 1 1 1 1 1

[3,] 0 1 2 1 1 1 1

[4,] 0 1 1 2 1 1 1

[5,] 0 1 1 1 2 1 1

[6,] 0 1 1 1 1 2 1

[7,] 0 1 1 1 1 1 2

> ( out.s <- sqrt(diag(out$V)) )

[1] 0.000000 1.000000 1.414214 1.414214 1.414214 1.414214 1.414214

> round( out$V / outer(out.s, out.s), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] NaN NaN NaN NaN NaN NaN NaN

[2,] NaN 1.000 0.707 0.707 0.707 0.707 0.707

[3,] NaN 0.707 1.000 0.500 0.500 0.500 0.500

[4,] NaN 0.707 0.500 1.000 0.500 0.500 0.500

[5,] NaN 0.707 0.500 0.500 1.000 0.500 0.500

[6,] NaN 0.707 0.500 0.500 0.500 1.000 0.500

[7,] NaN 0.707 0.500 0.500 0.500 0.500 1.000

The condition on the ‘true value’ changes the values of the observables to its value, but it
does not affect the offset, which has a role in the uncertainty of the future observations as
well in their correlation. In fact, contrary to the case see in the previous section without
uncertain offset, they are not any longer independent. They would become independent if
also the offset were known (try for example with “mu.c <- c(2, 0, rep(NA, n-2))” to
see the difference, or even better with “mu.c <- c(2, 1, rep(NA, n-2))”).

6.1.2 Condition on X3 = 2 (“single observation”)

> ( mu.c <- c(NA, NA, 2, rep(NA, n-3)) )

[1] NA NA 2 NA NA NA NA

> out <- norm.mult.cond(mu, V, mu.c)

> round( out$mu, 4)

[1] 1.9608 0.0196 2.0000 1.9804 1.9804 1.9804 1.9804

> round( out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.9608 -0.9804 0 0.9804 0.9804 0.9804 0.9804

[2,] -0.9804 0.9902 0 0.0098 0.0098 0.0098 0.0098

[3,] 0.0000 0.0000 0 0.0000 0.0000 0.0000 0.0000

[4,] 0.9804 0.0098 0 1.9902 0.9902 0.9902 0.9902

[5,] 0.9804 0.0098 0 0.9902 1.9902 0.9902 0.9902

[6,] 0.9804 0.0098 0 0.9902 0.9902 1.9902 0.9902

[7,] 0.9804 0.0098 0 0.9902 0.9902 0.9902 1.9902

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 1.4003 0.9951 0.0000 1.4107 1.4107 1.4107 1.4107

> round( out$V / outer(out.s, out.s), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.000 -0.704 NaN 0.496 0.496 0.496 0.496

[2,] -0.704 1.000 NaN 0.007 0.007 0.007 0.007
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[3,] NaN NaN NaN NaN NaN NaN NaN

[4,] 0.496 0.007 NaN 1.000 0.498 0.498 0.498

[5,] 0.496 0.007 NaN 0.498 1.000 0.498 0.498

[6,] 0.496 0.007 NaN 0.498 0.498 1.000 0.498

[7,] 0.496 0.007 NaN 0.498 0.498 0.498 1.000

To understand the result we need to compare it with the case without uncertainty uncer-
tainty. In that case we had X1 = 1.98. Now we have X1 = 1.96. The difference, although
practically irrelevant, is conceptually important. It is indeed equal to the expected value
of the offset (precisely 0.0196). This is because the role of the observation is to give us an
information about X1 +X2, sum of the true value and the offset. The fact that we use the
observations to update our knowledge on the true value is simply because the offset is a
priori better known that the true value, as it is well understood by experienced physicists:
if the calibration is poor the instrument cannot be used for ‘measurements’. Note also the
correlation that now appears between X1 and X2, and in particular its negative sign: the
value of the true value could increase at the ‘expenses’ of the offset, and the other way
around.

6.1.3 Condition on X3 = 2 and X4 = 1 (“two observations”)

> ( mu.c <- c(NA, NA, 2, 1, rep(NA, n-4)) )

[1] NA NA 2 1 NA NA NA

> out <- norm.mult.cond(mu, V, mu.c)

> round( out$mu, 4)

[1] 1.4778 0.0148 2.0000 1.0000 1.4926 1.4926 1.4926

> round( out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.4778 -0.9852 0 0 0.4926 0.4926 0.4926

[2,] -0.9852 0.9901 0 0 0.0049 0.0049 0.0049

[3,] 0.0000 0.0000 0 0 0.0000 0.0000 0.0000

[4,] 0.0000 0.0000 0 0 0.0000 0.0000 0.0000

[5,] 0.4926 0.0049 0 0 1.4975 0.4975 0.4975

[6,] 0.4926 0.0049 0 0 0.4975 1.4975 0.4975

[7,] 0.4926 0.0049 0 0 0.4975 0.4975 1.4975

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 1.2157 0.9951 0.0000 0.0000 1.2237 1.2237 1.2237

> round( out$V / outer(out.s, out.s), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.000 -0.814 NaN NaN 0.331 0.331 0.331

[2,] -0.814 1.000 NaN NaN 0.004 0.004 0.004

[3,] NaN NaN NaN NaN NaN NaN NaN

[4,] NaN NaN NaN NaN NaN NaN NaN

[5,] 0.331 0.004 NaN NaN 1.000 0.332 0.332

[6,] 0.331 0.004 NaN NaN 0.332 1.000 0.332

[7,] 0.331 0.004 NaN NaN 0.332 0.332 1.000

The only new effect we observe is the increase (in module) of the correlation coefficient
between true value and offset. This is due to the fact that the increased number of ob-
servation has increased the constrain between the two quantities. It will increase more
if we use further observations, for example conditioning on ”mu.c <- c(NA, NA, 2, 1,

1.5, 2.2, 0.5)”, or decreasing the standard deviations σi|1,2. For example if we set all
σi|1,2 to 0.1, the same conditioning on X3 and X3 would produce a correlation coefficient
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of −0.9975. Asymptotically there will be a deterministic constrain between X1 and X2 of
the kind X1 +X2 = k, and the two variables become logically dependent.

6.1.4 “Ricalibration of the offset” (X1 = 2; X3 = 2, X4 = 1)

What happens if we instead fix the value of the true value and some values of the observ-
ables? In this case we update our information on the offset. Let us see the case in which
we fix the value of the true value at 2, and the average of the two observations at 1.5.

> ( mu.c <- c(2, NA, 2, 1, rep(NA, n-4)) )

[1] 2 NA 2 1 NA NA NA

> out <- norm.mult.cond(mu, V, mu.c)

> round( out$mu, 4)

[1] 2.0000 -0.3333 2.0000 1.0000 1.6667 1.6667 1.6667

> round( out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 0.0000 0 0 0.0000 0.0000 0.0000

[2,] 0 0.3333 0 0 0.3333 0.3333 0.3333

[3,] 0 0.0000 0 0 0.0000 0.0000 0.0000

[4,] 0 0.0000 0 0 0.0000 0.0000 0.0000

[5,] 0 0.3333 0 0 1.3333 0.3333 0.3333

[6,] 0 0.3333 0 0 0.3333 1.3333 0.3333

[7,] 0 0.3333 0 0 0.3333 0.3333 1.3333

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 0.0000 0.5774 0.0000 0.0000 1.1547 1.1547 1.1547

> round( out$V / outer(out.s, out.s), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] NaN NaN NaN NaN NaN NaN NaN

[2,] NaN 1.0 NaN NaN 0.50 0.50 0.50

[3,] NaN NaN NaN NaN NaN NaN NaN

[4,] NaN NaN NaN NaN NaN NaN NaN

[5,] NaN 0.5 NaN NaN 1.00 0.25 0.25

[6,] NaN 0.5 NaN NaN 0.25 1.00 0.25

[7,] NaN 0.5 NaN NaN 0.25 0.25 1.00

As a result, the expected value of the offset becomes −0.33, with a standard deviation of
0.58, against the (possible) intuitive guess of −0.5 (i.e 1.5−2.0) with a standard uncertainty
of 0.71 (i.e. 1/

√
2). The reason is that our prior knowledge on the offset had a standard

uncertainty of 1, that has to be taken into account. Indeed it can be easily checked that the
‘intuitive’ result would have been recovered if we had a very large uncertainty (σ2 → ∞).
In fact −0.33 is the weighted average of the initial value 0 and −0.5, with weights equal to
1 and 2. The reason is that the result based on reconditioning provides automatically the
rule of the weighted average with ‘inverse of the variances’, where the ‘variance’ associated
to −0.5 would be that obtained if the prior knowledge on the offset was irrelevant (i.e.
σ2 → ∞).

7 Measuring two quantities with the same instrument af-
fected by offset uncertainty

Another interesting issue, very common in experimental physics, is when we make several
measurements on homogeneous quantities using the same instrument that, as all instru-
ments, has unavoidable uncertainty in the calibration. The situation is sketched in the
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X3

X4 X7

X5 X6
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z

o1 o4

o2 o3

Figure 9: Model to describe the measurements of two quantities with the same instrument
affected by some systematics.

diagrams of Fig. 9, drawn with the different symbols used in the text: X1 and X2 are the
true values; X3 the common offset; X4 and X5 the independent readings when the instru-
ment is applied to X1; X6 and X7 the independent readings when the instrument is applied
to X2.

From this model we can easily build the transformation matrix C

C =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
1 0 1 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
0 1 1 0 0 0 1





















(86)

(for example it says that row 6 depends on X2, X3 and e3). Applying it to the starting diag-
onal matrix (v1, v2 and z are initially independent; the various errors e1-e4 are independent)
we get the covariance matrix of the joint multivariate normal of interest:

V =





















σ2
1 0 0 σ2

1 σ2
1 0 0

0 σ2
2 0 0 0 σ2

2 σ2
2

0 0 σ2
3 σ2

3 σ2
3 σ2

3 σ2
3

σ2
1 0 σ2

3 σ2
1 + σ2

3 + σ2
e1 σ2

1 + σ2
3 σ2

3 σ2
3

σ2
1 0 σ2

3 σ2
1 + σ2

3 σ2
1 + σ2

3 + σ2
e2 σ2

3 σ2
3

0 σ2
2 σ2

3 σ2
3 σ2

3 σ2
2 + σ2

3 + σ2
e3 σ2

2 + σ2
3

0 σ2
2 σ2

3 σ2
3 σ2

3 σ2
2 + σ2

3 σ2
2 + σ2

3 + σ2
e4





















This is a very interesting covariance matrix and we leave the reader the pleasure of exploiting
all possibilities. Here we only show a numerical example, with parameters similar to the
ones used before for a better understanding, and just discuss a single case of conditioning.

> n=7; muX1=0; sigmaX1=10; muX2=0; sigmaX2=10; # set parameters

> muZ=0; sigmaZ=1

> mu <- c(muX1, muX2, muZ, rep(muX1+muZ,2), rep(muX2+muZ,2)) # set expected values

> ( sigma <- c(sigmaX1, sigmaX1, sigmaZ, rep(1, n-3)) ) # standard deviations
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[1] 10 10 1 1 1 1 1

> C <- matrix(rep(0, n*n), c(n,n)) # tranformation matrix

> diag(C) <- rep(1, n)

> C[4,] <- c(1, 0, 1, 1, 0, 0, 0)

> C[5,] <- c(1, 0, 1, 0, 1, 0, 0)

> C[6,] <- c(0, 1, 1, 0, 0, 1, 0)

> C[7,] <- c(0, 1, 1, 0, 0, 0, 1)

> C

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0

[3,] 0 0 1 0 0 0 0

[4,] 1 0 1 1 0 0 0

[5,] 1 0 1 0 1 0 0

[6,] 0 1 1 0 0 1 0

[7,] 0 1 1 0 0 0 1

> V0 <- matrix(rep(0, n*n), c(n,n)) # covariance matrix

> diag(V0) <- sigma^2

> V <- C %*% V0 %*% t(C)

> V

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 100 0 0 100 100 0 0

[2,] 0 100 0 0 0 100 100

[3,] 0 0 1 1 1 1 1

[4,] 100 0 1 102 101 1 1

[5,] 100 0 1 101 102 1 1

[6,] 0 100 1 1 1 102 101

[7,] 0 100 1 1 1 101 102

> su <- sqrt(diag(V)) # standard uncertainties

> round( V/outer(su,su), 4) # correlation matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.0000 0.0000 0.000 0.9901 0.9901 0.0000 0.0000

[2,] 0.0000 1.0000 0.000 0.0000 0.0000 0.9901 0.9901

[3,] 0.0000 0.0000 1.000 0.0990 0.0990 0.0990 0.0990

[4,] 0.9901 0.0000 0.099 1.0000 0.9902 0.0098 0.0098

[5,] 0.9901 0.0000 0.099 0.9902 1.0000 0.0098 0.0098

[6,] 0.0000 0.9901 0.099 0.0098 0.0098 1.0000 0.9902

[7,] 0.0000 0.9901 0.099 0.0098 0.0098 0.9902 1.0000

Now let us assume we have applied our instrument once on X1 and once on X2, obtaining
the readings X4 = 1 and X6 = 2, respectively. Here is how our knowledge is updated:

> ( mu.c <- c(rep(NA, 3), 1, NA, 2, NA) ) # conditioning

[1] NA NA NA 1 NA 2 NA

> out <- norm.mult.cond(mu, V, mu.c)

> round( out$mu, 4)

[1] 0.9613 1.9514 0.0291 1.0000 0.9904 2.0000 1.9805

> round( out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.9514 0.9613 -0.9709 0 0.9805 0 -0.0096

[2,] 0.9613 1.9514 -0.9709 0 -0.0096 0 0.9805

[3,] -0.9709 -0.9709 0.9806 0 0.0097 0 0.0097

[4,] 0.0000 0.0000 0.0000 0 0.0000 0 0.0000

[5,] 0.9805 -0.0096 0.0097 0 1.9902 0 0.0001

[6,] 0.0000 0.0000 0.0000 0 0.0000 0 0.0000
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[7,] -0.0096 0.9805 0.0097 0 0.0001 0 1.9902

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 1.3969 1.3969 0.9902 0.0000 1.4107 0.0000 1.4107

> round( out$V / outer(out.s, out.s), 3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.000 0.493 -0.702 NaN 0.498 NaN -0.005

[2,] 0.493 1.000 -0.702 NaN -0.005 NaN 0.498

[3,] -0.702 -0.702 1.000 NaN 0.007 NaN 0.007

[4,] NaN NaN NaN NaN NaN NaN NaN

[5,] 0.498 -0.005 0.007 NaN 1.000 NaN 0.000

[6,] NaN NaN NaN NaN NaN NaN NaN

[7,] -0.005 0.498 0.007 NaN 0.000 NaN 1.000

As expected, X4 = 1 sets essentially to 1 the true value X1 and the ‘future’ – or not yet
known! – reading X5. Similarly, X6 sets essentially to 2 X2 and X7. (The difference from
the exact value of 1 and 2, respectively, is due – let us repeat it once again – to the fact
that we use, for didactic purposes, initial standard uncertainties σ1 and σ2 ‘relatively small’,
while the uncertainty on the common offset is ‘relatively large’.) The most interest part of
the result is the 3 × 3 upper left part of the resulting correlation matrix, which we repeat
here:





1.000 0.493 −0.702
0.493 1.000 −0.702
−0.702 −0.702 1.000





As we have learned in the previous section, the value of the offset gets anticorrelated to the
true values. Moreover the two true values get positively correlated, as expected: a part
of our uncertainty on them is due the imprecise knowledge of the offset, which then affects
both values in the same direction.

8 Inferences and forecasting based on mean values

Often our inferences and forecasting are based on averages, instead than on individual
values. It is rather understood that in Gaussian samples the inference on the Gaussian ‘µ’
is the same if we use the mean rather than the detailed information, due to the so called
property of ‘statistical sufficiency’. It is instead less clear what we should expect for a next
mean, based on a sample of the same size of the first one. For example, very often one ears
and reads18 something like “if we have got a mean (xp) and then imagine to repeat a large
number of independent samples of the same size (n) of the ‘past’ one, then we expect about
in the interval xp ± σ/

√
n ”, that is

P (xp −
σ√
n

≤ xf ≤ xp +
σ√
n
) = 68% , (87)

18 For example, we read in Ref. [6] (pp. 118-119)

“In reporting the measurement of θ as θ̂obs ± σ̂θ̂ one means that repeated estimates all based

on n observations of x would be distributed according to a p.d.f. g(θ̂) centered around some
true value θ and true standard deviation σθ̂, which are estimated to be θ̂obs and σθ̂.” Mistakes
of this kind are due to a curious ideology that refuses to make probabilistic statements about
uncertain values, in contrast to the physicist’ intuition (see extended discussions in Ref. [5],
with hints on the way of reasoning of Gauss and Laplace).
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X1

X4X3X2 X5 X6 X7
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Figure 10: Past mean and future mean. X1 is the value of the quantity, X2-X4 the ob-
servations in the first samples (i.e. o1, o2 and o3), X5-X7 the observations in the second
samples (i.e. o4, o5 and o5). X8 and X9 are the sample means.

a statement wrong by a factor 1/
√
2 in the size of the interval (or, equivalently, about

30% in the value of expected frequency, that should be 52%) as we shall see in a while (see
also Ref. [5]). In order to do this, let us play with our tool, building the minimal model to
observe the effect of interest.

Figure 10 shows the value of a quantity (X1) and two samples, each of three observations
(X2-X4 and X5-X7), whose mean values are X8 and X9 (the dashed arrows indicate that
the links are deterministic instead than probabilistic, since an arithmetic mean is univocally
determined by the values of the sample). We only need to write down the transformation
rules to get X8 and X9 in order to build up the extra rows of the transformation matrix.
They are:

X8 =
1

3
(X2 +X3 +X4) = X1 +

1

3
(e1 + e2 + e3) (88)

X9 =
1

3
(X5 +X6 +X7) = X1 +

1

3
(e4 + e5 + e6) (89)

from which it follows

C =





























1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
1 1/3 1/3 1/3 0 0 0
1 0 0 0 1/3 1/3 1/3





























(90)

Here is our implementation in R, where we have now used σ1 = 100, much larger than
the ‘experimental resolution’ of 1. This choice makes, for the numerical values of the
observations we shall use, the prior on X1 practically irrelevant (the effect on the expected
values is of the order 10−5) so that we can better focus on other effects:
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> n <- 7; muX1 <- 0; sigmaX1 <- 100; sigma.i <- 1 # parameters

> mu <- rep(muX1, n + 2) # expected values

> ( sigma <- c(sigmaX1, rep(sigma.i,n-1)) )

> V0 <- matrix(rep(0, n*n), c(n,n)) # initial diagonal covariance matrix

> diag(V0) <- sigma^2

> C <- matrix(rep(0, n*n), c(n,n)) transformation matrix

> diag(C) <- rep(1, n)

> C[,1] <- rep(1, n)

> C <- rbind( C, c(1, rep(1/3, 3), rep(0, 3)), c(1, rep(0, 3), rep(1/3, 3)) )

> round(C,3)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1 0.000 0.000 0.000 0.000 0.000 0.000

[2,] 1 1.000 0.000 0.000 0.000 0.000 0.000

[3,] 1 0.000 1.000 0.000 0.000 0.000 0.000

[4,] 1 0.000 0.000 1.000 0.000 0.000 0.000

[5,] 1 0.000 0.000 0.000 1.000 0.000 0.000

[6,] 1 0.000 0.000 0.000 0.000 1.000 0.000

[7,] 1 0.000 0.000 0.000 0.000 0.000 1.000

[8,] 1 0.333 0.333 0.333 0.000 0.000 0.000

[9,] 1 0.000 0.000 0.000 0.333 0.333 0.333

> V <- C %*% V0 %*% t(C) # joint covariance matrix

> ( su <- sqrt(diag(V)) ) # initial uncertainties

[1] 100.0000 100.0050 100.0050 100.0050 100.0050 100.0050 100.0050 100.0017

[9] 100.0017

> ( m <- dim(V)[1] ) # number of transformed variables

[1] 9

> round( V/outer(su,su), 5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.00000 0.99995 0.99995 0.99995 0.99995 0.99995 0.99995 0.99998 0.99998

[2,] 0.99995 1.00000 0.99990 0.99990 0.99990 0.99990 0.99990 0.99997 0.99993

[3,] 0.99995 0.99990 1.00000 0.99990 0.99990 0.99990 0.99990 0.99997 0.99993

[4,] 0.99995 0.99990 0.99990 1.00000 0.99990 0.99990 0.99990 0.99997 0.99993

[5,] 0.99995 0.99990 0.99990 0.99990 1.00000 0.99990 0.99990 0.99993 0.99997

[6,] 0.99995 0.99990 0.99990 0.99990 0.99990 1.00000 0.99990 0.99993 0.99997

[7,] 0.99995 0.99990 0.99990 0.99990 0.99990 0.99990 1.00000 0.99993 0.99997

[8,] 0.99998 0.99997 0.99997 0.99997 0.99993 0.99993 0.99993 1.00000 0.99997

[9,] 0.99998 0.99993 0.99993 0.99993 0.99997 0.99997 0.99997 0.99997 1.00000

As we see, all quantities are now highly correlated. In particular, it is interesting to see
how X8 and X9 are correlated with X1, with any observation of the first sample (X2-X4)
and with any observation of the second sample (X5-X7).

8.1 Expectations for a given value of X1

Let us now fix X1 at our usual value of 2:

> ( mu.c <- c(2, rep(NA, m-1)) ) # X1 = 2

[1] 2 NA NA NA NA NA NA NA NA

> out <- norm.mult.cond(mu, V, mu.c)

> out$mu

[1] 2 2 2 2 2 2 2 2 2

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.5774 0.5774
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> round( out$V / outer(out.s, out.s), 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] NaN NaN NaN NaN NaN NaN NaN NaN NaN

[2,] NaN 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5774 0.0000

[3,] NaN 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.5774 0.0000

[4,] NaN 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5774 0.0000

[5,] NaN 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.5774

[6,] NaN 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.5774

[7,] NaN 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.5774

[8,] NaN 0.5774 0.5774 0.5774 0.0000 0.0000 0.0000 1.0000 0.0000

[9,] NaN 0.0000 0.0000 0.0000 0.5774 0.5774 0.5774 0.0000 1.0000

As we already know, all observations become conditionally independent with expected value
2 and standard uncertainty 1. The averages are also expected to be around 2, but with
smaller uncertainty, namely 1/

√
3 ≈ 0.5774 And, obviously, the averages are only correlated

with each observation of their own sample. For example, for X2 and X8, we have, starting
from the transformation rules (69) and (88), we get, being X1 certain,

Cov[X2,X8] =
1

3
× σ2

e1 (91)

=
1

3
× 1 ≈ 0.33 , (92)

and then

ρ[X2,X8] =
Cov[X2,X8]

σ[X2] · σ[X8]
(93)

=
1/3

1× 1/
√
3
=

√
3 ≈ 0.5774 , (94)

that is exactly what we can read in the R output.

8.2 Reconditioning on the value of the first mean

Let us now see what happens if we get informed about a mean value, e.g. X8 = 2.

> ( mu.c <- c(rep(NA, m-2), 2, NA) ) # first mean = 2

[1] NA NA NA NA NA NA NA 2 NA

> out <- norm.mult.cond(mu, V, mu.c)

> round(out$mu, 5)

[1] 1.99993 2.00000 2.00000 2.00000 1.99993 1.99993 1.99993 2.00000 1.99993

> round( out.s <- sqrt(diag(out$V)), 4)

[1] 0.5773 0.8165 0.8165 0.8165 1.1547 1.1547 1.1547 0.0000 0.8165

> round(out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.3333 0.0000 0.0000 0.0000 0.3333 0.3333 0.3333 0 0.3333

[2,] 0.0000 0.6667 -0.3333 -0.3333 0.0000 0.0000 0.0000 0 0.0000

[3,] 0.0000 -0.3333 0.6667 -0.3333 0.0000 0.0000 0.0000 0 0.0000

[4,] 0.0000 -0.3333 -0.3333 0.6667 0.0000 0.0000 0.0000 0 0.0000

[5,] 0.3333 0.0000 0.0000 0.0000 1.3333 0.3333 0.3333 0 0.6667

[6,] 0.3333 0.0000 0.0000 0.0000 0.3333 1.3333 0.3333 0 0.6667

[7,] 0.3333 0.0000 0.0000 0.0000 0.3333 0.3333 1.3333 0 0.6667

[8,] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0.0000

[9,] 0.3333 0.0000 0.0000 0.0000 0.6667 0.6667 0.6667 0 0.6667

> round( out$V / outer(out.s, out.s), 4)

40



[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.0000 0.0 0.0 0.0 0.5000 0.5000 0.5000 NaN 0.7071

[2,] 0.0000 1.0 -0.5 -0.5 0.0000 0.0000 0.0000 NaN 0.0000

[3,] 0.0000 -0.5 1.0 -0.5 0.0000 0.0000 0.0000 NaN 0.0000

[4,] 0.0000 -0.5 -0.5 1.0 0.0000 0.0000 0.0000 NaN 0.0000

[5,] 0.5000 0.0 0.0 0.0 1.0000 0.2500 0.2500 NaN 0.7071

[6,] 0.5000 0.0 0.0 0.0 0.2500 1.0000 0.2500 NaN 0.7071

[7,] 0.5000 0.0 0.0 0.0 0.2500 0.2500 1.0000 NaN 0.7071

[8,] NaN NaN NaN NaN NaN NaN NaN NaN NaN

[9,] 0.7071 0.0 0.0 0.0 0.7071 0.7071 0.7071 NaN 1.0000

The knowledge about the first average constrains X1 to 2.00±0.58, that is x±σ/
√
n, while

the expectations about the next average is 2.00 ± 0.82, that is x ±
√
2σ/

√
n. The future

observations are instead expected to be 2.00± 1.15, where the standard uncertainty comes
from

√
0.5772 + 12, quadratic combination of the uncertainty about X1 and that of any of

the future observations around X1.
And, as expected, there are correlations among all values which are still uncertain, with

the exception of X1 with X2, X3 and X4 (the observations of the first sample). This on a
first sight is not very intuitive. The reason is that X1 is fully determined by the average X8,
and therefore our knowledge about it cannot change if we are informed about the individual
values of the measurements, as we shall see in the next subsection.

Remaining on the values of the first sample, their expected value is exactly 2, instead
than 1.99993, a difference absolutely negligible in practice, but very interesting indeed to
understand the flow of the probabilistic updates. Their values depend only on the average,
and not on the prior about X1. Their uncertainty is the same as the uncertainty on the
future average (

√
2× 1/

√
3), although not easy to understand at an intuitive level. Easier

to understand are their mutual anticorrelations, since their linear combination X8 (their
mean value) is fixed.

8.3 Knowing the average and one of the values that contribute to the
first mean

In order to better understand the role of the mean in the inference, let us assume we also
know the value of one of the three observations contributing to it, for example X2 = 1.

> ( mu.c <- c(NA, 1, rep(NA, m-4), 2, NA) ) # first mean (X8) = 2; X2=1

[1] NA 1 NA NA NA NA NA 2 NA

> out <- norm.mult.cond(mu, V, mu.c, check=FALSE)

> round(out$mu, 4)

[1] 1.9999 1.0000 2.5000 2.5000 1.9999 1.9999 1.9999 2.0000 1.9999

> round( out.s <- sqrt(diag(out$V)), 4 )

[1] 0.5773 0.0000 0.7071 0.7071 1.1547 1.1547 1.1547 0.0000 0.8165

> round(out$V, 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 0.3333 0 0.0 0.0 0.3333 0.3333 0.3333 0 0.3333

[2,] 0.0000 0 0.0 0.0 0.0000 0.0000 0.0000 0 0.0000

[3,] 0.0000 0 0.5 -0.5 0.0000 0.0000 0.0000 0 0.0000

[4,] 0.0000 0 -0.5 0.5 0.0000 0.0000 0.0000 0 0.0000

[5,] 0.3333 0 0.0 0.0 1.3333 0.3333 0.3333 0 0.6667

[6,] 0.3333 0 0.0 0.0 0.3333 1.3333 0.3333 0 0.6667

[7,] 0.3333 0 0.0 0.0 0.3333 0.3333 1.3333 0 0.6667

[8,] 0.0000 0 0.0 0.0 0.0000 0.0000 0.0000 0 0.0000

[9,] 0.3333 0 0.0 0.0 0.6667 0.6667 0.6667 0 0.6667
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> round( out$V / outer(out.s, out.s), 4)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

[1,] 1.0000 NaN 0 0 0.5000 0.5000 0.5000 NaN 0.7071

[2,] NaN NaN NaN NaN NaN NaN NaN NaN NaN

[3,] 0.0000 NaN 1 -1 0.0000 0.0000 0.0000 NaN 0.0000

[4,] 0.0000 NaN -1 1 0.0000 0.0000 0.0000 NaN 0.0000

[5,] 0.5000 NaN 0 0 1.0000 0.2500 0.2500 NaN 0.7071

[6,] 0.5000 NaN 0 0 0.2500 1.0000 0.2500 NaN 0.7071

[7,] 0.5000 NaN 0 0 0.2500 0.2500 1.0000 NaN 0.7071

[8,] NaN NaN NaN NaN NaN NaN NaN NaN NaN

[9,] 0.7071 NaN 0 0 0.7071 0.7071 0.7071 NaN 1.0000

As we can see, the inference about X1 does not change. As a consequence, also the expec-
tations about the future observations are not affected by this extra piece of informations.
Instead, we change our knowledge about X3 and X4, whose expected values become 2.5, in
order to compensate X2 = 1 [i.e 2.5 = (3 × 2 − 1)/2] and they are fully anticorrelated, as
more or less expected.

9 The effect of a constrain among true values

Another important issue is how the knowledge that the some quantities are intrinsically
correlated changes the inference. Cases of this kind happen when several quantities are
related by a deterministic relation, and a well understood case is when measuring the
internal angles of a triangles in a flat space. Just to focus on a numerical example, let us
imagine the individual angles to be determined, starting from very vague priors as

α = 58◦ ± 2◦ (95)

β = 73◦ ± 2◦ (96)

γ = 54◦ ± 2◦. (97)

The measurements can be independent, as we have supposed (let us forget the case of
measurements with common systematics in order to focus on the effect of the constrain),
but nevertheless the relation α+β+γ = 180◦ will make the results correlated. The graphical
model is represented in figure 11 with the extra node X7 representing the sum of the angles
and related to X1, X2 and X3 by deterministic links (dashed arrows).

X1 X2 X3

X4 X5 X6

X7

Figure 11: Inferring the internal angles of a triangle by independent measurements.
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9.1 Exact solution in the case of identical resolution of the goniometer
and neglecting systematic effects

Being the case rather simple, especially if all uncertainties are equal, let us make the exercise
of going through the exact solution. Indicating the angles all together with the variable
X = {α, β, γ}, whose expected value is E[X ] = {a = 58◦, b = 73◦, c = 54◦}. The covariance
matrix is diagonal with all terms equal to σ2 = (2◦)2. We make then the transformation to
Y = {α, β, γ,Σ}, where Σ = α+β+γ, and then condition on Σ = 180◦. The transformation
matrix is then

C =









1 0 0
0 1 0
0 0 1
1 1 1









(98)

from which we obtain

V Y =









1 0 0
0 1 0
0 0 1
1 1 1









·





σ2 0 0
0 σ2 0
0 0 σ2



 ·





1 0 0 1
0 1 0 1
0 0 1 1



 =









σ2 0 0 σ2

0 σ2 0 σ2

0 0 σ2 σ2

σ2 σ2 σ2 3σ2









(99)

Conditioning on Σ = 180◦, that is Y4 = 180◦, using Eqs. (39) and (40), we get

E





α
β
γ





∣

∣

∣

∣

∣

∣

Σ=180◦

=





a
b
c



− ∆ϕ

3





1
1
1



 , (100)

with ∆ϕ = (a + b + c) − 180◦. In practice the resulting rule is the most naive one could
imagine: subtract to each value one third of the excess of their sum above 180◦. (If you
think that this rule is to simplistic, the reason might be that your model of uncertainty
in this kind of measurements is different than that used here, implying for example scale
type errors. But this kind of errors are beyond the aim of this note, because they imply
non-linear transformations.)

This is the conditioned covariance matrix

2σ2

3





1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1



 , (101)

written in a form that highlights the correlation matrix. The result is finally

α =

(

a− ∆ϕ

3

)

±
√

2

3
σ (102)

and similar expression for β and γ, thus yielding

α = 56.33◦ ± 1.63◦ (103)

β = 71.33◦ ± 1.63◦ (104)

γ = 52.33◦ ± 1.63◦ , (105)

with ρ(α, β) = ρ(α, γ) = ρ(β, γ) = −1/2.
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9.2 Numerical implementation in R

In analogy of what we have previously done in several cases, we start from independent
quantities v1, v2, v3, e1, e2 and e3. For the true values of the angle we choose a flat prior,
modelled with a Gaussian19 of central value (all values in degrees) 60 and σ = 1000. The
expected values of the fluctuations of the observations around the true values are instead
0, with standard deviations equal to the experimental resolutions, called sigma.gonio in
the code, so that it can be changed at wish.

The transformation rules are

X1 = v1 (106)

X2 = v2 (107)

X3 = v3 (108)

X4 = o1 = v1 + e1 (109)

X5 = o2 = v2 + e2 (110)

X6 = o3 = v3 + e3 (111)

X7 = v1 + v2 + v3 (112)

from which we get the transformation matrix

C =





















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 1 1 0 0 0





















(113)

Here is the R code to calculate the expected values and covariance matrix of the three
angles:

mu.priors <- rep(60, 3); sigma.priors <- rep(1000, 3) # priors

sigma.gonio <- c(2, 2, 2) # experimental resolutions

m=6; mu0 <- c(mu.priors, rep(0, 3))

sigma <- c(sigma.priors, sigma.gonio)

V0 <- matrix(rep(0, m*m), c(m,m)) # diagonal matrix

diag(V0) <- sigma^2

C <- matrix(rep(0, m*m), c(m,m)) # tranformation matrix

diag(C) <- 1

for(i in 1:3) C[3+i, i] <- 1

C <- rbind(C, c( rep(1, 3), rep(0,3)) )

V <- C %*% V0 %*% t(C) # transformed matrix

mu <- as.vector(C %*% mu0) # expected values

19Let us remind that this does not imply we believe that the angles could be negative or larger than
180◦: it is just a trick to have a pdf that is practically flat between 0 and 180◦. The trick allows us to use
the normal multivariate formulae of reconditioning. Obviously, one has to check that the final results are
consistent with our assumptions and that the tails of the Gaussian posterior distributions are harmless, as
it is the case in our example.
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out <- norm.mult.cond(mu, V, c(NA, NA, NA, 58, 73, 54, 180) )

angles <- marginal.norm(out$mu, out$V, rep(1,3))

And these are, finally, the results, shown as an R session:

> angles$mu

[1] 56.33335 71.33329 52.33336

> ( sigma.angles <- sqrt(diag(angles$V)) )

[1] 1.63299 1.63299 1.63299

> ( corr <- angles$V / outer(sigma.angles, sigma.angles) )

[,1] [,2] [,3]

[1,] 1.0000000 -0.4999976 -0.4999976

[2,] -0.4999976 1.0000000 -0.4999976

[3,] -0.4999976 -0.4999976 1.0000000

As we see, we get the same results obtained above, with the advantage that we can now
change the experimental resolutions of the individual measurement. Or we can modify the
model, in order to include the effect of common systematic, though limited to offset type,
exercise left to the reader.

10 Fitting linear models to data, with ‘known’ standard de-
viations on the y axes

As a last example, let us see how simple fits can be described in terms of conditioned normal
multivariates. ‘Simple’ does not mean here linear fits, because even a realistic model to fit
a straight line through data points is not that ‘simple’, if we are interested to infer also
the standard deviations(s) describing the errors and we consider errors on both axes (see
Ref. [7], from which Fig. 12 has been taken). On the other hand, also fitting high order
polynomials can be considered ‘simple’, under the same assumptions.

The meaning of Fig. 12 is that for each data point we have three uncertain quantities:
the true value of x (“µxi

”), the observed xi and the observed yi, while the true value µxi

θ

µxi

xi

µyi

yi

[ for each i ]

Figure 12: Graphical representation of the model in term of a Bayesian network. [7]
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µy1
µy2

µy3

y1 y2 y3

Figure 13: Linear fit to data point under usual simplifications (see text).

is deterministically related to µxi
and to the model parameters. So, for n data points the

‘really’ dimensionality of the problem (i.e. not taking into account the µyi) is 3 × n + np,
where np is the number of parameters. The inference on the parameters θ is the performed
conditioning on all x and y and marginalizing on µx.

A usual simplification is to ignore the errors on the x values, making then µyi deter-
ministically on xi and θ. Or, if we like, we can see each yi caused by the corresponding xi
and the set of parameters θ. Assuming a normal error distribution with known standard
deviations, linear and quadratic models can be described as

Yi ∼ N (c+mxi, σi) (linear) (114)

Yi ∼ N (a+ b xi + c x2i , σi) (quadratic) (115)

and then expanded to all possible models of the kind

Yi ∼ N (β1 g1(xi) + β2 g2(xi) + · · · , σi) , (116)

where g1(), g2() and so on are mathematical functions of xi not containing free parameters.20

It is then rather clear that under these assumptions the problem can be treated using the
properties of the multivariate normal distributions.

The general model of Fig. 12 becomes, for the first three data points, that of Fig. 13.
The variables of our problem are then, indicating them with Zi

Z1 = c (117)

Z2 = m (118)

Z3 = Y1 = c+ x1 m+ e1 (119)

Z4 = Y2 = c+ x2 m+ e2 (120)

Z5 = Y3 = c+ x3 m+ e3 (121)

20To make it even more clear, in the case of the quadratic model we have: β1 = a, β2 = b and β3 = c;
g1(xi) = 1, g2(xi) = xi and g3(xi) = x2

i .
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Figure 14: Points to be fitted by a straight line. Our task is to infer the line parameters
and to make previsions about future measurements at the x points indicated by the dashed
vertical lines (0, 8 and 10). Note that no “uncertainty bars” have been drawn around the
points, since the points are certain(!). What are uncertain are instead slope and intercept
of the model.

and so on.
Our usual transformation matrix transformation for the case of three data points is

then21

C =













1 0 0 0 0
0 1 0 0 0
1 x1 1 0 0
1 x2 0 1 0
1 x3 0 0 1













. (122)

10.1 Numerical example with 5 ‘data points’ and 3 previsions

As numeric example let us consider (see Fig. 14) the five x values x <- 2:6, in correspon-
dence of which we have ‘observed’ the y values y <- c(7.0, 9.5, 11.8, 12.9, 14.8),

21In the case of a parabolic fit we would have instead

C =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 x1 x2

1 1 0 0
1 x2 x2

2 0 1 0
1 x3 x2

3 0 0 1

















and so on for higher order polynomials.
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in fact simulated by the command
> y <- round( 3 + 2*x + rnorm(length(x), 0, 0.5), 1)

Our true values of the parameters are indeed c = 3 and m = 2, while the standard devi-
ations describing the errors ei are all equal to 0.5. Moreover we consider another three
x values (0, 8 and 10), about which we are interested in making predictions. They are
indicated in Fig. 14 by vertical dashed lines.

Having set up the problem, here is how we construct the initial diagonal matrix in R,
assigning very ‘uninformative priors’ to the fit parameters.22

x <- 2:6 # x (’predictors’)

y <- c(7.0, 9.5, 11.8, 12.9, 14.8) # observed y

x.f <- c(8, 10, 0) # x of new (’future’) measurements

cm.priors <- c(0,0); sigma.priors <- c(100,100) # priors about c and m

sy <- 0.5 # standard deviation of Y values

n.points <- 8 # number of points (5 data + 3 predictions)

mu0 <- c(cm.priors, rep(0,n.points))

sigma <- c(sigma.priors, rep(sy, n.points))

m <- n.points + 2 # dimensionality of the problem (points + parameters)

V0 <- matrix(rep(0, m*m), c(m,m)) # diagonal matrix

diag(V0) <- sigma^2

Then we build up the transformation matrix C and calculate the covariance matrix of the
ten quantities of the problem (2 parameters, 5 data points and 3 points about which we
want to make predictions):

C <- matrix(rep(0, m*m), c(m,m)) # tranformation matrix

diag(C) <- 1

C[3:m, 1] <- 1

C[3:m, 2] <- c(x, x.f)

V <- C %*% V0 %*% t(C) # transformed matrix

mu <- as.vector(C %*% mu0) # expected values

Here are the quantities of interest

> sigma

[1] 1e+03 1e+03 5e-01 5e-01 5e-01 5e-01 5e-01 5e-01 5e-01 5e-01

> C

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 0 0 0 0 0 0 0 0 0

[2,] 0 1 0 0 0 0 0 0 0 0

[3,] 1 2 1 0 0 0 0 0 0 0

[4,] 1 3 0 1 0 0 0 0 0 0

[5,] 1 4 0 0 1 0 0 0 0 0

22The priors of the numerical examples are c = 0 ± 100 and m = 0 ± 100, uncorrelated. Not that if
the standard deviations of the priors are ‘quite large’ then numerical instabilities arise because the results
depend on the sum of very large numbers with small ones (the most sensitive of the two is σ0(m) which
starts to create problems above 600, while σ0(c)) is quite harmful up to more than 2000.
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[6,] 1 5 0 0 0 1 0 0 0 0

[7,] 1 6 0 0 0 0 1 0 0 0

[8,] 1 8 0 0 0 0 0 1 0 0

[9,] 1 10 0 0 0 0 0 0 1 0

[10,] 1 0 0 0 0 0 0 0 0 1

> mu

[1] 0 0 0 0 0 0 0 0 0 0

> sigma.V <- sqrt(diag(V))

> round( V /outer(sigma.V,sigma.V), 4 )

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.0000 0.0000 0.4472 0.3162 0.2425 0.1961 0.1644 0.1240 0.0995 1.0000

[2,] 0.0000 1.0000 0.8944 0.9487 0.9701 0.9806 0.9864 0.9923 0.9950 0.0000

[3,] 0.4472 0.8944 1.0000 0.9899 0.9762 0.9648 0.9558 0.9430 0.9345 0.4472

[4,] 0.3162 0.9487 0.9899 1.0000 0.9971 0.9923 0.9878 0.9806 0.9754 0.3162

[5,] 0.2425 0.9701 0.9762 0.9971 1.0000 0.9989 0.9968 0.9927 0.9895 0.2425

[6,] 0.1961 0.9806 0.9648 0.9923 0.9989 1.0000 0.9995 0.9973 0.9952 0.1961

[7,] 0.1644 0.9864 0.9558 0.9878 0.9968 0.9995 1.0000 0.9992 0.9979 0.1644

[8,] 0.1240 0.9923 0.9430 0.9806 0.9927 0.9973 0.9992 1.0000 0.9997 0.1240

[9,] 0.0995 0.9950 0.9345 0.9754 0.9895 0.9952 0.9979 0.9997 1.0000 0.0995

[10,] 1.0000 0.0000 0.4472 0.3162 0.2425 0.1961 0.1644 0.1240 0.0995 1.0000

where the last output shows the initial correlation matrix. All variables are correlated, with
some exceptions. In fact intercept and slope aren’t, as it should be, and the prediction at
x = 0 (i.e. Z10) has zero correlation with the slope (its value is not influenced by the slope),
while it is 100% correlated with the intercept.

The inference on the model parameters is finally obtained conditioning on the observed
values of y (this time we use the parameter full=FALSE to avoid large outputs):23

> ( out <- norm.mult.cond(mu, V, c(NA, NA, y, NA, NA, NA), full=FALSE ) )

$mu

[1] 3.599857 1.900031 18.800107 22.600169 3.599857

$V

[,1] [,2] [,3] [,4] [,5]

[1,] 0.44997876 -0.09999521 -0.34998295 -0.5499734 0.44997876

[2,] -0.09999524 0.02499899 0.09999666 0.1499946 -0.09999524

[3,] -0.34998318 0.09999669 0.69999034 0.6499837 -0.34998318

[4,] -0.54997366 0.14999467 0.64998368 1.1999730 -0.54997366

[5,] 0.44997876 -0.09999521 -0.34998295 -0.5499734 0.69997876

from which we extract standard uncertainties and correlation coefficient:

> ( sigmas <- sqrt( diag(out$V) ) )

23As we can see from the output, the resulting covariance matrix is not exactly symmetrical, due to numeric
effects. More stable results can be achieved replacing inside norm.mult.cond() the function solve() by
chol2inv(chol(V22)), which makes used of the so called Choleski Decomposition. For example out$V[2,1]
and out$V[1,2], respectively equal to −0.09999521 and −0.09999524, would become identical and equal to
−0.09999498. Nevertheless since this check has been done only at this stage of the paper and being the
result absolutely negligible, the original matrix inversion function solve() has been used also through all
this section.
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1] 0.6708046 0.1581107 0.8366543 1.0954328 0.8366473

> ( corr <- out$V / outer(sigmas, sigmas) )

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 -0.9428053 -0.6235982 -0.7484450 0.8017770

[2,] -0.9428055 1.0000000 0.7559242 0.8660217 -0.7559198

[3,] -0.6235986 0.7559244 1.0000000 0.7092032 -0.4999870

[4,] -0.7484454 0.8660219 0.7092032 1.0000000 -0.6000863

[5,] 0.8017770 -0.7559195 -0.4999867 -0.6000860 1.0000000

Our resulting parametric inference on intercept and slope is then

c = 3.60 ± 0.67 (123)

m = 1.90 ± 0.16 (124)

ρ(c,m) = −0.94 , (125)

with the correlation coefficient far from being negligible, and in fact crucial when we want
to evaluate other quantities that depend on c and m, as we shall see in a while.

We can check our result, at least as far expectations are concerned, against what we
obtain using the R function lm(), based on ‘least squares’:24

> lm(y ~ x)

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

3.6 1.9

The data points, together with the best fit line and the intercept are reported in Fig. 15.
The expectations about the future measurements are instead

Z8 = y(x = 8) = 18.80 ± 0.84 (126)

Z9 = y(x = 10) = 22.60 ± 1.10 (127)

Z10 = y(x = 0) = 3.60 ± 0.84 , (128)

with interesting correlations:

• ρ[Z8, Z9] = 0.71, positive and quite high, because their are “on the same side” of the
’experimental’ points and quite close to each other: due to the uncertainty about the
slope they could be both smaller or larger than expected.

• ρ[Z8, Z10] = −0.50, ρ[Z9, Z10] = −0.60 negative for the opposite reason, and in abso-
lute value increasing with the distance.

Note how the uncertainty on Z8 and Z10 are the same, because the corresponding x values
(8 and 0, respectively) are equally distant, from the barycenter the data along the x axis.
Instead, σ(Z10) is different from σ(c) because they are not the same thing(!): the uncertainty
is a parameter of the model, while Z10 ≡ y(x = 0) is what we would measure at x = 0 on
the base of the information provided by the previous measurements (and our assumptions
about the model).

24Under some conditions that usually hold in ‘routine’ applications, the ‘best estimates’ of the parameters
turn to be practically equal to those obtained using probability theory (see e.g. [5].)
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Figure 15: Result of the linear fit, including the intercept and it uncertainty. The prediction
of possible observations at x = 8 and x = 10 are also reported, avoiding instead that at
x = 0 because it overlaps with the intercept.

10.2 Uncertainty about µy(x) Vs uncertainty about y(x)

The expected y’s at different values of x are simply the values c+mx calculated at different
x, as it is easy to check
> out$mu[1] + out$mu[2]*x.f

[1] 18.800001 22.600001 3.599999

More intriguing are the uncertainties. Indeed they get a contribution from the uncertainty
of the true value µy(x) and that due to the experimental error around it.

As far as the true values, in our simplified model they are given by µy(xfi) = c+xfi m,
which we can rewrite in matrix form as





µy(xf1)
µy(xf2)
µy(xf3)



 =





1 xf1
1 xf2
1 xf3



 ·
(

c
m

)

(129)

Here are then their expected values and covariance matrix directly in R

> ( C.mu.f <- cbind(rep(1,3), x.f) )

x.f

[1,] 1 8

[2,] 1 10

[3,] 1 0
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> ( mu.f <- as.vector( C.mu.f %*% out$mu[1:2] ) )

[1] 18.800107 22.600169 3.599857

> ( V.mu.f <- C.mu.f %*% out$V[1:2,1:2] %*% t(C.mu.f) )

[,1] [,2] [,3]

[1,] 0.4499903 0.6499837 -0.3499832

[2,] 0.6499836 0.9499730 -0.5499737

[3,] -0.3499829 -0.5499734 0.4499788

> ( sigma.mu.f <- sqrt(diag(V.mu.f)) )

[1] 0.6708132 0.9746656 0.6708046

We have then

µy(x = 8) = 18.8 ± 0.67 (130)

µy(x = 10) = 22.6 ± 0.97 (131)

µy(x = 0) = 3.60 ± 0.67, (132)

with µy(x = 0) exactly equal to the intercept. And again, the uncertainties on µy(x = 8)
and µy(x = 10) are the same, and then equal to σ(c).25

The reason while the uncertainties about y(x) are larger than those of µy(x), for the
same x, is also easy to understand. To the uncertainty about the true value we have to add
that due to the experimental error. And in a linear model like ours the two contributions
add in quadrature, as it easy to check

while µy(x = 8) and µy(x = 10) have the standard uncertainty slightly smaller than
those of the corresponding y(x = 8) and y(x = 10). To obtain these latter standard
uncertainties it is enough to add quadratically the standard deviation of the experimental
error:

> sqrt(sigma.mu.f^2 + sy^2)

[1] 0.8366542 1.0954328 0.8366473

The effect of the experimental errors is also to dilute the correlations, which among the
true values are

25Under the conditions we are considering here, one can prove that

σ2[µy(x)] =
σ2

y

n
+

(x− x)2

x2 − x
·
σ2

y

n
,

with the uncertainties depending on the absolute value of x− x and on the ‘lever arm’ of the experimental
date (the larger is their ‘momentum of inertia’, that is x2 − x, the better is the determination of the slope
and then more accurate the extrapolations. In our case this expression gives
> var.x <- sum(x^2)/n - mean(x)^2

> sqrt(sy^2/n + (x.f-mean(x))^2/var.x*sy^2/n )

[1] 0.6708204 0.9746794 0.6708204

practically equal to the results got playing with covariance matrices.
Note that above formula takes into account the correlation coefficient between c and m. Without it we

would get
> sqrt(sigmas[1]^2 + x.f^2*sigmas[2]^2)

[1] 1.4317521 1.7175207 0.6708046

with σ[µy(x = 8)] and σ[µy(x = 10)] wrong by about a factor 2 (while σ[µy(x = 0)] is right ‘by chance’,
being equal to the intercept). (The slight numeric difference at the 5th decimal digit is due to the effect of
the prior, not taken into account in the the above formula.)
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> V.mu.f / outer(sigma.mu.f, sigma.mu.f)

[,1] [,2] [,3]

[1,] 1.0000000 0.9941347 -0.7777671

[2,] 0.9941347 1.0000000 -0.8411826

[3,] -0.7777666 -0.8411821 1.0000000

10.3 Follows up

Also in this case one do several other instructive test, which we read to the reader. Here is
a partial list.

• Impose a precise value for the intercept and the slope, to see how the other parameter
changes. This can be done, for example for the intercept (c = 3) with the following
conditioning:
> out <- norm.mult.cond(mu, V, c(3, NA, y, NA, NA, NA), full=FALSE)

(Quick test: what would you expect for Z10?)

• Do the same test, but using the previous out$V and out$mu.

• Use some informative priors for c, m or both.

• Make a new fit on another 5 data points generated from the same model, using as
priors for c and m the result of the previous inference (including the correlation!).

• Make a global fit on the 10 data points of the two datasets (starting from uninforma-
tive priors) and compare with the result of the two inferences in sequence.

Then is the question of estimating the common standard deviation of the model from the
data. As told above, this cannot be done with the tools we are playing in this paper because
the problem is not linear. Certainly a rough estimate can be done by the residuals, but if
the number of data points is ‘small’ the uncertainty on the estimated sigma do not only
affect this parameter, but also the joint pdf of c and m, which is longer normal bivariate
(with consequences on the pdf’s of the previsions). The problem has to be solved using a
model without short cuts and making the integrals numerically or by Markov Chain Monte
Carlo, issues which are beyond the aim of this paper. (And pay attention to covariance
matrices obtained by linearization! [8])

11 Propagation of evidence – some general remarks

Let us take again the diagrams (‘graphs’) which describe two observations from the same
true value and one observation resulting from a true value and a systematic effect. They
are show again in Fig. 16, labelled with names related to the direction of the ‘causation’
arrows, which diverge from a single node or converge towards a single node. The physical
interpretation is that, as we have already seen, of a single cause producing two effects, or
two causes responsible of a single effect, respectively. Below each graph we have also added
the covariance matrix which characterize it, where σ2|1 = σ[X2|X1

], and so on.

For completeness we have added in the figure also graph in which the effect X2 is itself
cause of another effect (serial connection). Sticking to the simple linear models we are
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X1

X2 X3

X1 X2

X3

X1

X2

X3

(Divergent) (Convergent) (Serial)







σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2|1 σ2

1

σ2
1 σ2

1 σ2
1 + σ2

3|1











σ2
1 0 σ2

1

0 σ2
2 σ2

2

σ2
1 σ2

2 σ2
1 + σ2

2 + σ2
3|1,2











σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
2|1 σ2

1 + σ2
2|1

σ2
1 σ2

1 + σ2
2|1 σ2

1 + σ2
2|1 + σ2

3|2







Figure 16: Basics causal connections among nodes of a belief network.

dealing with, the transformation rules of the graph characterize by a serial connection are
the following:

X1 = v1 (133)

X2 = v2 = v1 + e1 (134)

X3 = v2 + e2 = v1 + e1 + e2 (135)

from which the joint covariance matrix reported below the diagram follows, with σ2|1 =
σ[X2|X1

= σe1 and σ3|2 = σ[X3|X2
= σe2 .

Analyzing the covariance matrix of the graphs with divergent and serial connections
we see that the variables are fully correlated: any evidence on any of the three variables
changes the pdf of the other two.

Instead, in the convergent graph X1 and X2 are independent. Indeed, why should the
physical quantity we are going to measure should depend on a calibration constant of our
detector? And the other way around.26 But we have already seen in the examples that if
we observe X3, then X1 and X2 become anticorrelated.

The effect of the propagation of a condition (‘instantiation’) of one variable to the rest
of the network is very interesting also for its practical applications, because it allows to
decompose a large network in subnetworks.

11.1 Diverging connection

We have already seen in the numerical examples of subsection 5.1 that if we condition on a
value of X1, then X2 and X3 become independent, and the physical reason was very easy
to be understood. This is a general property of divergent graphs, usually stated referring

26In reality this is not impossible, but definitely unusual
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Figure 17: Divergent connection with ‘evidence’ (indicated by the symbol ‘
√
’) got in some

of the variables (‘instantiated nodes’). The dashed arrows show the ‘flow of evidence’, i.e.
how the information flows in the ‘network’.

to parents and children: in a divergent graph, if a parent is instantiated, the children
become independent, i.e. evidence does not flow any longer from one child to the other (‘an
instantiated parent blocks evidence flow among children’ – we assume that there is no other
connection among them!). The possible flows of evidence are reported in figure 17.

Let us make the exercise to calculate the covariance matrix of X2 and X3 given X1.
To use Eq. 40 we need to rewrite the three variables in a compact form, thus defining
Y 1 = {X1} and Y 2 = {X2, X3}. In this case it is convenient to rewrite (40) swapping the
indices, thus obtaining:

V
[

Y 2|Y 1

]

= V 22 − V 21 V
−1
11 V 12 , (136)

with

V 22 =

(

σ2
1 + σ2

2|1 σ2
1

σ2
1 σ2

1 + σ2
3|1

)

(137)

V 21 =

(

σ2
1

σ2
1

)

(138)

V 11 = σ2
1 (139)

V −1
11 =

1

σ2
1

(140)

V 12 =
(

σ2
1 σ2

1

)

(141)

It follows

V 21 V
−1
11 V 12 =

(

σ2
1

σ2
1

)

· 1

σ2
1

·
(

σ2
1 σ2

1

)

=

(

σ2
1 σ2

1

σ2
1 σ2

1

)

(142)
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Figure 18: As Fig. 17 for a converging connection.

and hence

V
[

Y 2|Y 1

]

=

(

σ2
2|1 0

0 σ2
1 + σ2

3|1

)

(143)

As expected, the exercise shows that X2 and X3 have become conditionally independent.

11.2 Converging connection

Instead, in the case of a converging connection, the parents are initially independent. That
is the evidence on either parent, or on both, can influence the child(s), but cannot be
transmitted from one parent to the other, as depicted in the graphs of figure 18. Let us
make the exercise of instantiating the child, X3.

In this case the convenient partition is Y 1 = {X1,X2} and Y 2 = {X3}, and the
conditional covariance matrix is obtained applying directly Eq. (40):

V
[

Y 1|Y 2

]

= V 11 − V 12 V
−1
22 V 21 , (144)

with

V 11 =

(

σ2
1 0
0 σ2

2

)

(145)

V 12 =

(

σ2
1

σ2
2

)

(146)

V 22 = σ2
1 + σ2

2 + σ2
3|1,2 (147)

V −1
22 =

(

σ2
1 + σ2

2 + σ2
3|1,2

)−1
(148)

V 21 =
(

σ2
1 σ2

2

)

(149)
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Figure 19: As Fig. 17 for a serial connection.

It follows

V 12 V
−1
22 V 21 =





σ2
1

σ2
2



 · 1

σ2
1 + σ2

2 + σ2
3|1,2

·
(

σ2
1 σ2

2

)

=
1

σ2
1 + σ2

2 + σ2
3|1,2

·





σ4
1 σ2

1σ
2
2

σ2
1σ

2
2 σ4

2





(150)

and hence

V
[

Y 1|Y 2

]

=











σ2

1
·(σ2

2
+σ2

3|1,2
)

σ2

1
+σ2

2
+σ2

3|1,2

− σ2

1
σ2

2

σ2

1
+σ2

2
+σ2

3|1,2

− σ2

1
σ2

2

σ2

1
+σ2

2
+σ2

3|1,2

σ2

2
·(σ2

1
+σ2

3|1,2
)

σ2

1
+σ2

2
+σ2

3|1,2











(151)

As expected, the exercise shows that X1 and X2 become anticorrelated, although the cor-
relation coefficient has not a simple intuitive explanation.

11.3 Serial connection

Let us repeat the exercise for the serial connection, depicted in figure 19. The convenient
partition is now Y 1 = {X1,X3} and Y 2 = {X2}. And these are the details

V 11 =





σ2
1 σ2

1

σ2
1 σ2

1 + σ2
2|1 + σ2

3|2



 (152)

V 12 =

(

σ2
1

σ2
1 + σ2

2|1

)

(153)

V 22 = σ2
1 + σ2

2|1 (154)

V −1
22 =

(

σ2
1 + σ2

2|1

)−1
(155)

V 21 =
(

σ2
1 σ2

1 + σ2
2|1

)

(156)
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It follows

V 12 V
−1
22 V 21 =

(

σ2
1

σ2
1 + σ2

2|1

)

· 1

σ2
1 + σ2

2|1

·
(

σ2
1 σ2

1 + σ2
2|1

)

=
1

σ2
1 + σ2

2|1

·







σ4
1 σ2

1 · (σ2
1 + σ2

2|1)

σ2
1 · (σ2

1 + σ2
2|1) (σ2

1 + σ2
2|1)

2






(157)

and hence

V
[

Y 1|Y 2

]

=





σ2

1
σ2

2|1

σ2

1
+σ2

2|1

0

0 σ2
3|2



 (158)

As expected, the exercise shows that X1 and X3 become now independent and the uncer-
tainty about X3 is simply σ3|2. And also in σ[X1|X2

] we recognize a familiar pattern (see
also footnote 15):

1

σ2[X1|X2
]

=
1

σ2
1

+
1

σ2
2|1

. (159)
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