
ar
X

iv
:2

01
2.

04
45

5v
1 

 [
st

at
.M

E
] 

 7
 D

ec
 2

02
0

Ratio of counts vs ratio of rates

in Poisson processes

Giulio D’Agostini
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Abstract

The often debated issue of ‘ratios of small numbers of events’ is approached
from a probabilistic perspective, making a clear distinction between the predic-
tive problem (forecasting numbers of events we might count under well stated
assumptions, and therefore of their ratios) and inferential problem (learning
about the relevant parameters of the related probability distribution, in the
light of the observed number of events). The quantities of interests and their
relations are visualized in a graphical model (‘Bayesian network’), very useful
to understand how to approach the problem following the rules of probability
theory. In this paper, written with didactic intent, we discuss in detail the basic
ideas, however giving some hints of how real life complications, like (uncertain)
efficiencies and possible background and systematics, can be included in the
analysis, as well as the possibility that the ratio of rates might depend on some
physical quantity. The simple models considered in this paper allow to obtain,
under reasonable assumptions, closed expressions for the rates and their ratios.
Monte Carlo methods are also used, both to cross check the exact results and
to evaluate by sampling the ratios of counts in the cases in which large number
approximation does not hold. In particular it is shown how to make approxi-
mate inferences using a Markov Chain Monte Carlo using JAGS/rjags. Some
examples of R and JAGS code are provided.

1 Introduction

Many measurements in Physics are based on counting events belonging to a well
defined ‘class’. They could be the number of electric pulses, registered within a given
time interval, exceeding a properly set threshold, as in a Geiger counter; or the number
of events observed, for a given integrated luminosity, in a region defined by properly
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chosen ‘cuts’ in the multi-dimensional space defined on the basis of geometrical and
kinematic variables of the final state particles, a typical problem in Particle Physics.
However, the aim of physicists is not limited in counting how many events will occur
in each ‘class’ satisfying some detector related criteria, but rather in inferring the
physical quantities which are related to them, as the intensity of radioactivity or
the production rate of a given physical final state resulting from the collision of two
particles, to continue with our examples. This also implies that the ‘experimentally
defined class’ (‘being inside cuts’) is only a proxy for the ‘physical class’ of interest,
that might be a radioactive particle in a given energy range, or a particular final state
resulting from a collision. This is in analogy with the case when we are interested
in counting the number of individuals of a population infected by a specific agent
using as a proxy the number of individuals tagged ‘positive’ by suitable tests, by
their nature imperfect.1

If we change the conditions of the experiment, that is, going on with our examples,
we place the Geiger counter in a different place, or we vary the initial energy of the
colliding particles (or we tag somehow the final state), we usually register different
numbers of events in our reference class. This could just be due to statistical fluc-
tuations. But it could (also) be due to a variation of the related physical quantity.
It is then crucial, as well understood, to associate an uncertainty to the ‘measured’
variation.

If the observed numbers are ‘large’, things get rather easy, thanks to the Gaussian
approximation of the probability distributions of interest. When, instead, the num-
bers are ‘small’ the question can be quite troublesome (see, e.g., Refs. [2, 3, 4, 5, 6, 7]).
For example, Ref. [3] focus on the “errors on ratios of small numbers of events”, lead-
ing the readers astray: we are usually not interested in the ratios of ‘counts’, but
rather on the ratios of radioactivity levels or of production rates, and so on.

The aim of this paper is to review these questions following consistently the rules
of probability theory. The initial, crucial point is to make a clear distinction between
the empirical observations (the numbers of event of a given ‘experimentally defined
class’) and the related physical quantities we are interested to infer, although in a
probabilistic way. We start playing with the Poisson distribution in Sec. 2, referring
to Appendix A for a reminder of how this distribution is related not only to the
binomial (as well known), but also to other important distributions via the Poisson
process, which has indeed its roots in the Bernoulli process. In Sec. 3 we show how to
use the Bayes’ rule to infer Poisson λ’s from the observed number of counts and then
how to get the probability distribution of their ratio ρ making an exact propagation
of uncertainties, that is f(λ1/λ2) from f(λ1) and f(λ2). Then in Sec. 4 we move to

1This problem has been treated in much detail in Ref. [1], taking cue from questions related to
the Covid-19 pandemic.
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the inference of intensities of the Poisson processes (or ‘rates’ r, in short), related to
λ by λ=r·T , with T being the ‘observation time’ – it can be replaced by ‘integrated
luminosity’ or other quantities to which the Poisson parameter λ is proportional.
In the same section the ‘anxiety-inducing’ [8] question of the priors, assumed ‘flat’
until Sec. 4.1, is finally tackled and the conjugate priors are introduced, showing,
in particular, how to apply them in sequential measurements of the same rate. The
technical question of getting the probability distribution of the ratio of rates is tackled
in Sec. 5. Again, closed formulae are ‘luckily’ obtained, which can be extended to
the more general problem of getting the probability density function (pdf), and its
summaries, of a ratio of Gamma distributed variables.

When the game seems at the end, in Sec. 6 we modify the ‘graphical’ model (indeed
a visualization of the underlying logical causal model) and restart the analysis, this
time really inferring directly ρ, as it will be clear. The implications of the different
models and of the priors appearing in each of them will be analyzed with some care.
Finally, in Sec. 7 the same models are analyzed making use of Markov Chain Monte
Carlo (MCMC) methods, exploiting JAGS. The purpose is twofold. First we want
to cross-check the exact results obtained in the previous section, although the latter
were limited to uniform priors of the ‘top parents’ of the causal model. Second
this allows not only to take into account more realistic priors, but also to enlarge
the models including efficiencies and background, for which examples of graphical
model are provided. Another interesting question, that is how to fit the ratio of rates
as a function of another physical question will be also addressed, showing how to
modify the causal model, but without entering into the details. The related issue
of ‘combining ratios’ is also discussed and it shows once more the importance of the
underlying model.

2 Predicting numbers of counts, their difference

and their ratio

The Poisson distribution hardly needs any introduction, beside, perhaps, that it can
be framed within the Poisson process, which has indeed its roots in the Bernoulli
process. This picture makes the Poissonian related to other important distributions,
as reminded in Appendix A, which can be seen as a technical preface to the paper.
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Using the notation introduced there, the Poisson probability function is given by2

f(x | λ) ≡ P (X=x | λ) =
λx

x!
· e−λ

{

0 < λ < ∞
x = 0, 1, . . . ,∞ (1)

and it quantifies how much we believe that x counts will occur, if we assume an exact
value of the parameter λ.3 As well known, expected value and standard deviation of
X are λ and

√
λ. The most probable value of X (‘mode’) is equal to the integer just

below λ (‘floor(λ)’) in the case λ is not integer. Otherwise is equal to λ itself, and
also to λ− 1 (remember that λ cannot be null).

If we have two independent Poisson distributions characterized by λ1 and λ2, i.e.

X1 ∼ Pλ1

X2 ∼ Pλ2
,

we ‘expect’ their difference D =X1−X2 ‘to be’ (λ1−λ2) ±
√
λ1 + λ2, as it results

from well known theorems of probability theory4 (hereafter, unless indicated oth-
erwise, the notation ‘xxx ± yyy’ stands for ‘expected value of the quantity ± its
standard uncertainty’ [9], that is the standard deviation of the associated probability
distribution).

The probability distribution ofD can be obtained ‘from the inventory of the values
of X1 and X2 that result in each possible value of D’, that is

P (D=d | λ1, λ2) ≡ f(d | λ1, λ2) =
∑

x1, x2

x1−x2=d

f(x1 | λ1) · f(x2 | λ2) . (2)

For example, in the case of λ1 = λ2 = 1, the most probable contributions to D are
shown in Tab. 1. For instance, the probability to get D = 0 sums up to 30.9%.
The probability decreases symmetrically for larger absolute values of the difference.

2I try, whenever it is possible, to stick to the convention of capital letters for the name of a variable
and small letters for its possible values. Exceptions are Greek letters and quantities naturally defined
by a small letter, like r for a ‘rate’.

3If, instead, we are uncertain about λ and quantify its uncertainty by the probability density
function f(λ | I), where I stands for our status of information about that quantity, the distribution
of the counts will be given by f(x |λ, I) =

∫∞

0
f(x |λ, I) · f(λ | I) dλ .

4In brief: the expected value of a linear combination is the linear combination of the expected
values; the variance of a linear combination is the linear combination of the variances, with squared
coefficients.
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X2

0 1 2 3 4 5

0 0 -1 -2 -3 -4 -5
[0.135335] [0.135335] [0.067668] [0.022556] [0.005639] [0.001128]

1 1 0 -1 -2 -3 -4
[0.135335] [0.135335] [0.067668] [0.022556] [0.005639] [0.001128]

2 2 1 0 -1 -2 -3
X1 [0.067668] [0.067668] [0.033834] [0.011278] [0.002819] [0.000564]

3 3 2 1 0 -1 -2
[0.022556] [0.022556] [0.011278] [0.003759] [0.000940] [0.000188]

4 4 3 2 1 0 -1
[0.005639] [ 0.005639] [0.002819] [0.000940] [0.000235] [0.000047]

5 5 4 3 2 1 0

[0.001128] [0.001128] [0.000564] [0.000188] [0.000047] [0.000009]

Table 1: Table of the most probable differences D=X1−X2 for λ1 = λ2 =1 (probability of
each entry in the table within square brackets).

Without entering into the question of getting a closed form of f(d | λ1, λ2),
5 it can be

instructive to implement Eq. (2), although in an approximate and rather inefficient
way, in a few lines of R code [11]:6

dPoisDiff <- function(d, lambda1, lambda2) {

xmax = round(max(lambda1,lambda2)) + 20*sqrt(max(lambda1,lambda2))

sum( dpois((0+d):xmax, lambda1) * dpois(0:(xmax-d), lambda2) )

}

This function is part of the code provided in Appendix B.1, which produces the plot of
Fig. 1, evaluating also expected value and standard deviation (indeed approximated
values, being xmax not too large).

Moving to the ratio of counts, numerical problems might arise, as shown in Tab. 2,
analogue of Tab. 1. In fact for rather small values of λ2 there is high chance (exactly

5Such a distribution is known in the literature as Skellam distribution [10] and it is available in
R [11] installing the homonym package [12]. The distribution of the differences corresponding to the
cases of Tab. 1 can be easily plotted by the following R commands, producing a bar plot similar to
that of Fig. 1,

library(skellam)

d = -5:5

barplot(dskellam(d,1,1), names=d, col=’cyan’)

6This function, hopefully having a didactic value, is not optimized at all and it uses the fact that
the R function dpois() returns zero for negative values of the variable.
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Figure 1: Distribution of the difference of counts resulting from two Poisson distributions with
λ1 = λ2 = 1.

X2

0 1 2 3 4 5

0 NaN 0 0 0 0 0
[ 0.135335] [0.135335] [0.067668] [0.022556] [0.005639] [0.001128]

1 Inf 1 1/2 1/3 1/4 1/5
[0.135335] [0.135335] [0.067668] [0.022556] [0.005639] [0.001128]

2 Inf 2 1 2/3 1/2 2/5
X1 [0.067668] [0.067668] [0.033834] [0.011278] [0.002819] [0.000564]

3 Inf 3 3/2 1 3/4 3/5
[0.022556] [0.022556] [0.011278] [0.003759] [0.000940] [0.000188]

4 Inf 4 2 4/3 1 4/5
[0.005639] [ 0.005639] [0.002819] [0.000940] [0.000235] [0.000047]

5 Inf 5 5/2 5/3 5/4 1
[0.001128] [0.001128] [0.000564] [0.000188] [0.000047] [0.000009]

Table 2: Table of the most probable ratios X1/X2 for λ1=λ2=1. ‘NaN’ and ‘Inf’ are the R
symbols for undefined (‘not a number’) and infinity, resulting from a vanishing denominator.
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the probability of getting X2 = 0) that the ratio results in an undefined form or an
infinite, reported in the table using the R symbols NaN (‘not a number’) and Inf,
respectively. As we can see, we have now quite a variety of possibilities and the
probability distribution of the ratios is rather irregular. For this reason, in this case
we evaluate it by Monte Carlo methods using R.7 Figure 2 shows the distributions
of the ratio for λ1 = λ2 = 1, 2, 3. The figure also reports the probability to get an
infinite or an undefined expression, equal to P (X2 = 0 | λi). When λ2 is very large
the probability to get X2 = 0, and therefore of X1/X2 being equal to Inf or NaN,
vanishes. But the distribution of the ratio remains quite ‘irregular’, if looked into
detail, even for λ1 ‘not so small’, as shown in Fig. 3 for the cases of λ1=5, 10, 20, 50
and λ2=1000.

However we should not be worried about this kind of distributions, which are not
more than entertaining curiosities, as long as physics questions are concerned. Why
should we be interested in the ratio of counts that we might observe for different λ’s?
If we want to get an idea of how much the counts could differ, we can just use the
probability distribution of their possible differences, which has a regular behavior,
without divergences or undefined forms.

The deep reason for speculating about “ratios of small numbers of events” and
their “errors”[3] is due to a curious ideology at the basis of a school of Statistics
which limits the applications of Probability Theory. Indeed, we, as physicists, are
often interested in the ratio of the rates of Poisson processes, that is in ρ = r1/r2,
being this quantity related to some physical quantities having a theoretical relevance.
Therefore we aim to learn which values of ρ are more or less probable in the light
of the experimental observations. Stated in this terms, we are interested in evalu-
ating ‘somehow’ (not always in closed form) the probability density function (pdf)
f(ρ | x1, T1, x2, T2, I), given the observations of x1 counts during T1 and of x2 counts
during T2 (and also conditioned on the background state of knowledge, generically
indicated by I). But there are statisticians who maintain that we can only talk about
the probability of X counts, assuming λ, and not of the probability distribution of
λ having observed X = x, and even less of λ1/λ2 (same as r1/r2, if T1 = T2) having
observed x1 and x2 counts.8

7The core of the R code is given, for the case of λ1 = λ2 = 1, by

lambda1 = lambda2 = 1; n = 10^6

x1 = rpois(n,lambda1)

x2 = rpois(n,lambda2)

rx = x1/x2

rx = rx[!is.nan(rx) & (rx != Inf)]

barplot(table(rx)/n, col=’cyan’, xlab=’x1/x2’, ylab=’f(x1/x2)’)

8Ref. [3] is a kind of ‘masterpiece’ of the kind of convoluted reasoning involved. For example,
the paper starts with the following incipit (quote marks original):
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Figure 2: Monte Carlo distribution of the ratio of counts resulting from two Poisson distribu-
tions with λ1 = λ2.
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Figure 3: Monte Carlo distribution of the ratio of counts resulting from two Poisson distribu-
tions with λ1 = 5, 10, 20, 50 and λ2 = 1000.
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If, instead, we follow an approach closer to that innate in the human mind, which
naturally attaches the concept of probability to whatever is considered uncertain [16],
there is no need to go through contorted reasoning. For example, if we observe X = 1,
then we tend to believe that this effect has been caused more likely by a value of λ
around 1 rather than around 10 or 20, or larger, although we cannot rule out with
certainty such values. Similarly, sticking to the observation of X = 1, we tend to
believe to λ ≈ 1 much more than to λ ≈ 10−2, or smaller. In particular, λ = 0 is
definitely ruled out, because it could only yield 0 counts (this is just a limit case, since
the Poisson λ is defined positive).

It is then clear that, as far as the ratio of λ1/λ2 is concerned, there are no di-
vergences, no matter how small the numbers of counts might be, obviously with two
exceptions. The first is when X2 is observed to be exactly 0 (but in this case we
could turn our interest in λ2/λ1, assuming X1 > 0). The second is when X2 is not
zero, but there could be some background, such that r2 = 0 is not excluded with
certainty [13, 17]. The effect of possible background is not going to be treated in
detail in this paper, and only some hints on how to include it into the model will be
given.

3 Inferring Poisson λ’s and then deducing their

ratio

We are now faced to the inference of r1 and r2 from the observed numbers of counts
and the observation times T1 and T2. For simplicity we start assuming T1 = T2, so
that we can focus on λ1, λ2 and their ratio. The extension to the general case will
be straightforward, as we shall see from Sec. 4 on.

When the result of the measurement of a physical quantity is published as R = R0±σ0

without further explanation, it is implied that R is a gaussian-distributed measurement

with mean R0 and variance σ2
0 . This allows one to calculate various confidence intervals

of given “probability”, i.e., the “probability” P that the true value of R is within a

given interval.

However, nowhere in the paper is explained why probability is within quote marks. The reason is
simply because the authors are fully aware that frequentist ideology, to which they overtly adhere,
refuses to attach the concept of probability to true values, as well as to model parameters, and so
on (see e.g. Ref. [13]). But authoritative statements of this kind might contribute to increase the
confusion of practitioners [14], who then tend to take frequentist ‘confidence levels’ as if they were
probability values [15].
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3.1 Inference of λ given x, assuming X ∼ Pλ

The probability density function of λ is evaluated from the so called Bayes’ rule:

f(λ | x) ∝ f(x | λ) · f0(λ) (3)

∝ λx · e−λ

x!
· f0(λ) , (4)

where f0(λ) is the so called ‘prior’.9 Assuming for the moment a ‘flat’ prior, that is
f0(λ) = k, and neglecting all factors non depending on λ, we get

f(λ | x) ∝ λx · e−λ (5)

∝ λ(x+1)−1 · e−λ , (6)

in which we recognize a Gamma pdf with α = x + 1 and β = 1 (see Appendix A –
for a detailed derivation see e.g. Ref. [13]), and therefore

f(λ | x) =
1

Γ(x+ 1)
· λ(x+1)−1 · e−λ (7)

=
λx · e−λ

x!
. (8)

Expected value, standard deviation and mode are x+ 1,
√
x+ 1 and x, respectively.

The advantage of having expressed the distribution of λ in terms of a Gamma is that
we can use the probability distributions made available from programming languages,
e.g. in R, which usually include also useful random generators (e.g. rgamma() in R).
For example, making use of the R function dgamma() we can draw Fig. 4, which shows
f(λ | x), for x = 1, 2, . . . , 10, with the following few lines of code:

for (x.o in 0:10) {

curve(dgamma(x,x.o+1,1),xlim=c(0,20),ylim=c(0,1),col=’blue’,add=x.o>0,

xlab=expression(lambda),ylab=expression(paste(’f(’,lambda,’)’)))

}

3.2 Distribution of the ratio of Poisson λ’s by sampling

Once we have learned that the pdf of λ, in the light of the observation of x count
and assuming a flat prior, is a Gamma distribution, the easiest way to evaluate the
distribution of λ1/λ2, for x2 > 0, is by sampling. For example, using the following
lines of R code,

9This name is somehow unfortunate, because it might induce people think to time order, as
discussed in Ref. [1], in which it is shown how, instead, the ‘prior’ can be applied in a second step,
in particular by someone else, if a ‘flat prior’ used.
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Figure 4: Inferred f(λ |x), using a flat prior, for x = 0, 1, . . . , 10.

x1 = 1

x2 = 1

lambda1 = rgamma(n, x1+1, 1)

lambda2 = rgamma(n, x2+1, 1)

rho = lambda1/lambda2

Then, varying x1 and x2 we can get the plots of Figs. 5 and 6.10 We immediately
observe that the histograms are very regular, without divergences, although for small
values of x2 there is quite a long tail up to infinity, which is however reached with
vanishing probability (the figures report also the proportions of overflows, having
chosen the horizontal scale of the plots in order to show the most interesting part of
each probability distribution). The mean and standard deviation (‘std’) shown on
each plot are calculated from the Monte Carlo samples.

The effect of the long tails is that there is quite a big difference between mean
value and the most probable one, located around the highest bar of the histogram.
This is not a surprise (the famous exponential distribution has modal value equal to
zero independently of its parameter!), but it should sound as a warning for those who

10The complete script is provided in Appendix B.2.
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Figure 5: Estimate by sampling (n=107) of f(ρλ=λ1/λ2) for some ‘observed’ counts. (For
the (non) meaning of standard deviation for x1 = x2 = 1 see Sec. 3.3.)
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Figure 6: As Fig. 5 for larger values of the ‘observed’ counts.
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use analysis methods which provide, as ‘estimator’, “the most probable value”11 [13].
Moreover, for very small x2 the tails do not seem to go very fast to zero (in comparison
e.g. to the exponential), leading to not-defined moments of the distribution (of the
theoretical one, obviously, since in most cases mean and standard deviation of the
Monte Carlo distribution have finite values). This question will be investigated in
the next subsection, after the derivation of closed expressions.

When x1 and x2 become ‘quite large’ the Gamma distribution tends (slowly –
think to the χ2, that is indeed a particular Gamma, as reminded in Appendix A) to
a Gaussian, and likewise does (a bit slower) the ratio of two Gamma variables (as
λ1 and λ2 are), as we can see for the case x1 = x2 = 100 of Fig. 6,12 in which some
skewness is still visible and the mode is about 3% smaller than the mean value.

3.3 Distribution of the ratio of Poisson λ’s in closed form

Being the evaluation of ratio of rates (to which the ratio of λ’s is related) an important
issue in Physics, it is worth trying to get an analytic expression for its pdf. This can
be done extending to the continuum Eq. (2),13 that is replacing the sums by integrals,
and applying the constraint between the two variables by a Dirac delta [13]:

f(ρλ | x1, x2) =

∫ ∞

0

∫ ∞

0

δ

(

ρλ −
λ1

λ2

)

· f(λ1 | x1) · f(λ2 | x2) dλ1dλ2 . (9)

Making use of the properties of the δ(), we can rewrite it as

δ

(

ρλ −
λ1

λ2

)

=
δ(λ1 − λ∗

1)
∣

∣

∣

d
dλ1

(

ρλ − λ1

λ2

)
∣

∣

∣

λ1=λ∗

1

(10)

= λ2 · δ(λ1 − λ∗

1) , (11)

with λ∗
1 root of the equation ρλ − λ1/λ2 = 0, and therefore equal to ρλ · λ2. Equation

(9) becomes then

f(ρλ | x1, x2) =

∫

∞

0

∫

∞

0

λ2 · δ(λ1 − ρλ · λ2) · f(λ1 | x1) · f(λ2 | x2) dλ1dλ2 (12)

=

∫ ∞

0

λ2 ·
(ρλ · λ2)

x1 · e−ρλ·λ2

x1!
· λ

x2

2 · e−λ2

x2!
dλ2 (13)

=
ρx1

λ

x1! x2!
·
∫ ∞

0

λx1+x2+1
2 · e−(ρλ+1)·λ2 dλ2 . (14)

11For the reason of the quote marks see footnote 8.
12Zero overflow in that plot is only due to the ‘limited’ number of sampled, chosen to be 107, and

to the fact that the same script of the other plot has been used.
13for a different approach to get Eq. (9) see footnote 9 , in which the integrand of Eq. (9) is

interpreted as the joint pdf of ρλ, λ1 and λ2.
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Once more we recognize in the integrand something related to the Gamma distribu-
tion. In fact, identifying the power of λ2 with ‘α− 1’ of a Gamma pdf, and ‘(1+ ρλ)’
at the exponent with the ‘rate parameter’ β, that is

α− 1 = x1 + x2 + 1 (15)

β = ρλ + 1 , (16)

the integrand in Eq. (14) can be rewritten as

λα−1
2 · e−β λ2 =

Γ(α)

β α
·
(

β α

Γ(α)
· λα−1

2 · e−β λ2

)

(17)

in order to recognize within parentheses a Gamma pdf in the variable λ2, whose
integral over λ2 is then equal to one because of normalization. We get then

f(ρλ | x1, x2) =
ρx1

λ

x1! x2!
· Γ(α)
β α

·
∫ ∞

0

β α

Γ(α)
· λα−1

2 · e−βλ2 dλ2 (18)

=
ρx1

λ

x1! x2!
· Γ(α)
β α

(19)

=
Γ(x1 + x2 + 2)

Γ(x1 + 1) Γ(x2 + 1)
· ρx1

λ

(ρλ + 1) x1+x2+2
(20)

=
(x1 + x2 + 1)!

x1! x2!
· ρx1

λ · (ρλ + 1)−(x1+x2+2) (21)

The mode of the distribution can be easily obtained finding the maximum (of the
log) of the pdf, thus getting

mode(ρλ) =
x1

x2 + 2
, (22)

in agreement with what we have got in Figs. 5 and 6 by Monte Carlo (indeed, done
there in a fast and rather rough way – see Appendix B.2).

In order to get expected value and standard deviation, we need to evaluate the
relevant integrals14

• First we check that f(ρλ | x1, x2) is properly normalized. Indeed the integral
∫∞

0
f(ρλ | x1, x2) dρλ is equal to unity for ‘all possible’ x1 and x2.

15

14Work done on a Raspberry Pi3, thanks to Mathematica 12.0 generously offered by Wolfram Inc.
to the Raspbian system.

15To be precise, the condition is x1 > −1 and x2 > −1, but, given the role of the two variables
in our context, it means for all possible counts (including x1 = x2 = 0, for which the pdf becomes
1/(1 + ρλ)

2, having however infinite mean and variance.)
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• The expected value is equal to

E(ρλ | x1, x2) =
x1 + 1

x2

(x2 > 0) , (23)

in perfect agreement with what we can read from the Monte Carlo results of
Figs. 5 and 6.

• The expected value of ρ2λ is given by

E(ρ2λ | x1, x2) =
(x1 + 1) · (x1 + 2)

x2 · (x2 − 1)
(x2 > 1) , (24)

from which we evaluate (subtracting to it the square of the expected value)

Var(ρλ | x1, x2) =
x1 + 1

x2
·
(

x1 + 2

x2 − 1
− x1 + 1

x2

)

(x2 > 1) , (25)

from which the standard deviation follows, that we rewrite in a more compact
form as

σ(ρλ) =

√

µρλ ·
(

x1 + 2

x2 − 1
− µρλ

)

(x2 > 1) , (26)

having indicated by µρλ the expected value of ρλ. For the values x1 and x2

used in Figs. 5 and 6, we get, starting from x1 = x2 = 2 in increasing or-
der, the following standard deviations: 1.936, 1.247, 0.507, 0.269 and 0.143, in
agreement with the Monte Carlo results (or the other way around).

The detailed comparison between closed expression of the pdf and the Monte Carlo
outcome is shown in Fig. 7 for the toughest case we have met, that is x1 = x2 = 1.

4 Inferring r1 and r2 (T1 possibly different from T2)

After having been playing with λ’s and their ratios, from which we started for sim-
plicity, let us move now to the rates r1 and r2 of the two Poisson processes, i.e. to
the case in which the observation times T1 and T2 might be different.

But, before doing that, let us spend a few words on the reason of the word
‘deducing’, appearing in the title of the previous section. Let us start framing what
we have been doing in the past section in the graphical model of Fig. 8, known as
a Bayesian network (the reason for the adjective will be clear in the sequel). The
solid arrows from the nodes λi to the nodes Xi indicate that the effect Xi is caused
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ρλ = λ1/λ2
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Figure 7: Comparison of the distribution of ρλ = λ1/λ2 obtained by the closed expression (21)
with that estimated by Monte Carlo (same as top plot of Fig. 5). The vertical lines indicate
mode and expected value, evaluated using Eqs. (22) and (23), equal to 1/3 and 2, respectively.
(Note that none of these values is close to 1, that is what one would naively expect for the ratio
of the rates – indeed, only for x1 and x2 above O(100) mode, expected value and ratio of the
observed counts become approximately equal).

by λi, although in a probabilistic way (more properly, Xi is conditioned by λi, since,
as it is well understood causality is a tough concept16). The dashed arrows indicate,
instead, deterministic links (or deterministic ‘cause-effect’ relations, if you wish). For
this reason we have been talking about ‘deduction’: each couple of values (λ1, λ2)
provides a unique value of ρλ, equal to λ1/λ2, and any uncertainty about the λ’s is
‘directly propagated’ into uncertainty about ρλ. The same will happen with ρ = r1/r2.

Navigating back along the solid arrows, that is from Xi to λi, is often called a
problem of ‘inverse probability’, although nowadays many experts do not like this
expression, which however gives an idea of what is going on. More precisely, it is
an inferential problem, notoriously tackled for the first time in mathematical terms
by Thomas Bayes [19] and Simon de Laplace, who was indeed talking about “la
probabilité des causes par les événements”[20]. Nowadays the probabilistic tool to
perform this ‘inversion’ goes under the name of Bayes’ theorem, or Bayes’ rule, whose
essence, in terms of the possible causes Ci of the observed effect E, is given, besides

16For a historical review and modern developments, with implication on Artificial Intelligence
application, see Ref. [18], an influential book on which I have however reservations when the author
talks about causality in Physics (I have the suspicion he has never really read Newton or Laplace [20]
or Poincaré [21], and perhaps not even Hume [16]).
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λ1 λ2

X1 X2
ρλ

Figure 8: Graphical model showing the model underlying the inference of λ1 and λ2 from the
observed numbers of counts X1 and X2, followed by the deduction of ρ.

normalization, by this very simple formula

P (Ci |E, I) ∝ P (E |Ci, I) · P (Ci | I) , (27)

having indicated again by I the background state of information. P (Ci | I) quantifies
our belief that Ci is true taking into account all available information, except for E.
If also the hypothesis that E is occurred is considered to be true,17 then the ‘prior’
P (Ci | I) is turned into the ‘posterior’ P (Ci |E, I).

We shall came back on the question of the priors, but now let us move to infer r1,
r2 and their ratio ρ = r1/r2.

4.1 Inferring r, having observed x counts in the measuring
time T

Being r equal to λ/T , we can obtain its pdf by a simple change of variables.18 But,
having practiced a bit with the Gamma distribution, we can reach the identical result
observing that, using again a flat prior and neglecting irrelevant factors, the pdf of r

17Usually we say ‘if E has occurred’, but, indeed, in probability theory there are, in general,
‘hypotheses’, to which we associate a degree of belief, being the states TRUE and FALSE just the
limits, mapped into P = 0 and P = 1.

18Starting from f(λ |x) given by Eq. (8) we get

f(λ |x) dλ =
λx · e−λ

x!
dλ =

(r · T )x · e−r T

x!
· T dr = f(r |x, T ) dr

f(r |x, T ) =
T x+1 · rx · e−T r

x!
.

in which we recognize a Gamma pdf with α = x+ 1 and β = T .
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is given by

f(r | x, T ) ∝ f(x | r, T ) (28)

∝ (r · T )x · e−r T (29)

∝ rx · e−T r, (30)

in which we recognize, besides the normalization factor, a Gamma pdf for the variable
r with α = x+ 1 and β = T , and hence

f(r | x, T ) =
β α · r α−1 · e−β r

Γ(α)
(31)

=
T x+1 · r x · e−T r

x!
. (32)

Mode, expected value and standard deviation of r are then (see Appendix A)

mode(r) =
α− 1

β
=

x

T

E(r) =
α

β
=

x+ 1

T

σ(r) =

√
α

β
=

√
x+ 1

T
,

as also expected from the ‘summaries’ of f(λ | x) and making use of r = λ/T .
[ Note that the pdf (32) assumes, as explicitly written in the condition, a precise value
of T . If this is not the case and T is uncertain, then, similarly to what we have seen
in footnote 3, the pdf of r is evaluated as f(r | x, I) =

∫

∞

0
f(r | x, T, I) · f(T | I) dT . ]

4.2 Role of the priors and sequential update of f(r) as new

observations are considered

The very essence of the so called probabilistic inference (‘Bayesian inference’) is given
by Eq. (27). The rest is just a question of normalization and of extending it to the
continuum, that in our case of interest is

f(r | x, T, I) ∝ f(x | r, T, I) · f(r | I) . (33)

It is evident the symmetric role of f(x | r, T, I) and f(r | I), if the former is seen as
a mathematical function of r for a given (‘observed’) x, that is x playing the role
of a parameter. This function is known as likelihood and commonly indicated by
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L(r ; x, T ).19 Indicating the second factor of Eq. (33), that is the ‘infamous’ prior
that causes so much anxiety in practitioners [8], by f0(r), we get (assuming I implicit,
as it is usually the case)

f(r | x, T, I) ∝ L(r; x, T ) · f0(r) , (34)

which makes it clear that we have two mathematical functions of r playing sym-
metric and peer roles. Stated in different words, each of the two has the role of
‘reshaping’ the other [1]. In usual ‘routine’ measurements (as watching your weight
on a balance) the information provided by L(. . .) is so much narrower, with respect
to f0(. . .),

20 that we can neglect the latter and absorb it in the proportionality factor,
as we have done above in Sec. 3.1. Employing a uniform ‘prior’ is then usually a
good idea to start with, unless f0(. . .) arises from previous measurements or from
strong theoretical prejudice on the quantity of interest. It is also very important to
understand that ‘the reshaping’ due to the priors can be done in a second step, as it
has been pointed out, with practical examples, in Ref. [1].

Let us now see what happens when, in our case, the Bayes rule is applied in
sequence in order to account for several results on the same rate r, that is assumed to
be stable. Imagine we start from rather vague ideas about the value of r, such that
f0(r) = k is, in practice, the best practical choice we can do. After the observation
of x1 counts during T1 we get, as we have learned above,

f(r | x1, T1) =
T x1+1
1 · r x1 · e−T1 r

x1!
. (35)

Then we perform a new campaign of observations and record x2 counts in T2. It is
clear now that in the second inference we have to use as ‘prior’ the piece of knowledge
derived from the first inference. So, we have, all together, besides irrelevant factors,

f(r | x1, T1, x2, T2) ∝ f(x2 | r, T2) · f(r | x1, T1) (36)

∝ r x2 · e−T2 r · r x1 · e−T1 r (37)

∝ r x1+x2 e−(T1+T2) r , (38)

19The real issue with the ‘likelihood’ is not just replacing in Eq. (33) f(x | r, T, I) by L(r ; x, T ),
but rather the fact, that, being this a function of r, it is perceived as ‘the likelihood of r’. The result
is that it is often (almost always) turned by practitioners into ‘probability of r’, being ‘likelihood’
and ’probability’ used practically as synonyms in the spoken language. It follows, for example, that
the value that maximizes the likelihood function is perceived as the ‘most probable’ value, in the
light of the observations.

20This is true unless the balance shows a ‘clear anomaly’, and then you stick to what you believed
your weight should be. But you still learn something from the measurement, indeed: the balance is
broken [13].
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that is exactly as we had done a single experiment, observing xtot = x1 + x2 counts
in Ttot = T1 + T2. The only real physical strong assumption is that the intensity
of Poisson process was the same during the two measurements, i.e. we have being
measuring the same thing.

This teaches us immediately how to ‘combine the results’, an often debated subject
within experimental teams, if we have sets of counts xi during times Ti (indicated all
together by ’x’ and ‘T ’):

f(r | x, T ) =
(
∑

i Ti)
∑

i xi+1 · r
∑

i xi · e−(
∑

i Ti) r

(
∑

i xi)!
, (39)

without imaginative averages or fits. But this does not mean that we can blindly
sum up counts and measuring times. Needless to say, it is important, whenever it is
possible, to make a detailed study of the behavior of f(r | xi Ti) in order to be sure
that the intensity r is compatible with being constant during the measurements. But,
once we are confident about its constancy (or that there is no strong evidence against
that hypothesis), the result is provided by Eq. (39), from which all summaries of
interest can be derived.21

4.3 Relative belief updating ratio

Let us consider again Eq. (34) and focus on the role of the likelihood to reshape f0(r).
Being multiplicative factor irrelevant, it can be useful to rewrite that equation as

f(r | x, T, I) ∝ L(r ; x, T )
L(rR ; x, T )

· f0(r) (40)

with rR a reference value, in principle arbitrary, but conceptually very interesting
if properly chosen. In fact, the ratio in the above formula acquires the meaning
of relative belief update factor [13, 17, 23],22 and the updating Bayes’ rule can be
rewritten as

f(r | x, T, I) ∝ R(r ; x, T, rR) · f0(r) . (41)

21It is perhaps important to remind that in probability theory the full result of the inference is
the probability distribution (typically a pdf, for continuous quantities) of the quantity of interest
as inferred from the data, the model and all other pertinent pieces of information. Mode, mean,
median, standard deviation and probability intervals are just useful numbers to summarize with
few numbers the distribution, with should always be reported, unless it is (with some degree of
approximation) as simple as a Gaussian, so that mean and standard deviation provide the complete
information. For example, the shape of a not trivial pdf can be expressed with coefficients of a
suitable fit made in the region of interest. Or one can provide several moments of a distribution,
from which the pdf can be reobtained (see e.g. Ref. [22]).

22Note how at that time we wrote Eq. (40) in a more expanded way, but the essence of this factor
is given by Eq. (41). For recent developments and applications see Refs. [24, 25, 26].
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Figure 9: Relative belief updating factor R(r;x = 0, T, r0 = 0) for different observation times.

This way of rewriting the Bayes’ rule is particularly convenient when the likelihood
is not ’closed’, that is it does not go to zero when the quantity of interest is ‘very
large’ or ‘very small’.

To be clear, let us make the example of having observed zero counts, that is the
experiment was indeed performed, but no event of interest was found during the
measurement time T . If we use a flat prior and only stick to the summaries, we
have that the most probable value is zero, with E(r) = σ(r) = 1/T : the larger is the
measuring time, the more the distribution of r is squeezed towards zero. But this does
not give a complete picture of what is going on. Since L(r; x = 0, T ) goes to 1 for r →
0, the likelihood is opened in the left side. Figure 9 shows R functions for this case,
for different T , although in this very simple case R is mathematically equivalent to
the likelihood.23 If our beliefs about r were above O(100 s−1), the observation of zero
events practically rule them out, even with T = 1 s (‘1 s’ is arbitrarily chosen in this
hypothetical example, just to remind that both T and r have physical dimensions).

If we run the experiment longer and longer, keeping observing zero events, the
possible values of r gets smaller and smaller. What is mostly interesting, in this plot,

23The more interesting case, originally taken into account in Refs. [17, 23], is when some events
are observed, which could be, however, also attributed to irreducible background.
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is the region in which R is flat: it means that if our beliefs are concentrate there,
then the experiment does not teach us more than what we already believed: the
experiment looses sensitivity in that region and then reporting ‘probabilistic’ upper
limits makes no sense and it can be highly misleading (even more reporting ‘C.L.
upper limits‘) [13, 27].

4.4 Conjugate priors

At this point a technical remark is in order. The reason why the Gamma appears
so often is that the expression of the Poisson probability function, seen as a function
of λ and neglecting multiplicative factors, that is f(λ) ∝ λx · exp(−λ), has the same
structure of a Gamma pdf. The same is true if the variable r is considered, that
is f(r) ∝ rx · exp(−T · r). If then we have a Gamma distribution as prior, with
parameters α0 and β0, the ‘final’ distributions is still a Gamma:

f(λ | x) = λx · e−λ · λα0−1 · e−β0λ = λα0 + x − 1 · e−(β0 + 1) · λ (42)

∝ λαf − 1 · e−βf ·λ (43)

f(r | x, T ) = rx · e−T ·r · r α0−1 · e−β0r = rα0 + x − 1 · e−(β0 + T ) · r (44)

∝ rαf − 1 · e−βf · r (45)

This kind of distributions, such that the ‘posterior’ belongs to the same family of the
‘prior’, with updated parameters, are called conjugate priors for obvious reasons, as it
is rather obvious how convenient they are in applications, provided they are flexible
enough to describe ‘somehow’ the prior belief.24 This was particularly important at
the times when the monstrous computational power nowadays available was not even
imaginable (also the development of logical and mathematical tools has a strong
relevance). Therefore a quite rich collection of conjugate priors is available in the
literature (see e.g. Ref. [30]).

In sum, these are the updating rules of the Gamma parameters for our cases of
interest (the subscript ’f ’ is to remind that is the parameter of the ‘final’ distribution):

Inferring λ: αf = α0 + x (46)

βf = β0 + 1 (47)

Inferring r: αf = α0 + x (48)

βf = β0 + T (49)

24Remember that, as Laplace used to say, “the theory of probabilities is basically just common

sense reduced to calculus”, that “All models are wrong, but some are useful” (G.Cox) and that even
Gauss was ‘sorry’ because ‘his’ error function could not be strictly true [28] (see quote in footnote
9 of Ref. [29]).
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(Note that in the case of r the parameter β has the dimension of a time, being r
a rate, that is counts per unit of time.) A flat prior distribution is recovered for
α0 = 1 and β0 → 0. Technically, for α = 1 a Gamma distribution turns into a
negative exponential: if then the ‘rate parameter’ β is chosen to be very small, the
exponential becomes ‘essentially flat’ in the region of interest.

Once we have learned the updating rules (46)-(47) and (48)-(49), it might be
convenient to turn a prior expressed in terms of mean µ0 and standard deviation σ0

into α0 and β0, inverting the expressions of expected value and standard deviation of
a Gamma distributed variable (see Appendix A), thus getting

α0 = µ2
0/σ

2
0 (50)

β0 = µ0/σ
2
0 . (51)

For example, if we have good reason to think that r should be (5 ± 2) s−1, the pa-
rameters of our initial Gamma distribution are α0 = 6.25 and β0 = 1.25 s. This
is equivalent to having started from a flat prior and having observed (rounding the
numbers) 5 counts in about 1.2 seconds. This gives a clear idea of the ‘strength’ of
the prior – not much in this case, but it certainly excludes the possibility of r = 0.
This happens in fact as soon as α0 is larger then 1, implying rα0−1 vanishing at r = 0.
This observation can be a used as a trick to forbid a vanishing value of λ or of r, if
we have good physical reason to believe that they cannot be zero, although we are
highly uncertain about even their order of magnitude: just choose a prior α0 slightly
larger than one.

5 Ratio of Gamma distributed variables

Having inferred the two rates, we can now evaluate the distribution of ρ = r1/r2,
which is technically just a problem of ‘direct probabilities’, that is getting the pdf
f(ρ | x1, T1, x2, T2) from f(r1 | x1, T1) and f(r2 | x2, T2) (the Bayesian network that
relates the variables of interest is shown in Fig. 10). We just need to repeat what it
has been done in Sec. 3.3, taking the advantage of having understood that f(λ1 | x1)
and f(λ2 | x2) appearing in Eq. (9) are indeed Gamma distributions. Therefore, we
start evaluating the probability distribution of the ratio of generic Gamma variables,
denoted as Z1 and Z2 (and their possible occurrences z1 and z2) in order to avoid
confusion with X ’s, associated so far to measured counts:

Z1 ∼ Gamma(α1, β1) (52)

Z2 ∼ Gamma(α2, β2) . (53)
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Figure 10: Graphical model relating the physical quantities (rates and measurement times) to
the observed numbers of events.

The pdf of Z1/Z2 is the given by

f(ρz |α1, β1, α2, β2) =

∫

∞

0

∫

∞

0

δ

(

ρz −
z1
z2

)

·f(z1 |α1, β1)·f(z2 |α2, β2) dz1dz2 , (54)

in which we have indicated by ρz their ratio. In detail, taking benefit of what we
have learned in Sec. 3.3,

f(ρz | . . .) =

∫ ∞

0

∫ ∞

0

z2 · δ(z1−ρz ·z2)·
β α1

1 · z α1−1
1 · e−β1 z1

Γ(α1)
·β

α2

2 · z α2−1
2 · e−β2 z2

Γ(α2)
dz1dz2

=
β α1

1 β α2

2

Γ(α1) · Γ(α2)
·
∫ ∞

0

z2 · (ρz ·z2)α1−1 · e−β1 (ρz ·z2) · z α2−1
2 · e−β2 z2 dz2 (55)

=
β α1

1 · β α2

2

Γ(α1) · Γ(α2)
· ρα1−1

z

∫ ∞

0

z α1+α2−1
2 · e−(β2+ρz β1)·z2 dz2 . (56)

Writing α1+α2 as α∗ and β2+ρz ·β1 as β∗, we get

f(ρz |α1, β1, α2, β2) =
β α1

1 · β α2

2

Γ(α1) · Γ(α2)
· ρα1−1

z

∫ ∞

0

zα∗−1
2 · e−β∗·z2 dz2 (57)

=
β α1

1 · β α2

2

Γ(α1) · Γ(α2)
· ρα1−1

z · Γ(α∗)

βα∗

∗

(58)

=
Γ(α1 + α2)

Γ(α1) · Γ(α2)
· β α1

1 · β α2

2 · ρα1−1
z

(β2 + ρz · β1)α1+α2

(59)

=
Γ(α1 + α2)

Γ(α1) · Γ(α2)
· β α1

1 · β α2

2 · ρα1−1
z ·(β2 + ρz · β1)

−(α1+α2). (60)
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5.1 Application to ρλ = λ1/λ2 and to ρ = r1/r2

In the case of ratio of λ’s, and starting from uniform prior, as done in Sec. 3.3, we
get, applying Eq. (60) and writing the conditions in terms of the Gamma parameters,

f(ρλ=
λ1

λ2

| x1 + 1, 1, x2 + 1, 1) =
Γ(x1 + x2 + 2)

Γ(x1 + 1) · Γ(x2 + 1)
· ρx1

λ · (1 + ρλ)
−(x1+ x2+2)

=
(x1 + x2 + 1)!

x1! x2!
· ρx1

λ · (1 + ρλ)
−(x1+x2+2) , (61)

re-obtaining exactly Eq. (21).
As far as the ratio of rates, starting again from a uniform prior, implying then

αi = xi + 1 and βi = Ti, we get, writing, as in Eq. (61), the conditions in terms of
the Gamma parameters,

f(ρ=
r1
r2

| x1+1, T1, x2+1, T2) =
(x1 + x2 + 1)!

x1! x2!
·T x1+1

1 ·T x2+1
2 ·ρx1 ·(T2 + T1 · ρ)−(x1+ x2+2),

that is, without redundant details,25

f(ρ | x1, T1, x2, T2) =
(x1 + x2 + 1)!

x1! x2!
·T x1+1

1 ·T x2+1
2 ·ρx1 ·(T2 + T1 · ρ)−(x1+x2+2), (62)

from which we re-obtain Eqs. (21) and (61) in the special case T1 = T2, as it has to
be. Mode, expected value and standard deviation can be obtained quite easily from
Eqs. (22)-(26), just noting that

ρ =
r1
r2

=
λ1/T1

λ2/T2
=

λ1

λ2
· T2

T1
=

T2

T1
· ρλ ,

25Another way to arrive to Eq. (62) is to start from Eq. (21), applying the transformation of
variables ρ = ρλ · T2/T1:

f(ρλ | . . .) dρλ =
(x1 + x2 + 1)!

x1!x2!
· ρx1

λ · (1 + ρλ)
−(x1+x2+2) dρλ

=
(x1 + x2 + 1)!

x1!x2!
·
(

T1

T2

)x1

· ρx1 ·
(

1 +
T1

T2
· ρ

)−(x1+ x2+2)

· T1

T2
dρ

=
(x1 + x2 + 1)!

x1!x2!
· T x1

1 · T−x1

2 · T x1+x2+2
2 · ρx1 · (T2 + T1 ·ρ)−(x1+x2+2) · T1

T2
dρ

=
(x1 + x2 + 1)!

x1!x2!
· T x1+1

1 · T x2+1
2 · ρx1 · (T2 + T1 ·ρ)−(x1+x2+2)

dρ

f(ρ | . . .) =
(x1 + x2 + 1)!

x1!x2!
· T x1+1

1 · T x2+1
2 · ρx1 · (T2 + T1 ·ρ)−(x1+x2+2)

.
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and then

mode(ρ) =
T2

T1

·mode(ρλ) =
T2

T1

· x1

x2 + 2
=

x1/T1

(x2 + 2)/T2

(63)

E(ρ) =
T2

T1
· E(ρλ) =

T2

T1
· x1 + 1

x2
=

(x1 + 1)/T1

x2/T2
(x2 > 0) (64)

σ(ρ) =
T2

T1

· σ(ρλ) =
T2

T1

·
√

x1 + 1

x2

·
(

x1 + 2

x2 − 1
− x1 + 1

x2

)

(x2 > 1) (65)

that we can rewrite in a more compact form, in terms of µρ ≡ E(ρ), as

σ(ρ) =

√

µρ ·
(

T2

T1
· x1 + 2

x2 − 1
− µρ

)

, (x2 > 1) (66)

Some examples are provided in Figs. 11 and 12, for low and relatively high numbers
of counts, respectively. Each plot shows both the curve of the pdf, calculated with the
closed formulae just derived, and the histogram of Monte Carlo simulation (the script
to reproduce these plots is given in Appendix B.3). The value of mode, expected value
and standard deviation calculated from exact formulae are reported too, together with
‘mean’ and ‘std’ (‘empirical standard deviation’) evaluated from the sampling. The
excellent agreement can be considered a cross check of the exact formulae, derived
above for the purpose.

The counts and the measuring times have been chosen such that (x1/T1)/(x2/T2)
are equal to one in all cases. Therefore the plots are comparable to those of Figs. 5
and 6 reporting ρλ for several values of λ1 = λ2 (but in that case all summaries
were evaluated from sampling, having, at that stage of the work, not yet derived the
closed formulae of interest). As we can again see, for small numbers of counts the
distribution of the ratio of rates is strongly asymmetric, with mode and expected
value systematically below and above, respectively, the ratio calculated naively as
(x1/T1)/(x2/T2). This value is reached asymptotically, as we see in Fig. 12, and as
expected by the fact that for high numbers of counts we get

mode(ρ) =
x1/T1

(x2 + 2)/T2
−−−−→
x2≫2

x1/T1

x2/T2
(67)

E(ρ) =
(x1 + 1)/T1

x2/T2

−−−−→
x1≫1

x1/T1

x2/T2

(68)

σ(ρ) =
T2

T1

·
√

x1 + 1

x2

·
(

x1 + 2

x2 − 1
− x1 + 1

x2

)

−−−−−−→
x1,x2→∞

0 . (69)
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Figure 11: Ratios of rates, given counts and times.
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5.2 More on the ratio of Gamma distributed variables

Keeping the notation ρz for the ratio of the generic Gamma distributed variables Z1

and Z2, the pdf of Eq. (60) can be further simplified reminding that the beta special
function (or Euler integral of the first kind [33]), defined as

B(r, s) =

∫ 1

0

t r−1 · (1− t)s−1 dt , (70)

can be written as

B(r, s) =
Γ(r) · Γ(s)
Γ(r + s)

. (71)

We can then rewrite the combination of three gamma functions appearing in Eq. (60)
as 1/B(α1, α2), thus getting

f(ρz |α1, β1, α2, β2) =
1

B(α1, α2)
· β α1

1 · β α2

2 · ρα1−1
z ·(β2 + ρz · β1)

−(α1+α2) . (72)

As far as mode, expected value and variance are concerned, they can be obtained,
without direct calculations, just transforming those of ρ = r1/r2, seen above, remem-
bering that, starting from a flat prior, ri ∼ Gamma(αi = xi + 1, βi = Ti). We get
then

mode(ρz) =
β2

β1

· α1 − 1

α2 + 1
(73)

E(ρz) =
β2

β1
· α1

α2 − 1
(α2 > 1) (74)

Var(ρz) =
β2
2

β2
1

·
[

α1

α2 − 1
·
(

α1 + 1

α2 − 2
− α1

α2 − 1

)]

(α2 > 2). (75)

Moreover, just for completeness, let us mention the special case β1 = β2 = 1, that
written for the generic variable X , becomes

f(x |α1, α2) =
1

B(α1, α2)
· ρα1−1

z ·(1 + ρz)
−(α1+α2), (76)

‘known’ (certainly not to me before I was attempting to write these subsection) as
Beta prime distribution [34], with parameters α and β:

f(x |α, β) =
1

B(α, β)
· xα−1 ·(1 + x)−(α+ β) . (77)
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Figure 13: Alternative graphical model to that of Fig. 10.

The name of the distribution is clearly due to the special function resulting from
normalization. It is ‘prime’ in order to distinguish it from the more famous (and
more important as far as practical applications are concerned) Beta distribution which
arises quite ‘naturally’ when inferring the parameter p of the Bernoulli trials, in the
light of x successes in n trials (essentially the original problem tackled by Bayes [19]
and Laplace [20]), and then used as conjugate prior of the binomial distribution
(see e.g. Ref. [30] as well as Ref. [1] for practical applications). The Beta prime
distribution is actually what has been independently derived in Sec. 3.3 to describe
ρλ, although the beta special function was not used there, nor in Sec. 5.

6 Direct inference of the rate ratio ρ (and of r2)

We have remarked several times that r1 and r2 are inferred from the observed num-
bers of events X1 and X2 (we assume T1 and T2 can be exactly known), and that
the possible values of their ratio ρ are successively evaluated (‘deduced’) from each
possible pair of values of the rates. This logical scheme is represented by the graph-
ical model of Fig. 10. But this is not the only way to approach the problem. An
alternative model is shown in Fig. 13, in which the node ρ appears ‘at the top’ of the
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network and it is then really inferred 26 (indeed also r2 is ‘at the top’, having above
it no parents nodes from which to depend).

Writing one diagram or another one is not just a question of drawing art. Indeed,
the network reflects the supposed causal model (‘what depends from what’) and
therefore the choice of the model can have an effect on the results. It is therefore
important to understand in what they differ. In the model of Fig. 10 the rates r1
and r2 assume a primary role. We infer their values and, as a byproduct, we get ρ. In
this new model, instead, it is ρ to have a primary role, together with one of the two
rates (they cannot be both at the same level because there is a constraint between
the three quantities). Our choice to make r1 depend on r2 is due to the fact that r2,
appearing at the denominator, can be seen as a ‘baseline’ to which the other rate is
referred (obviously, here r1 and r2 are just names, and therefore the choice of their
role depend on their meaning).

The strategy to get f(ρ | . . .) is then different, being this time ρ directly inferred
using the Bayes theorem applied to the entire network. A strong advantage of this
second model is that, as we shall see, its prior can be factorized (see also Ref. [1],
especially Appendix A there, in which there is a summary of the formulae we are
going to use).

In analogy to what has been done in detail in Ref. [1], the pdf of ρ is obtained in
two steps: first infer f(ρ, r1, r2 | x1, x2, T1, T2); then get the pdf of ρ by marginaliza-
tion. For the first step we need to write down the joint distribution of all variables
in the network (apart from T1 and T2 which we consider just as fixed parameters,
having usually negligible uncertainty) using the most convenient chain rule, obtained
navigating bottom up the graphical model. Indicating, as in Ref. [1], with f(. . .) the
joint pdf of all relevant variables, we obtain from the chain rule

f(. . .) = f(x2 | r2, T2) · f0(r2) · f(x1 | r1, T1) · f(r1 | r2, ρ) · f0(ρ) (78)

from which we can get, besides a normalization constant, the pdf’s of interest as

f(ρ | x1, T1, x2, T2) ∝
∫ ∞

0

∫ ∞

0

f(. . .) dr1 dr2 (79)

f(r2 | x1, T1, x2, T2) ∝
∫ ∞

0

∫ ∞

0

f(. . .) dρ dr1 , (80)

or the joint pdf f(r2, ρ | x1, T1, x2, T2), integrating only over r1. Using explicit expres-
sions of the pdf’s, of which f(r1 | r2, ρ) is just the Dirac delta δ(r1−ρ · r2),27 and

26For those who have doubts about the meaning of ‘deduction’ and ‘induction’, Ref. [35] is highly
recommended (and they will discover that Sherlock Holmes was indeed not deducing explanations).

27It is interesting to note that there is an alternative way to get Eq. (9), starting from the joint
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ignoring multiplicative factors, we can then only focus on

f̃(. . .) ∝ rx2

2 · e−T2 r2 · f0(r2) · rx1

1 · e−T1 r1 · δ(r1 − ρ · r2) · f0(ρ) , (81)

having indicated by f̃() the unnormalized pdf.

6.1 Inferred distribution of ρ

Let us start with pdf of ρ. Our starting point is

f(ρ | x1, T1, x2, T2) ∝
∫ ∞

0

∫ ∞

0

f̃(. . .) dr1 dr2 , (82)

from which it follows

f(ρ | x1, T1, x2, T2) ∝
∫

∞

0

∫

∞

0

rx2

2 e−T2 r2 · rx1

1 ·e−T1 r1 · δ(r1−ρ · r2)·f0(r2)·f0(ρ) dr1 dr2
(83)

∝
[
∫ ∞

0

rx2

2 e−T2 r2 · (ρ · r2)x1 ·e−T1 ρ r2 · f0(r2) dr2
]

·f0(ρ) (84)

∝
[

ρx1 ·
∫ ∞

0

rx1+x2

2 · e−(T2+T1·ρ)·r2 · f0(r2) dr2
]

·f0(ρ) , (85)

in which we have explicitly factorized f0(ρ). Again, besides f0(r2), we recognize in
the integrand something proportional to a Gamma pdf. If we then model also f0(r2)
by a Gamma of parameters α0 and β0, and again neglect irrelevant factors, we get

f(ρ | x1, T1, x2, T2) ∝
[

ρx1 ·
∫ ∞

0

rx1+x2

2 · e−(T2+T1·ρ)·r2 · rα0−1
2 · e−β0 r2 dr2

]

·f0(ρ) (86)

∝
[

ρx1 ·
∫

∞

0

rα0+x1+x2−1
2 · e−(β0+T2+T1·ρ)·r2 dr2

]

·f0(ρ) . (87)

Indicating, in analogy to what done to obtain Eq. (58), the power of r2 as α∗ − 1 =
α0+x1+x2−1, and the factor multiplying r2 at the exponent as β∗ = β0+T2+T1 ·ρ,
distribution f(ρλ, λ1, λ2 |x1, x2) and then marginalizing it. In fact, using the chain rule, we get

f(ρλ, λ1, λ2 |x1, x2) = f(ρλ |λ1, λ2) · f(λ1 |x1, x1) · f(λ2 |x1, x2)

= f(ρλ |λ1, λ2) · f(λ1 |x1) · f(λ2 |x2) .

But, being ρλ deterministically related to λ1 and λ2, f(ρλ |λ1, λ2) is nothing but δ(ρλ−λ1/λ2) (see
also other examples in Ref. [1]). Integrating then f(ρλ, λ1, λ2 |x1, x2) over λ1 and λ2 we get Eq. (9).
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we get

f(ρ | x1, T1, x2, T2) ∝
[

ρx1 ·
∫ ∞

0

rα∗−1
2 · e−β∗·r2 dr2

]

·f0(ρ) (88)

∝
[

ρx1 · Γ(α∗)

βα∗

∗

]

·f0(ρ) (89)

∝
[

ρx1 ·(β0+T2+T1 ·ρ)−(α0+x1+x2)

]

·f0(ρ) . (90)

What is interesting with this result is that we can consider the term inside the square
brackets as an effective likelihood (remember that multiplicative factors are irrele-
vant), and therefore we can rewrite Eq. (90) as

f(ρ | x1, T1, x2, T2) ∝ L(ρ ; x1, T1, x2, T2, α0, β0) · f0(ρ) . (91)

For this reason we can serenely proceed assuming a flat prior about ρ, because we can
reshape in a second step the result (see Ref. [1] for details). So, assuming f0(ρ) = k
and comparing the expression inside the square bracket of Eq. (90) with Eq. (60) we
get the normalization just by analogy, thus getting

f(ρ | x1, T1, x2, T2) =
Γ(α0 + x1 + x2)

Γ(x1 + 1) · Γ(α0 + x2 − 1)
· T x1+1

1 · (β0 + T2)
α0+x2−1 ·

ρx1 · (β0 + T2 + T1 · ρ)−(α0+x1+x2) , (92)

or

f(ρ | x1, T1, x2, T2) =
T x1+1
1 ·(β0 + T2)

α0+x2−1

B(x1+1, α0+x2−1)
· ρx1 · (β0 + T2 + T1 · ρ)−(α0+x1+x2),

(93)

that, for a flat prior about r2, i.e. α0 = 1 and β0 = 0, becomes

f(ρ | x1, T1, x2, T2) =
Γ(x1 + x2 + 1)

Γ(x1 + 1) · Γ(x2)
· T x1+1

1 · T x2

2 · ρx1 · (T2 + T1 · ρ)−(x1+x2+1)

(94)

=
(x1 + x2)!

x1! · (x2 − 1)!
· T x1+1

1 · T x2

2 · ρx1 · (T2 + T1 · ρ)−(x1+x2+1)

(95)

The comparison of this result with Eq. (62), obtained using flat priors for r1 and r2,
is at least surprising: the structures of the pdf’s are the same, but x2 in Eq. (62) is
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Figure 14: Dependence of the inference of ρ from the priors. Solid lines: flat priors on r1 and
r2, as in Figs. 11 and 12, following from the causal model depicted in Fig. 10. Dashed lines:
flat priors on r2 and ρ (causal model of Fig. 13.)
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replaced by x2−1 in Eq. (95). Obviously, the two results will coincide for large x2,
and also for small x2 there is not a dramatic difference, as we can see from Fig. 14.
As far as the summaries of the distribution are concerned, we get

mode(ρ) =
x1/T1

(x2 + 1)/T2
(96)

E(ρ) = µρ =
(x1 + 1)/T1

(x2 − 1)/T2

(x2 > 1) (97)

σ(ρ) =

√

µρ ·
(

T2

T1

· x1 + 2

x2 − 2
− µρ

)

(x2 > 2) . (98)

At this point, instead of taking comfort for the fact that the differences are irrel-
evant in practical cases, or tout court ‘rejecting Bayesian methods because of their
dependence of priors’, it is interesting to try to understand the origin of this effect,
certainly related to the priors.

But, before proceeding, let us not forget that Eq. (93) was obtained assuming a
flat prior about ρ and that in that model this prior can be factorized. Therefore the
more general pdf of the rate ratio for the model of Fig. 13 is

f(ρ | x1, T1, x2, T2) =
1

B(x1 + 1, α0 + x2 − 1)
· T x1+1

1 · (β0 + T2)
α0+x2−1 ·

ρx1 · (β0 + T2 + T1 · ρ)−(α0+x1+x2) · f0(ρ) , (99)

having only the limitation (but in reality almost irrelevant, given the flexibility of the
Gamma distribution) of depending on the chosen parametrization for f0(r2).

6.2 Cross-influences of priors

One might say that in the first case, that of Fig. 10, yielding Eq. (62) starting from
f0(r1) = f0(r2) = k there were no priors on ρ. But this is quite not true, because the
flat priors on r1 and r2 impinge on the prior on ρ, due to the relation ρ = r1/r2. The
easiest way to see what is going on is by Monte Carlo, that is, in R,

n = 10^7

rM = 100

r1 = runif(n, 0, rM)

r2 = runif(n, 0, rM)

rho = r1/r2

rho.h <- rho[rho<5]

hist(rho.h, nc=200, col=’blue’, freq=FALSE)

abline(v=1, col=’red’)
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where the selection of the values below ρ=5 is to visualize the more interesting region,
shown in the top plot of Fig. 15 (a more complete script, which also performs the
correct normalization of the histogram, is shown in Appendix B.4). The histogram
is characterized by a plateau till ρ = 1, followed by a slow decreasing. Curiously, the
histogram does not depend on the maximum value rM.

Although it might be bizarre, this histogram shows in essence the prior on ρ we
have been tacitly assumed, when flat priors on r1 and r2 were chosen (as a cross check,
the commented instructions of the script of Appendix B.4, executed one by one, plot
the distribution of r1 assuming a flat prior for r2 and the curious distribution of the
top plot of Fig. 15 for ρ).

In order to have a better insight of what is going on, the bottom plot of the same
figure shows the histogram of log10 ρ. The maximum is at log ρ = 0 and it decreases
symmetrically, exponentially,28 as | log ρ| increases. This symmetry indicates that the
probabilities to get a value of ρ below or above 1 are the same. The same conclusion,
within the uncertainties due to sampling, can be drawn from the histogram in linear
scale, since f(ρ) is ‘about 1/2’ for 0 ≤ ρ ≤ 1. Similarly, from the comparison of the
two histograms we can evaluate, by symmetry arguments, that the probability that ρ
is between 0.1 and 10 is equal to 90% (exact value, indeed as we shall see in a while).

It is interesting to get the distribution shown in the top plot of Fig. 15 making a
transformation of variables, as we have done in Eq. (9) and following equations:29

f(ρ) =

∫ rM

0

∫ rM

0

δ(ρ− r1/r2) · f(r1) · f(r2) dr1 dr2 (100)

=

∫ rM

0

∫ rM

0

r2 · δ(r1 − ρ · r2) ·
1

rM
· 1

rM
dr1 dr2 , (101)

where rM is the maximum value of r1 and r2.
30

28Empirically, we can evaluate, taking two points form the histogram of Fig. 15, the following
exponential: f(log(r)) ≈ 1.16× exp (−2.30 · | log(r)|).

29Perhaps it is worth noticing again (see footnote 27), since this observation seems raised for the
first time in this paper, that Eq. (100) can be seen not only as an extension to continuous variables
of Eq. (2), but also as the joint pdf f(ρ, r1, r2) obtained by the chain rule, that is f(ρ, r1, r2) =
f(ρ | r1, r2) · f(r1) · f(r2), where f(ρ | r1, r2)=δ(ρ−r1/r2), followed by marginalization.

30If you like to reproduce the final result, given by Eq. (103) with Mathematica, here are the
commands to get it, although the output will appear a bit cryptic (but you will recognize the
resulting plot):

rM = 10

frho := Integrate[r2*DiracDelta[r1 - rho*r2]/rM^2, {r1, 0, rM}, {r2, 0, rM}]

frho

Plot[frho, {rho, 0, 5}]
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Figure 15: Distribution of ρ implied by flat priors on r1 and r2 in linear and log scale. The
vertical line in the upper plot shows the discontinuity of the distribution at ρ = 1.
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At this point, some care is needed with the limits of the integral over r2, due to
its ‘natural’ upper limit at rM and to that given by the constraint ρ · r2 ≤ 1, i.e.
r2 ≤ 1/ρ. Therefore, after the trivial integration over r1, we are left with

f(ρ) =
1

r2M
·
∫ ru

2

0

r2 dr2 , (102)

where the upper limit ru2 depends on ρ in the following way:

ρ ≤ 1 −→ ru2 = rM

ρ > 1 −→ ru2 = rM/ρ .

and therefore

ρ ≤ 1 −→ f(ρ) =
1

r2M
·
∫ rM

0

r2 dr2 =
1

r2M
· r

2
M

2
=

1

2

ρ > 1 −→ f(ρ) =
1

r2M
·
∫ rM/ρ

0

r2 dr2 =
1

r2M
· r2M
2 ρ2

=
1

2 ρ2
,

that we summarize as31

f

(

ρ | f(r1)=
1

rM
, f(r2)=

1

rM

)

=







1
2

(0 ≤ ρ ≤ 1)

1
2 ρ2

(ρ > 1) ,
(103)

which, indeed, does not depend on the the maximum values of r1 and r2, as we had
already learned playing with Monte Carlo simulations.32

For completeness, let also make the game of seeing how flat priors on r2 and ρ
(up to r2M and ρM , respectively) are reflected into r1 in the model of Fig.13:

f(r1) =

∫ ρM

0

∫ r2M

0

δ(r1 − ρ r2) · f(ρ) · f(r2) dρ dr2 (104)

f(r1) =

∫ ρM

0

∫ r2M

0

δ(ρ− r1/r2)

r2
· 1

ρM
· 1

r2M
dρ dr2 (105)

=
1

ρM · r2M
·
∫ r2U

r2L

1

r2
dr2 (106)

where the extremes of integration are r2L = r1/ρM and r2U = r2M .

31We can check that P (1/10 ≤ ρ ≤ 10)=9/10, as previously guessed from symmetry arguments.
32Curiously, this distribution has the property that f(1/ρ) = f(ρ). I wonder if there are others.
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Figure 16: Histogram of r1 implied by priors on r2 and ρ flat up to ρM = r2M /s−1 = 10,
compared to the exact evaluation of the pdf (solid line). Dashed lines: pdf of r1 for ρM =
r2M /s−1= 30, 100, 300 (higher to lower, that is from steeper to flatter).

Here is, finally, the pdf of r1, in which we have written explicitly the conditions:

f

(

r1 | f0(r2)=
1

r2M
, f0(ρ)=

1

ρM

)

=
1

ρM · r2M
·log

(

r2M ·ρM
r1

)

(0 < r1 ≤ r2M · ρM)

(107)

An example with ρM = 1 and r2M = 10 s−1 is reported in Fig. 16, in which the exact
pdf (blue solid line) is compared with the Monte Carlo result. The plot also shows
the pdf’s of r1 for increasing maximum values (ρM = r2M/s−1 = 30, 100, 300, from
higher to lower curves). We see that for ρM → ∞ and r2M → ∞ also the distribution
of r1 becomes flat. This is an interesting result, showing that, contrary to the model
of Fig. 10, the model of Fig. 13 can accommodate in practice flat prior distributions
for the three quantities of interest.33

33But when measuring rates, a flat prior has more implications than one might think, as discussed
in chapter 13 of Ref. [13], and therefore a full understanding of the physical case is desirable.

41



6.3 Final distributions of r1 and r2 (starting from flat initial
distributions of r2 and ρ)

For completeness, let us also try to get the closed expressions of f(r1 | x1, T1, x2, T2)
and f(r2 | x1, T1, x2, T2), although only under the assumption of a flat prior of ρ. In
this case this choice is forced from the fact that f0(ρ) cannot be expressed in term of
a conjugate prior which would then simplify the calculations. For the general case, in
fact, we have to change methods, moving to Markov Chain Monte Carlo (MCMC),
as done e.g. in Ref. [1] and as it will be sketched in the next section.

In order to get the pdf of r1, we need to restart from the unnormalized joint
distribution (81), proceeding then like in Eq. (82), but this time integrating over r2
and ρ and absorbing the constant priors in the proportionality factor:

f(r1 | x1, T1, x2, T2) ∝
∫ ∞

0

∫ ∞

0

f̃(. . .) dρ dr2 (108)

∝
∫ ∞

0

∫ ∞

0

rx2

2 · e−T2 r2 · rx1

1 ·e−T1 r1 · δ(r1−ρ · r2) dρ dr2 (109)

∝
∫ ∞

0

∫ ∞

0

rx2

2 · e−T2 r2 · rx1

1 · e−T1 r1 · δ(ρ−r1/r2)

r2
dρ dr2 (110)

∝ rx1

1 · e−T1 r1 ·
∫ ∞

0

rx2−1
2 e−T2 r2 dr2 (111)

∝ rx1

1 · e−T1 r1 , (112)

thus reobtaining, besides normalization, Eq. (35).
Similarly, we have

f(r2 | x1, T1, x2, T2) ∝
∫

∞

0

∫

∞

0

f̃(. . .) dρ dr1 (113)

∝
∫

∞

0

∫

∞

0

rx2

2 · e−T2 r2 · rx1

1 ·e−T1 r1 · δ(r1−ρ · r2) dρ dr1 (114)

∝
∫

∞

0

rx2

2 · e−T2 r2 · (ρ · r2)x1 · e−T1 ρ r2 dρ (115)

∝ rx2+x1

2 · e−T2 r2 ·
∫

∞

0

ρx1 · e−T1 r2 ρ dρ (116)

∝ rx2+x1

2 · e−T2 r2 · Γ(x1 + 1)

(r2 T1)(x1+1)
(117)

∝ rx2+x1

2 · e−T2 r2 · r−(x1+1)
2 (118)

∝ rx2−1
2 · e−T2 r2 . (119)
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Figure 17: Extension of the model of Fig. 13 in order to include efficiencies.

We see that, differently from f(r1 | x1, T1, x2, T2), the power of r2 is, instead of x2,
x2−1, that is we get an effect similar to that found for the distribution of ρ. As a
consequence, expected values and standard deviation of r2 are x2/T2 and

√
x2/T2,

respectively.

7 Use of MCMCmethods to cross-check the closed

results and to analyze extended models

So far our models have been rather simple, missing however several real life compli-
cations. For example, assuming that we do observe the number of counts due to a
Poisson distribution with a given λ = r ·T clearly implies that we are neglecting effi-
ciency issues. In order to include efficiencies we need to modify our graphical model
of Fig. 13 (hereafter we stick to this last model), adding the relevant nodes.

The extended model is shown in Fig. 17, in which we have redefined the symbols,
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keeping X1 and X2 associated to the observed counts and then calling n1 and n2

those ‘produced’ by the Poissonians. Each Xi is then binomially distributed with
parameters ni and ǫi. In summary, listing the ‘causal relations’ from bottom to top,
we have

Xi ∼ Binom(ni, ǫi) (120)

ni ∼ Poisson(λi) (121)

λi = ri · Ti (122)

r1 = ρ · r2 (123)

At this point we can easily build up the joint distribution of all quantities in the net-
work, as we have done in the previous section, and then evaluate the (possibly joint)
distribution of the variables of interest, conditioned by those which are observed
or somehow assumed. Moreover, also the efficiencies ǫ1 and ǫ2 are by themselves
uncertain, and then we have to integrate also over them, taking into account their
probability distributions f(ǫ1) and f(ǫ2). In fact, their value come from test exper-
iments or, more likely, from Monte Carlo simulations of the physics process and of
the detector. So we need to enlarge the model adding four other nodes, taking into
account the probabilistic links

X
(MC)
i ∼ Binom(n

(MC)
i , ǫi) . (124)

We refrain from adding the four nodes in the network of Fig. 17, which will become
more busy in a while. Anyway, we can just assign to ǫ1 and ǫ2 the parameter of the
probability distribution resulting from the inferences based on Monte Carlo simula-
tions (see Ref. [1] for details – remember that, having the nodes ǫ1 and ǫ2 no parents,
they need priors).

What is still missing in the model of Fig. 17 is background. In fact, we do not
only lose events because of inefficiencies, but the ‘experimentally defined class’ can
get contributions from other ‘physical class(es)’ (in general there are several physical
classes contributing as background). Figure 18 shows the extension of the previous
model, in which each Poisson process which describes the signal has just one back-
ground Poisson process. All variables have subscripts S or B, depending if their are
associated to signal or background (with exception of r1 and r2, which are obviously
the two signal rates). As before, the nodes needed to infer the efficiencies are not
shown in the diagram, which is therefore missing eight ‘bubbles’.

At this point it is clear that trying to achieve closed formulae is out of hope, and
we need to use other methods to perform the integrals of interest, namely those based
on Markov Chain Monte Carlo. We show here how to use a powerful package that
does the work for us. But we do it only for the two cases of which we already have
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Figure 18: Extended model of Fig. 17 including also background.

closed solutions in hand, that is the models of Figs. 10 and 13 starting from uniform
priors for the ‘top nodes’. The program we are going to use is JAGS [36] interfaced
to R via the package jrags [37].

[ Introducing MCMC and related algorithms goes well beyond the purpose of this
paper and we recommend Ref. [38] (some examples of application, including R scripts,
are also provided in Ref. [1]). Moreover, mentioning the Gibbs Sampler algorithm
applied to probabilistic inference (and forecasting) it is impossible not to refer to
the BUGS project [39], whose acronym stands for Bayesian inference using Gibbs
Sampler, that has been a kind of revolution in Bayesian analysis, decades ago limited
to simple cases because of computational problems (see also Sec. 1 of Ref.[36]). In the
BUGS project web site [40] it is possible to find packages with excellent Graphical
User Interface, tutorials and many examples [41]. ]

45



7.1 Model A (Fig. 10), with flat priors on r1 and r2

We start from the model of Fig. 10. The code that instructs JAGS about the model
is practically a transcription of the expressions to state that a variable follows a given
distribution. Therefore, since we have

X1 ∼ Poisson(λ1) (125)

X2 ∼ Poisson(λ2) (126)

λ1 = r1 · T1 (127)

λ2 = r2 · T2 (128)

ρ = r1/r2 , (129)

we get

model {

x1 ~ dpois(lambda1)

x2 ~ dpois(lambda2)

lambda1 <- r1 * T1

lambda2 <- r2 * T2

r1 ~ dgamma(1, 1e-6)

r2 ~ dgamma(1, 1e-6)

rho <- r1/r2

}

in which are also included the flat priors of r1 and r2,
34 implemented by Gamma

distributions with α = 1 and β ≪ 1:

r1 ∼ Gamma(1, 10−6) (130)

r2 ∼ Gamma(1, 10−6) (131)

The complete R script which calls rjags and shows the results is provided in Ap-
pendix B.5 (see Ref. [1] for clarifications about the structure of the R code). The
values of (x1 = 3, T1 = 3 s) and (x2 = 6, T2 = 6 s) have been chosen in order to have
small numbers, but with finite expected values and standard deviation, in order to
make a comparison with the results of the closed formulae. The parameter determin-
ing the ‘length’ of the Markov chain has been set at 105.

34Note that, since priors are logically needed, programs of this kind require them, even if they are
flat. This can be seen as an annoyance, but it is instead a power of these programs: first they can
include also non trivial priors; second, even if one wants to use flat priors, the user is forced to think
on the fact that priors are unavoidable, instead of following the illusion that she is using a prior-free
method [42], sometimes very dangerous, unless one does simple routine measurements characterized
by a very narrow likelihood [13].
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Figure 19: Graphical summary of the chain produced by the script of Appendix B.5 imple-
menting the graphical model of Fig. 10.
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The summary figure 19, drawn automatically by R when the command plot()

is called with first argument an MCMC chain object, shows, for each of the three
variables that we have chosen to monitor, the ‘trace’ and the ’density’. The latter is
a smoothed representation of the histogram of the possible occurrences of a variable
in the chain. The former shows the ‘history’ of a variable during the sampling, and
it is important to understand the quality of the sampling. If the traces appear quite
randomic, as they are in this figure, there is nothing to worry. Otherwise we have to
increase the length of the chain so that it can visit each ‘point’ (in fact a little volume)
of the space of possibilities with relative frequencies ‘approximately equal’ to their
probabilities (just Bernoulli theorem, nothing to do with the ‘frequentist definition
of probability’).

Here is the relevant output of the script:

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

r1 1.334 0.6671 0.002110 0.002110

r2 1.167 0.4418 0.001397 0.001397

rho 1.333 0.9444 0.002986 0.002986

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

r1 0.3637 0.8457 1.223 1.700 2.927

r2 0.4701 0.8481 1.111 1.424 2.179

rho 0.2772 0.7048 1.102 1.684 3.770

Exact:

r1 = 1.333 +- 0.667

r2 = 1.167 +- 0.441

rho = 1.333 +- 0.943

As we can see, the agreement between the MCMC and the exact results, evaluated
from Eqs. (64) and (65), is excellent (remember that ‘r1 = 1.333 +- 0.667’ stands
for E(r1) = 1.333 s−1 and σ(r1) = 0.667 s−1).
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7.2 Model B (Fig. 13), with flat priors on ρ and r2

Let us move to the model of Fig. 13, whose implementation in the JAGS language is
the following:

model {

x1 ~ dpois(lambda1)

x2 ~ dpois(lambda2)

lambda1 <- r1 * T1

lambda2 <- r2 * T2

r1 <- rho * r2

r2 ~ dgamma(1, 1e-6)

rho ~ dgamma(1, 1e-6)

}

The complete R script, which uses the same data (x1=3, T1=3 s; x2=6, T2=6 s) is
provided in Appendix B.6. The result is shown in Fig. 20 and the details are given
in the following printouts

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

r1 1.334 0.6694 0.002117 0.002117

r2 1.002 0.4068 0.001286 0.001925

rho 1.595 1.1918 0.003769 0.006058

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

r1 0.3616 0.8438 1.2234 1.704 2.941

r2 0.3671 0.7061 0.9477 1.238 1.940

rho 0.3167 0.8199 1.2923 2.012 4.638

Exact:

r1 = 1.333 +- 0.667

r2 = 1.000 +- 0.408

rho = 1.600 +- 1.200

Again, the agreement between the MCMC and the exact results is excellent.
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Figure 20: Graphical summary of the chain produced by the script of Appendix B.6 imple-
menting the graphical model of Fig. 13.
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Figure 21: Comparison of the distribution of ρ = r1/r2 obtained by the models of Fig. 10
(blue, slightly narrower) and Fig. 13 (red, slightly wider) in the case of (x1 = 3, T1 = 3 s) and
(x1 = 6, T1 = 6 s) using flat priors for the top nodes. The histograms are the JAGS results and
the lines come from the pdf’s in closed form (see text).

7.3 Comparison of the results from the two models

An overall comparison of the two models, again based on the observations of 3 counts
in 3 s from process 1 and 6 counts in 6 s from process 2, is shown in Fig. 21, while
expected values and standard deviations (separated by ‘±’) calculated from the closed
formulae are summarized in the following table.

Model A (Fig. 10) Model B (Fig. 13)
[ f0(r1)=k & f0(r2)=k ] [ f0(ρ)=k & f0(r2)=k ]

r1 (s
−1) 1.33± 0.67 1.33± 0.67

r2 (s
−1) 1.17± 0.44 1.00± 0.41
ρ 1.33± 0.94 1.60± 1.20

As we have seen in Fig. 14, the second model produces a distribution of ρ with higher
expected value and higher standard deviation.
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7.4 Dependence of the rate ratio from a physical quantity

Another interesting question is how to approach the problem of a ratio of rates that
depends on the value of another physical quantity. That is we assume a dependence
of ρ from v (symbol for a generic variable),

ρ = g(v; θρ) , (132)

with θρ the set of parameters of the functional dependence. The simplest and best
understood case is the linear dependence

ρ = m · v + c , (133)

where θρ = {m, c}, treated in detail in Ref. [43] where we used the same approach we
are adopting here. In analogy to what done in Fig. 1 there, we can extend the Model
B of Fig. 13 to that of Fig. 22 (we continue to neglect efficiency and background issues
in order to focus to the core of the problem). Moreover, as in Fig. 1 of Ref. [43], we
have considered the fact that the physical quantity v is ‘experimentally observed’ as
vO. In the simple case of a linear dependence the model is described by the following
relations among the variables

X1j ∼ Poisson(λ1j ) (134)

X2j ∼ Poisson(λ2j ) (135)

λ1j = rji · T1j (136)

λ2j = rj2 · T2j (137)

r1j = ρj · r2j (138)

ρj = m · vj + c (139)

vOj
∼ N (vj, σEj

) , (140)

in which we have assumed a Gaussian (‘normal’) error function of vOj
around vj ,

with standard deviations σEj
. But the description of the model provided by the

above relations is not complete (besides the complications related to inefficiencies
and background, that we continue to neglect). In fact, we miss priors for vj, r2j
and θρ, as they have no parent nodes (instead, we continue to consider T1j and T2j

‘exactly known’, being their uncertainty usually irrelevant).
The priors which are easier to choose are those of vj , if their values are ‘well

measured’, that is if σEj
are small enough. We can then confidently use flat priors,

as done e.g. for the ‘unobserved’ µyi of Fig. 1 in Ref. [43].
Also the priors about θρ can be chosen quite vague, paying however some care in

order to forbid negative values of ρ. Incidentally, having mentioned the simple case
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Figure 22: Further extension of the model of Fig. 13 (neglecting the ‘complications’ of the
models of Figs. 17 and 18) to take into account that each value ρj might depend on the physical
quantity vj , measured as vmj

via the set of parameters θ

of linear dependence, an important sub-case is when m is assumed to be null: the
remaining prior on c becomes indeed the prior on ρ, and the inference of c corresponds
to the inferred value of ρ having taken into account several instances of X1 and X2

– this is indeed the question of the ‘combination of values of ρ’ on which we shall
comment a bit more in detail in the sequel.

As far as the priors of the rates are concerned, one could think, a bit naively, that
the choice of independent flat priors for r2j could be a reasonable choice. But we
need to understand the physical model underlying this choice. In fact, most likely,
as the ratio ρ might depends on v, the same could be true for r2, but perhaps with
a completely different functional dependence. For example r1 and r2 could have a
strong dependence on v, e.g. they could decrease exponentially, but, nevertheless,
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Figure 23: Extension of the model of Fig. 22, but making also r2 depend on v according to a
suited law depending on the set of parameters θr2 .

their ratio could be independent of v, or, at most, could just exhibit a small linear
dependence. Therefore we have to add this possibility into the model, which then
becomes as in Fig. 23, in which we have included a set of parameters θr2 , such that

r2 = h(v; θr2) , (141)

and, needless to say, some priors are required for θr2 .
At this point, any further consideration goes beyond the rather general purpose of

this paper, because we should enter into details that strongly depend on the physical
case. We hope that the reader could at least appreciate the level of awareness that
these graphical models provide. The existence of computing tools in which the models
can be implemented makes then nowadays possible what decades ago was not even
imaginable.
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7.5 Combining ratios of rates

Let us end the work with the related topic of ‘combining several values’ of ρ, a
problem we have already slightly touched above. Let us start phrasing it in the terms
we usually hear about it. Imagine we have in hand N instances of (X1, T1, X2, T2).
From each of them we can get a value of ρ with ‘its uncertainty’. Then we might be
interested in getting a single value, combining the individual ones.

The first idea that might come to the mind is to apply the well known weighted
average of the individual values, using as weights the inverses of the variances. But,
before doing it, it is important to understand the assumptions behind it, that is some-
thing that goes back to none other than Gauss, and for which we refer to Refs. [29, 44].
The basic idea of Gauss was to get two numbers (let us say ‘central value’ and stan-
dard deviation – indeed Gauss used, instead of the standard deviation, what he called
‘degree of precision’ and ‘degree of accuracy’ [44], but this is an irrelevant detail) such
that they contain the same information of the individual values. In practice the rule of
combination had to satisfy what is currently known as statistical sufficiency. Now it
is not obvious at all that the weighted average using E(ρ) and σ(ρ) satisfies sufficiency
(see e.g. the puzzle proposed in the Appendix of Ref. [44]).

Therefore, instead of trying to apply the weighted average as a ‘prescription’, let
us see what comes out applying consistently the rules of probability on a suitable
model, restarting from that of Fig. 23. It is clear that if we consider meaningful a
combined value of ρ for all instances of (X1, T1, X2, T2) it means we assume ρ not
depending on a quantity v. However, r2 could. This implies that the values of r2 are
strongly correlated to each other.35 Therefore the graphical model of interest would
be that at the top of Fig. 24. Again, at this point there is little more to add, because
what would follow depends on the specific physical model.

A trivial case is when both rates, and therefore their ratio, are assumed to be
constant, although unknown, yielding then the graphical model shown in the bottom
diagram of Fig. 24, whose related joint pdf, evaluated by the best suited chain rule,
is an extension of Eqs. (78)-(81)

f(. . .) =

[

N
∏

j=1

f(x2j | r2, T2j)

]

·f0(r2)·
[

N
∏

j=1

f(x1j | r1, T1j)

]

·f(r1 | r2, ρ)·f0(ρ) , (142)

35At this point a clarification is in order. When we make fits and say, again with reference to
Fig. 1 of Ref. [43], that the observations yi are independent from each other we are referring to the
fact that each yi depends only on its µyi

, e.g. yi ∼ N (µyi
, σY ), but not on the other yj 6=i. Instead,

the true values µyi
are certainly correlated, being µy = µy(µx; θ).
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Figure 24: Possible reductions of the model of Fig. 23 for the ‘combination’ of ρ (see text).
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from which the unnormalized joint pdf follows:

f̃(. . .) ∝
[

N
∏

j=1

r
x2j

2 · e−T2j
r2

]

·f0(r2)·
[

N
∏

j=1

r
x1j

1 ·e−T1j
r1

]

· δ(r1 − ρ · r2) · f0(ρ) (143)

∝
[

r
x2tot

2 · e−T2tot r2
]

·f0(r2) ·
[

r
x1tot

1 ·e−T1tot r1
]

· δ(r1 − ρ · r2) · f0(ρ) . (144)

We recognize the same structure of Eq. (81), with x1 replaced by x1tot =
∑

j x1j T1

by T1tot =
∑

j T1j , x2 by x2tot =
∑

j x2j and T2 by T2tot =
∑

j T2j . We get then the
same result obtained in Sec. 6.1 if we use the total numbers of counts in the total
times of measurements. This is a simple and nice result, close to the intuition, but
we have to be aware of the model on which it is based.

8 Conclusions

In this paper we have dealt with the often debated issue of ‘ratios of small numbers
of events’, approaching it from a probabilistic perspective. After having shown the
difference between predicting numbers of counts (and their ratios) and inferring the
Poisson parameters (and their ratios) on the base of the observed numbers of counts,
the attention has been put on the latter, “a problem in the probability of causes, . . .
the essential problem of the experimental method” [21]. Having the paper a didactic
intent, the basic ideas of probabilistic inference have been reminded, together with
the use of conjugate priors in order to get closed results with minimum effort. It has
been also shown how to perform the so called ‘propagation of uncertainties’ in closed
forms, which has required, for the purposes of this work, to derive the probability
density function of the ratio of Gamma distributed variables. And, as byproducts,
the ‘curious’ pdf of the ratio of two uniform variables has been derived and a new
derivation of the formula to get the pdf of a function of variables has been devised.

The importance of graphical models has been stressed. In fact, they are not only
very useful to form a global, clearer vision of the problem, but also to possibly take
into account alternative models. In the case of rather simple models it has been
shown how to write down the joint distribution of all variables, from which the pdf
of the variables of interest follows. In some cases, thanks to reasonable (or at least
well stated) assumptions, closed results have been obtained, but we have also seen
how to use tools based on MCMC, both to check the closed results and to tackle
more realistic models (samples of programming code are provided in Appendix B).

Finally, as far as the issue of ‘combination of ratios’ is concerned, it has been shown
how the solution depends crucially on the physical model describing the variation of
the rates and/or their ratio in function of an external variable. Therefore only general
indications on how to approach the problem have been given, highly recommending
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the use of MCMC tools (my preference for small problem with limited amount of
data goes presently to JAGS/rjags, but particle physicists might prefer BAT [45], or
perhaps the more recent, Julia [46] based, BAT.jl [47]).

I am indebted to Alfredo (Dino) Esposito for many discussions on the probabilistic
and technical aspects the paper, some of which admittedly based on Ref. [1], and for
valuable comments on the manuscript.
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Appendix A – From the Bernoulli process to the

Poisson process: binomial, Poisson and exponential

distributions (and more)

A1. Reminder of basic formulae

Let us start reminding the well known binomial and Poisson distributions, taken
verbatim from Ref. [13], just to introduce the notation used in this note.

Binomial distribution
X ∼ Binom(n, p) (hereafter “∼” stands for “follows”); Binom(n, p) stands for
binomial with parameters n and p:

f(x |n, p) = n!

(n− x)! x!
· px · (1− p)n−x ,







n = 1, 2, . . . ,∞
0 ≤ p ≤ 1
x = 0, 1, . . . , n

.

Expected value, standard deviation and variation coefficient [ v ≡ σ(X)/E(X) ]:

E(X) = n · p
σ(X) =

√

n · p · (1− p)

v =

√

n · p · (1− p)

n · p ∝ 1√
n
.

Poisson distribution
X ∼ Poisson(λ):

f(x | λ) = λx

x!
· e−λ

{

0 < λ < ∞
x = 0, 1, . . . ,∞ .

Expected value, standard deviation and variation coefficient

E(X) = λ

σ(X) =
√
λ

v = 1/
√
λ.

Binomial → Poisson

Binom(n, p) −−−−−−−−−→
n → ∞
p → 0
(n · p = λ)

Poisson(λ) .
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A2. Bernoulli process and related distributions

A Bernoulli process is characterized by a probability p of success, to which is as-
sociated the uncertain number X = 1, and probability 1 − p of failure, to which is
associated the uncertain number X = 0. Therefore, technically, a Bernoulli distribu-
tion is just a binomial with n = 1. But conceptually it is very important, because it
is the basic process from which other distributions arise:

• a binomial distribution describes the probability of the total number of successes
in n independent Bernoulli trials ‘having’ (or more precisely ‘believed to have’)
the same probability of success p;

• a geometric distribution describes the probability (again assuming independence
and constant p) of the trial at which36 the first success occurs;

• a Pascal distribution (or negative binomial distribution) concerns finally the
trial at which the k-th success occurs.37

A3. Poisson process

Let us now imagine phenomena that might happen at random at a given instant38

0 t

36Indeed, it can also be found in the literature as the probability of the number of failures before

the first success occurs’ (for example, my preferred vademecum of Probability Distributions, that is
the homonymous app [31], reports both distributions).

37Also of this distribution there are two flavors, the other one describing the number of trials
before the k-th success [31].

38One could also think at ‘things’ occurring in ‘points’ in some different space. All what we are
going to say in the domain of time can be translated in other domains.
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such that

• the probability of one count in ∆T is proportional to ∆T , with ∆T ‘small’,
that is

p = P (“1 count in ∆T ′′) = r∆T

where the proportionality factor r is interpreted as the intensity of the process;

• the probability that two or more counts occur in ∆T is much smaller than the
probability of one count (the condition holds if ∆T is small enough, that will
be the case of interest):

P (≥ 2 counts) ≪ P (1 count) ;

• what happens in one interval does not depend on what happened (or ‘will
happen’) in other intervals (if disjoint).

Let us divide a finite time interval T in n small intervals, i.e. such that T = n∆T .
Considering the possible occurrence of a count in each small interval ∆T as an inde-
pendent Bernoulli trial, of probability

p = r∆T = r · T
n
,

if we are interested in the total number of counts in T we get a binomial distribution,
that is, indicating by X the uncertain number of interest,

X ∼ Binom(n, p) .

But when n is ‘very large’ (‘n → ∞’) we obtain a Poisson distribution with

λ = n ·
(

r · T
n

)

= r · T ,

equal to the intensity of the process times the finite time of observation. In particular,
we can see that the physical quantity of interest is r, while the Poisson parameter λ
is a kind of ancillary quantity, depending on the measurement time.

A4 – Waiting time to observe the k-event

It is clear that if we are interested in the probability that the first count occurs in the
i-th time interval of amplitude ∆T , we recover ‘in principle’ a geometric distribution.
But since ∆T can be arbitrary small, it makes no sense in numbering the intervals.
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Nevertheless, thinking in terms of the n Bernoulli process can be again very useful.
Indeed, the probability that the first count occurs after the x − th trial is equal to
the probability that it never occurred in the trials from 1 to x:

P (X > x) = (1− p)x .

In the domain of time, indicating now by T the time at which the first event can
occur, the probability that this variable is larger than the value t, the latter being n
times ∆T , is given by

P (T > t) = (1− p)n

=

(

1− r · t
n

)n

−−−−→
n→∞

e−r t .

As a complement, the cumulative distribution of T , from which the probability density
function follows, is given by

F (t | r) ≡ P (T ≤ t) = 1− P (T > t) = 1− e−r t

f(t | r) ≡ dF (t | r)
dt

= r e−r t .

The time at which the first count is recorded is then described by an exponential
distribution having expected value, standard deviation and variation coefficient equal
to

E(T ) = 1/r [≡ τ ]

σ(T ) = 1/r = τ

v = 1 ,

while the mode (‘most probable value’) is always at T = 0, independently of r.
As we can see, as it is reasonable to be, the higher is the intensity of the process,

the smaller is the expected time at which the first count occurs (but note that the
distribution extends always rather slowly to T → ∞, a mathematical property re-
flecting the fact that such a distribution has always a 100% standard uncertainty, that
is v = 1). Moreover, since the choice of the instant at which we start waiting from
the first event is arbitrary (this is related to the so called ‘property of no memory’
of the exponential distribution, which has an equivalent in the geometric one), we
can choose it to be the instant at which a previous count occurred. Therefore, the
same distribution describes the time intervals between the occurrence of subsequent
counts.
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Once we have got the probability distribution of k = 1, using probability rules we
can get that of k = 2, reasoning on the fact that the associated variable is the sum
of two exponentials, and so on. We shall not enter into details,39 but only say that
we end with the Erlang distribution, given by

f(t | r, k) =
rk

(k − 1)!
· tk−1 · e−r t

{

r > 0
k : integer,≥ 1

The extension of k to the continuum, indicated for clarity as c, leads to the famous
Gamma distribution (here written for our variable t)

f(t | r, c) =
rc

Γ(c)
· tc−1 · e−r t

{

r > 0
c > 0

with r the ‘rate parameter’ (and it is now clear the reason for the name) and c
the ‘shape parameter’ (the special cases in which c is integer help to understand its
meaning), having expected value and standard deviation equal to c/r and

√
c/r, both

having the dimensions of time (this observation helps to remember their expression).
However, since in the text the symbol r is assigned to the intensity of the physical

process of interest, we are going to use for the Gamma distribution the standard sym-
bols met in the literature (see e.g. [31] and [32]) applying the following replacements:

c → α

r → β .

Using also the usual symbol X for generic variable, here is a summary of the most
important expressions related to the Gamma distribution (we also add the mode,
easily obtained by the condition of maximum40):

39It is indeed a useful exercise to derive the Erlang distribution starting from

f(t | r, k=2) =

∫ ∞

0

∫ ∞

0

δ(t− t1 − t2) · f(t1 | r, k=1) · f(t2 | r, k=1) dt1dt2 ,

and going on until the general rule is obtained.
40Taking the log of f(x |α, β), we get the condition of maximum by

∂

∂x
log f(x |α, β) =

α− 1

x
− β = 0 ,

resulting in x = (α − 1)/β.
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X ∼ Gamma(α, β):

f(x |α, β) =
β α

Γ(α)
· xα−1 · e−β x

{

α > 0
β > 0

E(X) =
α

β

Var(X) =
α

β2

σ(X) =

√
α

β

mode(X) =

{

0 if α < 1
α−1
β if α ≥ 1

Here is, finally, a summary of the distributions derived from the ‘apparently insignif-
icant’ Bernoulli process:

For completeness, let us also remind that:

• the famous χ2 distribution is technically a Gamma, with α = ν/2 and β = 1/2;

• most distributions appearing in this scheme, with the obvious exception of
the geometric and the exponential, which have fixed shape, ‘tend to a Gaussian
distribution’ for some values of the parameters. In particular, for what concerns
this paper, the Poisson distribution tends to ‘normality’ for ‘large’ values of λ,
as well known. However, it is perhaps worth remembering that, in general,
such a limit applies to the cumulative distribution, and not to the probability
function, defined for the Poisson distribution only for non negative integers:

F (x |Poisson(λ)) −−−−−→
‘λ→∞′

F (x | N (λ,
√
λ)) .
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Appendix B – R and JAGS code

B.1 – Distribution of the difference of Poisson distributed
counts

dPoisDiff <- function(d, lambda1, lambda2) {

xmax = round(max(lambda1,lambda2)) + 20*sqrt(max(lambda1,lambda2))

sum( dpois((0+d):xmax, lambda1) * dpois(0:(xmax-d), lambda2) )

}

l1 = 1

l2 = 1

d = -8:8

fd = rep(0,length(d))

for(i in 1:length(d)) fd[i] = dPoisDiff(d[i], l1, l2)

E.d <- sum(d*fd)

E.d2 <- sum(d^2*fd)

sigma.d <- sqrt(E.d2 - E.d^2)

cat(sprintf(" d: %.3f +- %.3f ", E.d, sigma.d))

cat(sprintf(" (exact: %.3f +- %.3f)\n", l1-l2, sqrt(l1+l2)))

barplot(fd, names=d, col=’cyan’, xlab=’d’, ylab=’f(d)’)

(The function dPoisDiff() is simple implementation of the reasoning shown in the text.
For a more professional function see footnote 5.)

B.2 – Monte Carlo estimate of the pdf of ρ = λ1/λ2 (flat priors
on λ1 and λ2)

n=10^7

x1 = 1

x2 = 1

lambda1 = rgamma(n, x1+1, 1)

lambda2 = rgamma(n, x2+1, 1)

rho = lambda1/lambda2

E.rho = mean(rho)

sigma.rho = sd(rho)

max.rho.hist = 8

rho = rho[rho<max.rho.hist]

hist(rho, nc=150, col=’cyan’, freq=FALSE, xlim=c(0,max.rho.hist), main=’’,

xlab=expression(paste(rho, ’ = ’, lambda[1], ’/’, lambda[2])) )
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# dummy histogram for rough evaluation of the mode

h.rx <- hist(rho, nc=1000, plot=FALSE )

mode = h.rx$mids[which.max(h.rx$density)]

abline(v=mode, col=’red’)

abline(v=E.rho, col=’blue’)

p.overflow = (n - length(rho))/n * 100

cat(sprintf("fraction of overflows %.2f%%\n", p.overflow))

text(6,0.63-0.05,expression(paste(x[1], ’ = ’, x[2], ’ = 1’)),

cex=1.6,col=’blue’)

text(6,0.54-0.05,sprintf("mean = %.2f; std = %.2f", E.rho, sigma.rho),

cex=1.5, col=’blue’)

text(6,0.46-0.05, sprintf("[ Overflow: %.2f%% ]", p.overflow),

cex=1.5, col=’gray’)

text(6,0.37-0.05, sprintf("[ Mode = %.2f ]", mode), cex=1.5, col=’red’)

B.3 – Ratio of rates: exact evaluations vs simulation

mode.rho <- function(a1,b1, a2,b2) ifelse(a2 >-1, b2/b1* (a1-1)/(a2+1), Inf)

E.rho <- function(a1,b1, a2,b2) ifelse(a2 > 1, b2/b1* a1 /(a2-1), Inf)

var.rho <- function(a1,b1, a2,b2) ifelse(a2 > 2,

(b2/b1)^2 * ( a1 /(a2-1) * ((a1+1)/(a2-2) - a1/(a2-1))), Inf)

sigma.rho <- function(a1,b1, a2,b2) ifelse(a2 > 2,

sqrt(var.rho(a1,b1, a2,b2)), Inf)

f.rho <- function(rho, a1,b1, a2,b2) {

lf = ( a1*log(b1) + a2*log(b2) + (a1-1)*log(rho)

+ (-a1-a2)*log(b2+rho*b1) - lbeta(a1,a2) )

return(exp(lf))

}

x1 = 1; T1 = 1

x2 = 2; T2 = 2

a1 = x1+1; b1 = T1

a2 = x2+1; b2 = T2

rho.max = 8

n = 10^6

cat(sprintf("x1,T1 = %.2f, %.2f; ", x1, T1 ))

cat(sprintf("x2,T2 = %.2f, %.2f; \n", x2, T2 ))
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cat(sprintf("alpha1,beta1 = %d, %d; ", a1, b1 ))

cat(sprintf("alpha2,beta2 = %d, %d \n", a2, b2 ))

Erho <- E.rho(a1,b1, a2,b2)

Srho <- sigma.rho(a1,b1, a2,b2)

cat(sprintf("mode = %.3f; E() = %.3f ; sigma %.3f\n",

mode.rho(a1,b1, a2,b2),

Erho, Srho ))

x1.r <- rgamma(n, a1, b1)

x2.r <- rgamma(n, a2, b2)

rho.r <- x1.r/x2.r

Mrho <- mean(rho.r)

SDrho <- sd(rho.r)

cat(sprintf("MC: mean = %.3f ; sigma %.3f\n", Mrho, SDrho ))

rho.r = rho.r[rho.r<rho.max] # only for histogram!!

# Warning!! It changes normalization!

norma = length(rho.r)/n

h <- hist(rho.r, nc=150, plot=FALSE)

h$density <- h$density * norma

h$counts <- h$counts * norma

plot(h, col=’cyan’, freq=FALSE, main=’’, xlim=c(0,rho.max),

ylim=c(0,0.52),

xlab=expression(rho), ylab=expression(paste(’f(’,rho,’)’)))

rho = seq(0, rho.max, len=101)

points(rho, f.rho(rho, a1,b1, a2,b2), ty=’l’, col=’blue’)

text(6,0.46,bquote(x[1] == .(x1) ~ "," ~ T[1] == .(T1) ), cex=1.5, col=’blue’)

text(6,0.41,bquote(x[2] == .(x2) ~ "," ~ T[2] == .(T2) ), cex=1.5, col=’blue’)

Erho.s <- round(Erho, 2)

Srho.s <- round(Srho, 2)

mode.s <- round(mode.rho(a1,b1, a2,b2),2)

Mrho.s <- round(Mrho,2)

SDrho.s <- round(SDrho,2)

text(6,0.35,bquote(E(rho) == .(Erho.s) ~ "," ~

sigma(rho) == .(Srho.s) ), cex=1.5, col=’blue’)

text(6,0.28,bquote(mode(rho) == .(mode.s) ), cex=1.5, col=’red’)

text(6,0.21,bquote("mean" == .(Mrho.s) ~ "," ~

"std" == .(SDrho.s) ), cex=1.5, col=’blue’)

abline(v=Erho, col=’blue’)

abline(v=mode.rho(a1,b1, a2,b2), col=’red’,)
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B.4 – Distribution of ρ implied by uniform priors on r1 and r2

n = 10^7

rM = 100

r1 = runif(n, 0, rM)

r2 = runif(n, 0, rM)

rho = r1/r2

rho.h <- rho[rho<5] # for the histogram

norma = length(rho.h)/n # normalization

h <- hist(rho.h, nc=100, plot=FALSE)

h$density <- h$density * norma

h$counts <- h$counts * norma

plot(h, col=’cyan’, freq=FALSE, main=’’, xlim=c(0,5),

ylim=c(0,0.52),

xlab=expression(rho), ylab=expression(paste(’f(’,rho,’)’)))

abline(v=1, col=’red’)

# r1.check = rho*r2

# hist(r1.check, nc=200, col=’blue’, freq=FALSE, xlim=c(0,rM))

B.5 – Example of JAGS inference of rates and their ratio for
the model of Fig. 10

#------------ Data --------------------------------------------

x1 = 3; T1=3

x2 = 6; T2=6

nr = 1e5

#------------- JAGS model --------------------------------------

library(rjags)

model = "tmp_model.bug" # name of the model file (’temporary’)

write("

model {

x1 ~ dpois(lambda1)

x2 ~ dpois(lambda2)

lambda1 <- r1 * T1

lambda2 <- r2 * T2

r1 ~ dgamma(1, 1e-6)

r2 ~ dgamma(1, 1e-6)

rho <- r1/r2

}

", model)

71



#------------ JAGS call via rjags ------------------------------

data <- list(x1=x1, T1=T1, x2=x2, T2=T2)

jm <- jags.model(model, data)

update(jm, 100)

to.monitor <- c(’r1’, ’r2’, ’rho’)

chain <- coda.samples(jm, to.monitor, n.iter=nr)

#------------ Results -----------------------------------------

print(summary(chain))

plot(chain, col=’blue’)

cat(sprintf("Exact: \n"))

cat(sprintf(" r1 = %.3f +- %.3f\n", (x1+1)/T1, sqrt(x1+1)/T1))

cat(sprintf(" r2 = %.3f +- %.3f\n", (x2+1)/T2, sqrt(x2+1)/T2))

mu.rho <- ((x1+1)/T1)/(x2/T2)

sigma.rho <- sqrt(mu.rho*(T2/T1*(x1+2)/(x2-1)-mu.rho))

cat(sprintf(" rho = %.3f +- %.3f\n", mu.rho, sigma.rho))

B.6 – Example of JAGS inference of rates and their ratio for
the model of Fig. 13

#------------ Data --------------------------------------------

x1 = 3; T1=3

x2 = 6; T2=6

nr = 1e5

#------------- JAGS model --------------------------------------

library(rjags)

model = "tmp_model.bug" # name of the model file (’temporary’)

write("

model {

x1 ~ dpois(lambda1)

x2 ~ dpois(lambda2)

lambda1 <- r1 * T1

lambda2 <- r2 * T2

r1 <- rho * r2

r2 ~ dgamma(1, 1e-6)

rho ~ dgamma(1, 1e-6)

}

", model)
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#------------ JAGS call via rjags ------------------------------

data <- list(x1=x1, T1=T1, x2=x2, T2=T2)

jm <- jags.model(model, data)

update(jm, 100)

to.monitor <- c(’r1’, ’r2’, ’rho’)

chain <- coda.samples(jm, to.monitor, n.iter=nr)

#------------ Results -----------------------------------------

print(summary(chain))

plot(chain, col=’blue’)

cat(sprintf("Exact: \n"))

cat(sprintf(" r1 = %.3f +- %.3f\n", (x1+1)/T1, sqrt(x1+1)/T1))

cat(sprintf(" r2 = %.3f +- %.3f\n", x2/T2, sqrt(x2)/T2) )

mu.rho <- ((x1+1)/T1)/((x2-1)/T2)

sigma.rho <- sqrt(mu.rho*(T2/T1*(x1+2)/(x2-2)-mu.rho))

cat(sprintf(" rho = %.3f +- %.3f\n", mu.rho, sigma.rho))
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