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What is the probability that a vaccinated person is

shielded from Covid-19?

A Bayesian MCMC based reanalysis of published data

with emphasis on what should be reported as ‘efficacy’

Giulio D’Agostini1 and Alfredo Esposito2

Abstract

Based on the information communicated in press releases, and finally pub-
lished towards the end of 2020 by Pfizer, Moderna and AstraZeneca, we have
built up a simple Bayesian model, in which the main quantity of interest plays
the role of vaccine efficacy (‘ǫ’). The resulting Bayesian Network is processed
by a Markov Chain Monte Carlo (MCMC), implemented in JAGS interfaced
to R via rjags. As outcome, we get several probability density functions (pdf’s)
of ǫ, each conditioned on the data provided by the three pharma companies.
The result is rather stable against large variations of the number of people
participating in the trials and it is ‘somehow’ in good agreement with the re-
sults provided by the companies, in the sense that their values correspond to
the most probable value (‘mode’) of the pdf’s resulting from MCMC, thus
reassuring us about the validity of our simple model. However we maintain
that the number to be reported as vaccine efficacy should be the mean of the
distribution, rather than the mode, as it was already very clear to Laplace
about 250 years ago (its ‘rule of succession’ follows from the simplest problem
of the kind). This is particularly important in the case in which the number of
successes equals the numbers of trials, as it happens with the efficacy against
‘severe forms’ of infection, claimed by Moderna to be 100%. The implication
of the various uncertainties on the predicted number of vaccinated infectees is
also shown, using both MCMC and approximated formulae.

“. . . the most important questions of life . . .

are indeed for the most part only problems in probability”

“we find that an event having occurred successively

any number of times, the probability that it will happen again

the next time is equal to this number increased by unity

divided by the same number, increased by two units”

(Laplace)
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1 Introduction

Our perspectives about living with Covid-19 changed dramatically in the last months
of 2020 with the results from the vaccine trials by Pfizer and Moderna and, a bit later,
by AstraZeneca. The first one claimed a 90% efficacy [1] (then updated to 95% in
a further press release [2] and in a much more detailed paper [3]) and the second
one 94.5% [4] (later updated to 94.1% [5, 6]), while AstraZeneca press released and
then published two values (90.0% and 62.1%) depending on two (unplanned [7, 8])
different experimental settings.1

In an unpublished first paper2 based on the first press releases by Pfizer and Mod-
erna, we remarked that, since the announcements did not mention any uncertainty,
we understood that the initial Pfizer’s number was the result of a rounding, with
uncertainty of the order of the percent. But then, we continued, we were highly
surprised by the Moderna’s announcement, providing the tenths of the percent, as if
it were much more precise. We had indeed the impression that the ‘point five’ was
taken very seriously, not only by media speakers, who put the emphasis on the third
digit, but also by experts from which we would have expected a phrasing implying
some uncertainty in the result (see e.g. Ref. [10]). The same remarks apply to the
later AstraZeneca announcement. In fact, a fast exercise shows that, in order to have
an uncertainty of the order of a few tenths of percent, the number of vaccine-treated
individuals that got the Covid-19 had to be at least of the order of several hundreds.
But this was not the case. In fact, the actual numbers were indeed much smaller,
as we learned from the Moderna first press release [4]: “This first interim analysis
was based on 95 cases, of which 90 cases of COVID-19 were observed in the placebo
group versus 5 cases observed in the mRNA-1273 group, resulting in a point estimate
of vaccine efficacy of 94.5% (p < 0.0001)”.

Now, it is a matter of fact that if a physicist reads for an experimental result a
number like ‘5’, she tends to associate to it, as a rule of thumb, an uncertainty of the
order of its square root, that is ≈ 2.2. Applied to the Moderna claims, this implies an
inefficacy of about (5.5±2.3)%, or an efficacy of about (94.5±2.3)%. Another reason
that made us worry about the result was, besides the absence of an associated un-
certainty [11], the “p < 0.0001” accompanying it, being us extremely critical against
p-values and other frequentist prescriptions (see Ref. [12] and references therein).

In our first paper [9] we tried then to understand whether it was possible to get
an idea of the possible values of efficacy consistent with the data, each one associated
with its degree of belief on the basis of the few data available in those days. In
other words, our purpose was and is to arrive to a probability density function (pdf),

1In one of the experimental setting, indicated here as ‘low dose’-‘standard dose’, the first vaccine
dose was half of the planned one (‘standard dose’-‘standard dose’ setting).

2The paper is available on the web site of one of the authors, together with the slides of a related
webinar and the code to reproduce the results [9].
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release
date

sample size
vaccine - placebo

nVI
nPI

nVIs
nPIs

Moderna-1 [4] Nov 16 14134 - 14073 5 90 – –
Moderna-2 [5, 6] Nov 30 (same) 11 185 0 30
Pfizer [2, 3] Nov 18 18198 - 18325 8 162 1 9
AstraZeneca LD-SD [7, 8] Nov 23 1367 - 1374 3 30 – –
AstraZeneca SD-SD [7, 8] Nov 23 4440 - 4455 27 71 – –

Table 1: Bare data concerning the number of infected in the vaccine group (nVI
) and in

the placebo group (nPI
). ‘Moderna-1’ is just an interim result, based on the same sample of

‘Moderna-2’, that we had used in Ref. [9]. In the case of Moderna and Pfizer comprehensive
results, also the numbers for the occurrence of ‘severe forms of infection’ were reported (nVIs

and nPIs
, respectively). In the case of AstraZeneca LD-SD stands for ‘low dose followed by

standard dose’, SD-SD for ‘two consecutive standard doses’.

efficacy value 95% ‘uncertainty interval’
Moderna-1 [4] 0.945 ———-
Moderna-2 [6] 0.941 [0.893, 0.968] (confidence interval)
Pfizer [3] 0.950 [0.903, 0.976] (credible interval)
AstraZeneca LDSD [7] 0.900 [0.674, 0.970] (confidence interval)
AstraZeneca SDSD [7] 0.621 [0.410, 0.757] (confidence interval)

Table 2: Published vaccine efficacy (value and 95% ‘uncertainty interval’).

although not obtained in closed form, of the quantity of interest.
In the present paper we not only extend our analysis to the published data [3, 6, 8]

(see Tab. 1), but can also compare our results with the published ones, summarized
in Tab. 2, which also include an indication of the uncertainty to be associated with
them. What makes us confident about the validity of our simple model is that the
press released and finally published results concerning ‘efficacy’ (see Tab. 2) are in
excellent agreement with the mode of the distribution we get analyzing our model
through a Markov Chain Monte Carlo (MCMC). This is not a surprise to us, indeed.
In fact we are aware of statistical methods which tend to produce as ‘estimate’ the
most probable value of the quantity of interest, that would be inferred starting from
a flat prior [13]. The fact that different kind of ‘uncertainty intervals’ are provided
will be discussed at the due point. We only anticipate here that they have in this
case equivalent meaning.

The paper is organized as follows. In Sec. 2 we describe and show how to imple-
ment in JAGS [14] the causal model connecting in a probabilistic way the quantities
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of interest, among which the primary role is played by the ‘efficacy’ ǫ. We also give, in
footnote 4, some indications on how to proceed in order to get exact results for f(ǫ),
although they can only be obtained numerically. The MCMC results are shown and
discussed in Sec. 3. Then the question asked in the title is tackled, with a didactic
touch and including some historical remarks, in Sec. 4. The observation that the
resulting pdf’s of ǫ can by approximated rather well by Beta distributions (Sec. 5)
leads us to discuss in further detail the role of the priors, initially chosen simply
uniform. Then Sec. 6 is devoted to the related question of predicting the number of
vaccinated people that shall result infected, taking into account several sources of un-
certainty. Finally, in Sec. 7 we extend our analysis to the level of protection given by
the vaccines against the disease severity, in which the outcome of a simple application
of probability theory is at odds with simplistic, extraordinary claims.3 In Sec. 8 we
sum up the analysis strategy and the outcome of the paper, also commenting on the
optimal sharing of vaccine/placebo samples in the test trial. Then some conclusions
and final remarks follow.

2 Model and analysis method

Dealing with problems of this kind, we have learned (see e.g. Ref. [16]) the importance
of building up a graphical representation of the causal model relating the quantities
of interest, some of them ‘observed’ and others ‘unobserved’, among the latter the
quantities we wish to infer. Also in this case, despite some initial skepticism about
the possibility of getting some meaningful results, once we have built up the model,
very basic indeed, it was clear that the main outcome concerning the vaccine efficacy
was not depending on the many aspects of the trials. Our initial doubts were in fact
related to the several details concerning the people involved in the test campaign,
but they finally resulted to be much less critical than we had at first thought.

The causal model used in this analysis is implemented in the Bayesian network of
Fig. 1. The top nodes nV and nP stand for the number of individuals in the vaccine
and placebo (i.e. control) groups, respectively, as the subscripts indicate, while the
bottom ones (nVI

and nPI
) are the number of individuals of the two groups resulting

infected during the trial. These are the observed nodes of our model, whose values
are summarized in Tab.1.

Then, there is the question of how to relate the numbers of infectees to the num-
bers of the participants in the trial. This depends in fact on several variables, like
the prevalence of the virus in the population(s) of the involved people, their social

3 ‘All 30 cases occurred in the placebo group and none in the mRNA-1273 vaccinated group.’
‘...and vaccine efficacy against severe COVID-19 was 100%’ (Moderna press release [5], based on
no severe cases out of the 11 infectees in the vaccine group). This result has been reported as 100%
efficacy with (uncritical!) great emphasis also in the media [15] – a reminder of the C. Sagan’s quote
that “extraordinary claims require extraordinary evidence” is here in order.
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pA

nV nP

nVA
nPA

nVI
nPI

1−ǫ

Figure 1: Simplified Bayesian network of the vaccine vs placebo experiment (see text).

behavior, personal life-style, age, health state and so on. And, hopefully, it depends
on the fact that a person has been vaccinated or not. Lacking detailed information,
we simplify the model introducing an assault probability pA, that is a catch-all term
embedding the many real life variables, apart being vaccinated or not. Nodes nVA

and nPA
in the network of Fig. 1 represent then the number of ‘assaulted individuals’

in each group, and they are modeled according to binomial distributions, that is

nVA
∼ Binom(nV , pA) (1)

nPA
∼ Binom(nP , pA) , (2)

represented in the graphical model by solid arrows.
The ‘assaulted individuals’ of the control group are then assumed to be all infected,

and hence the deterministic link with dashed arrow relating node nPA
to node nPI

follows (indeed the two numbers are exactly the same in our model, and we make
this distinction only for graphical symmetry with respect to the vaccine group).

Instead, the ‘assaulted individuals’ of the other group are ‘shielded’ by the vaccine
with probability ǫ, that we therefore identify with efficacy, although we shall come
back at the due point about what should be reported as ‘efficacy’. The probability
of becoming infected if assaulted is therefore equal to 1−ǫ, so that node nVI

is related
to node nVA

by

nVI
∼ Binom(nVA

, 1−ǫ). (3)

At this point all the rest is a matter of calculations, that we do by MCMC techniques4

with the help of the program JAGS [14] interfaced with R [17] via rjags [18].

4Indeed one could try to get an exact solution for the pdf of ǫ. The steps needed are: write down
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The nice thing using such a tool is that we have to take care only to describe the
model, with instructions whose meaning is quite transparent:5

model {

nP.I ~ dbin(pA, nP) # 1.

nV.A ~ dbin(pA, nV) # 2.

pA ~ dbeta(1,1) # 3.

nV.I ~ dbin(ffe, nV.A) # 4. [ ffe = 1 - eff ]

ffe ~ dbeta(1,1) # 5.

eff <- 1 - ffe # 6.

}

We easily recognize in lines 1. and 2. of the R code the above Eqs. (1) and (2),
while line 4. stands for Eq. (3). Line 6. is simply the transformation of ‘1−ǫ’ (‘ffe’
in the code) to ǫ, the quantity we want to trace in the ‘chain’. Finally lines 3. and
5. describe the priors of the ‘unobserved nodes’ that have no ‘parents’, in this case

the joint pdf of all the variables in the network; condition on the certain variables; marginalize over
all the uncertain variables besides ǫ. Referring to Ref. [16] for details, here is the structure of the
unnormalized pdf obtained starting from uniform priors over ǫ and pA:

f(ǫ |nV , nP , nVI
, nPI

) ∝
nV
∑

nVA
=nVI

∫ 1

0

dpA

[

nVA
!

(nVA
− nVI

)!
· (1 − ǫ)nVI · ǫnVA

−nVI

]

·

[

1

nVA
! (nV − nVA

)!
· pnVA

A · (1− pA)
nV −nVA

]

·
[

p
nPA

A · (1 − pA)
nP−nPA

]

,

where the three terms within square brackets are the three binomial distributions entering the model,
stripped of all irrelevant constant factors. Simplifying and reorganizing the various terms we get

f(ǫ |nV , nP , nVI
, nPI

) ∝ (1 − ǫ)nVI ·
nV
∑

nVA
=nVI

ǫnVA
−nVI

(nVA
− nVI

)! (nV − nVA
)!

·

∫ 1

0

p
nVA

+nPA

A · (1− pA)
nV −nVA

+nP−nPA dpA .

We recognize that the integral
∫ 1

0
xr−1 · (1 − x)s−1 dx, in terms of a generic variable x, defines the

special function beta B(r, s), thus obtaining

f(ǫ | . . .) ∝ (1− ǫ)nVI ·
nV
∑

nVA
=nVI

ǫnVA
−nVI

(nVA
− nVI

)! (nV − nVA
)!

· B(nVA
+nPA

+1, nV−nVA
+ nP −nPA

+1).

Then the integral over ǫ follows, in order to get the normalization factor. Finally, all moments of
interest can be evaluated. All this can be done numerically. However, we proceed to MCMC, being
its use much simpler and also for the flexibility it offers (for example in the case we need to extend
the model, as we shall do in Secs. 6 and 7).

5Those who have no experience with JAGS can find in Ref. [16] several ready-to-run R scripts.
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MCMC results

mean ± ‘stand. unc.’ centr. 95% ‘cred. int.’ P (ǫ ≥ 0.9)
Moderna-1 0.933± 0.028 [0.866, 0.976] 0.875
Moderna-2 0.935± 0.019 [0.892, 0.967] 0.951
Pfizer 0.944± 0.019 [0.900, 0.975] 0.974
AstraZeneca LDSD 0.861± 0.075 [0.678, 0.964] 0.349
AstraZeneca SDSD 0.599± 0.090 [0.400, 0.750] 0.000

Published results

efficacy value 95% ‘uncertainty interval’
Moderna-1 [4] 0.945 ———-
Moderna-2 [6] 0.941 [0.893, 0.968] (confidence interval)
Pfizer [3] 0.950 [0.903, 0.976] (credible interval)
AstraZeneca LDSD [7] 0.900 [0.674, 0.970] (confidence interval)
AstraZeneca SDSD [7] 0.621 [0.410, 0.757] (confidence interval)

Table 3: Top table: MCMC results for the model parameter ǫ (see text). Bottom table: same
as Tab. 2 for easier comparison with the MCMC results.

pA and 1−ǫ. We use for both a uniform prior, modeled by a Beta distribution (see
Sec. 4.1 for details) with parameters {1, 1}.6 Then we have to provide the data, in
our case nV , nP , nVI

and nPI
. The program samples the space of possibilities and

returns lists of numbers (a ‘chain’) for each ‘monitored variable’, which can then be
analyzed ‘statistically’. For example the frequency of occurrence of the values in each
list is expected to be proportional to the probability of that values of the variable
(Bernoulli’s theorem). Similarly we can evaluate correlations among variables.

3 MCMC based results

We run the model on the basis of the published bare data summarized in Tab. 1. The
MCMC results concerning the ‘efficacy parameter’ ǫ are summarized in Tab. 3, to be
compared with the published results, shown in Tab. 2 and repeated below our ones
for the reader’s convenience.

6We cannot go here into the details of this choice that we consider quite reasonable, given the
information provided by the data, and refer for the details to Ref. [16] and references therein. The
fact that, as we shall see in next section, the modes of the distributions of ǫ that result from our
analysis practically coincide with the efficacy values reported by the three companies means that
they have also used ‘flat priors’, or frequentist methods which implicitly entail a flat prior [13]. We
shall see in Sec. 5.1 how ‘informative priors’ (e.g. by experts) can be taken into account in a second
step, without the need of repeating the analysis for each choice of priors.
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Figure 2: MCMC results for the vaccine efficacies. The vertical lines indicate the results
provided by the pharma companies, in practical perfect agreement with the mode of the MCMC
estimated probability distributions.

The MCMC based pdf’s of ǫ are plotted in Fig. 2 with smooth curves showing
the profile of the histograms of the ǫ values in the chains. For comparison, the
vertical dashed lines show the results of the pharma companies (‘efficacy value’ in
Tab. 2). As we can see, they correspond practically exactly to the modal values of the
distributions. This makes us quite confident about the validity of our simple model
for this quantitative analysis, although we maintain that the single number for the
efficacy to be provided is not the mode, but rather the mean of the distribution, as
we shall argue in Sec. 4. However, some remarks are in order already at this point.
In fact, although there is no doubt about the fact that the most complete description
of a probabilistic inference is given by the pdf of the quantity of interest, it is also
well understood that it is often convenient to summarize the distribution with just a
few numbers.

Usually, when inferring physical quantities, the preference goes to the mean and
the standard deviation (the latter being related to the concept of standard uncer-
tainty [11]) because of rather general probability theory theorems which make their
use convenient for further evaluations (‘propagations’, as we shall also see in Sec. 6).
Other ways to summarize with just a couple of numbers a probability distribution
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are intervals which contain the uncertain value of the variable of interest at a given
probability level (credible interval). We report then in Tab. 3 the 95% central credible
interval 7 evaluated from the MCMC chains as well as the 90% ‘right side credible
interval’. Other useful summaries, depending on the problem of interest, can be the
most probable value of the distribution (mode) and the median, i.e. the value that
divides the possible values into two equally probable intervals. As we have stated
above, the modes of the MCMC based pdf’s coincides with the values reported as
‘efficacy value’ in Tab. 2, which contains also what we have generically indicated
as 95% ‘uncertainty interval’, in form of credible interval for Pfizer and confidence
interval for the other two companies.8

The MCMC also provides results for the other ‘unobserved’ nodes of the causal
model, in our case pA and nVA

. We refrain from quoting results on the ‘assault
probability’, because they could easily be misunderstood, as they strongly depend,
contrary to ǫ, on the values of nV and nP , being pA a catch-all quantity embedding
several real life variables, including the virus prevalence. We have however checked
that our main results on ǫ are stable against the (simultaneous) variations of nV and
nP by orders of magnitude (thus implying similar large variations of pA).

9

We give, instead, the results concerning nVA
that we expect to be around nPI

. We
get, in fact, respectively for Moderna-1, Moderna-2, Pfizer, AstraZeneca (LDSD) and
AstraZeneca (SDSD) the following values: 89 ± 13, 185 ± 19, 160 ± 18, 29 ± 8 and
70 ± 12 (note that the standard uncertainty is not simply the root square of nVI

, as
a rule of thumb would suggest).

4 What is the probability that a vaccinated person

gets shielded from Covid-19?

It is now time to come to the question asked in the title. We have already used the
noun efficacy, associated to the uncertain variable ǫ of our model of Fig. 1. Then,
analyzing the published data, we have got by MCMC several pdf’s of ǫ, that is
f(ǫ |Moderna-1), f(ǫ |Moderna-2), and so on (see Fig. 2). Hereafter, since what we
are going to say is rather general, we shall indicate the generic pdf by f(ǫ | data, H),

7The meaning of such an interval is that, conditioned on the data used and on the model as-
sumptions, we consider P (ǫ < ǫlow) = P (ǫ > ǫhigh) = 2.5%, where ǫlow and ǫhigh are the boundaries
of the interval.

8It is important to understand that, strictly speaking, a 95% frequentistic confidence interval
does not provide the interval in which the authors are 95% confident that the ‘true value’ of in-
terest lies (see Refs. [12, 13] and references therein), although it is ‘often the case’ for ‘routine
measurements’ [13].

9In other words, the gross result essentially depends on the ratios nVI
:nPI

and nV :nP .
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where H stands for the set of hypotheses10 underlying our inference and not specified
in detail.

Let us now focus on the probability that an assaulted individual gets infected.
Indicating by A the condition ‘the individual is assaulted’, by V the condition ‘vac-
cinated’ and by I the event ‘the individual gets infected’ (and therefore A, V and I

their logical negations), we get, rather trivially,

P (I |A) = 0 , (4)

while, in the case of assault, the probability of infection depends on whether the
individual has been vaccinated or not. In the case of placebo, following our model,
we simply get

P (I |A, V ) = 1 . (5)

Instead, in case the individual has been vaccinated, the probability of infection will
depend on ǫ, that is, for the special cases of perfect shielding and no shielding (i.e.
no better than the placebo),

P (I |A, V, ǫ = 1) = 0 (6)

P (I |A, V, ǫ = 0) = 1 . (7)

In general, if we were certain about the precise value of ǫ, the probability of getting
infected or not is related in a simple way to ǫ:

P (I |A, V, ǫ) = 1− ǫ (8)

P (I |A, V, ǫ) = ǫ . (9)

The above equations, and in particular Eq. (9), express in mathematical terms the
meaning we associate to efficacy, in terms of the model parameter ǫ: the probability
that a vaccinated person gets shielded from a virus (or from any other agent). But
the value of ǫ cannot be known precisely. It is, instead, affected by an uncertainty,
as it (practically) always happens for results of measurements [11] (and indeed also
the pharma companies accompany their results with uncertainties – see Tab.2). In
a probabilistic approach, this means that there are values of ǫ we believe more and
values we believe less. All this, we repeat it, is summarized by the probability density
function

f(ǫ | data, H) .

The way to take into account all possible values of ǫ, each weighted by f(ǫ | data, H),
is to follow the rules of probability theory, i.e.

P (I |A, V, data, H) =

∫

1

0

P (I |A, V, ǫ) · f(ǫ | data, H) dǫ .

10In general we are used to indicating by I the background state of information [16], but we reserve
here the symbol I for ‘infected’.
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Using then Eq. (9) we get

P (I |A, V, data, H) =

∫

1

0

ǫ · f(ǫ | data, H) dǫ , (10)

which represents the probability that a vaccinated person, not belonging to the trial
sample, gets shielded from Covid-19, on the basis of the data obtained from the trial
and all (possibly reasonable) hypotheses assumed in the data analysis. It is easy to
understand that P (I |A, V, data, H) is what really matters and therefore what should
be communicated as efficacy to the scientific community and to the general public.11

Now, technically, Eq. (10) is nothing but the mean of the distribution of ǫ. This
should then be the number to report, and not the mode of the distribution, which
has no immediate probabilistic meaning for the questions of interest.12

Now, if we compare the ‘efficacy values’ of Tab. 2 with the mean values of Tab. 3
we see that in most cases the differences are rather small (about 1/3 to 1/2 of a
standard deviation), although the modal values (to which, as we have showed above,
the published efficacies correspond) are always a bit higher than the mean values, due
to the left skewness of the pdf’s. Therefore our point is mostly methodological,13 with
some worries when the mean value and the most probable one differ significantly.

4.1 An old Problem in the Doctrine of Chances

Evaluating the probability of future events on the basis of the outcomes of previous
trials on ‘apparently the same conditions’ is an old, classical problem in probability
theory that goes back to about 250 years ago and it is associated to the names of
Bayes [20] and Laplace [21]. The problem can be sketched as considering events whose
probability of occurrence depends on a parameter which we generically indicate as p,
i.e.

P (E | p) = p .

Idealized examples of the kind are the proportion of white balls in a box containing
a large number of white and black balls (with the extracted ball put back into the

11In this paper we only focus on efficacy, without even trying to enter on the related topics of
effectiveness, that refers to how well the vaccine performs in the real world (see e.g. Ref. [19]), that
is influenced by several other factors.

12Let us repeat once more that the result of frequentistic point estimates can be easily shown
to be equivalent, under reasonable assumptions, to the mode of the distribution obtained by a
probabilistic analysis.

13However, we wish to point out that, from the practical point of view, what really matters is the
inefficacy i.e. the probability of getting infected (see Sec. 6 for details). Indeed, even though two
hypothetical values of ǫ equal to 0.96 and 0.98, respectively, might appear quite close, nevertheless
they imply that the relative probabilities of getting infected are in the ratio 2:1.
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Figure 3: Graphical models of the binomial distribution (left) and its ‘inverse problem’. The
symbol ‘

√
’ indicates the ‘observed’ nodes of the network, that is the value of the quantity

associated to it is (assumed to be) certain. The other node (only one in this simple case) is
‘unobserved’ and it is associated to a quantity whose value is uncertain.

box after each extraction), the bias of a coin and the ratio of the chosen surface
in which a ball thrown ‘at random’ can stop, with respect to the total surface of a
horizontal table (this was the case of the Bayes’ ‘billiard’, although the Reverend did
not mention a billiard).

A related problem concerns the number of times (‘X ’) events of a given kind occur
in n trials, assuming that p remains constant. The result is given by the well known
binomial, that is

X ∼ Binom(n, p) , (11)

whose graphical causal model is shown in the left diagram of Fig. 3.
The problem first tackled in quantitative terms by Bayes and Laplace was how to

evaluate the probability of a ‘future’ event Ef , based on the information that in the
past n trials the event of that kind occurred X = x times (‘number of successes’) and
on the assumption of a regular flow from past to future,14 that is assuming p constant
although uncertain. In symbols, we are interested in

P (Ef |n, x,H) ,

where H stands, as above, for all underlying hypotheses. Both Bayes and Laplace
realized that the problem goes through two steps: first finding the probability distri-
bution of p and then evaluating P (Ef |n, x,H) taking into account all possible values
of p. In modern terms

1. → f(p |n, x,H) (12)

2. → P (Ef |n, x,H) =

∫

1

0

P (Ef | p) · f(p |n, x,H) (13)

=

∫

1

0

p · f(p |n, x,H) . (14)

14A reminder of Russell’s inductivist turkey is a must at this point!
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The basic reasoning behind these two steps is expressly outlined in the Sixth and
Seventh Principle of the Calculus of Probabilities, expounded by Laplace in Chapter
III of his Philosophical Essay on Probabilities [22]:

• the Sixth Principle, in terms of the possible causes Ci responsible of the observed
event E, is essentially what is presently known as Bayes’ theorem, that is

P (Ci |E) =
P (E |Ci) · P0(Ci)

∑

k P (E |Ck) · P0(Ck)
, (15)

in which P0(Ci) is the so called prior probability of Ci, i.e. not taking into
account the piece of information provided by the observation of E. Note that
the role of P0(Ci) was explicitly considered by Laplace, who 1) before gave
the rule in the case of P0(Ci) numerically all equal, which then drop from
Eq. (15); 2) then specified that “if these various causes, considered à priori,
are unequally probable, it is necessary, in the place of the probability of the
event resulting from each cause, to employ the product of this probability by the
possibility of the cause itself.” (Here ‘possibility’ and ‘probability’ are clearly
used as synonyms.) Then, the importance of the finding is stressed:

“This is the fundamental principle of this branch of the analysis of
chances which consists in passing from events to causes.”

Generalizing this ‘principle’ to an infinite number of causes, associated to all
possible values of the parameter p, with the ‘event’ being the observation of
X = x successes in n trials, we get the case sketched in the right diagram of
Fig. 3, in which the unobserved node is now p. Equation (15) becomes then, in
terms of the probability function of X and of the pdf of p [for which we take
the freedom of using the same symbol ‘f()’],

f(p |n, x) =
f(x |n, p) · f0(p)

∫

1

0
f(x |n, p) · f0(p) dp

. (16)

• The Seventh Principle then states that “the probability of a future event is
the sum of the products of the probability of each cause, drawn from the event
observed, by the probability that, this cause existing, the future event will occur”,
that is

P (Ef) =
∑

i

P (Ci) · P (Ef |Ci) . (17)

Generalizing also this ‘principle’ to an infinite number of causes associated to
all possible values of the parameter p we get Eq. (13), and then Eq. (14): the
probability of interest is the mean of the distribution of p.

13



The solution of Eq. (16), in the case X is described by Eq. (11) and we consider all
values of p à priori equally likely, is a Beta pdf, that is15

p ∼ Beta(r, s) (18)

with r = x+ 1 and s = n− x+ 1. Mean value and variance of the possible values of
p are then

µ ≡ E(p) =
r

r + s
(19)

σ2 ≡ Var(p) =
r · s

(r + s+ 1) · (r + s)2
. (20)

Finally, using Eq. (13) and Eq. (14) we get the Laplace’s rule of succession

P (Ef |n, x,H) =
x+ 1

n + 2
. (21)

Thus, in the special case of ‘n successes in n trials’, “we find that an event having
occurred successively any number of times, the probability that it will happen again
the next time is equal to this number increased by unity divided by the same number,
increased by two units” [22], i.e.

P (Ef |n, x = n,H) =
n+ 1

n+ 2
. (22)

In the case of x = n = 11 we have then 12/13, or 92.3%. Reporting thus 100% (see
footnote 3) can be at least misleading, especially because such a value can be (as it
has indeed been) nowadays promptly broadcasted uncritically by the media (see e.g.
Ref. [15] – we have heard so far no criticism in the media of such an incredible claim,
but only sarcastic comments by colleagues).

5 Beta approximation of the MCMC results and

its utility

Moving to our results about the ‘model parameter ǫ’ (it is now time to be more
careful with names), reported in Tab. 3 and Fig. 2, it should now be clear why the
number to report as efficacy should be the mean of the distribution. As far as the
distribution of ǫ is concerned, given the similarity of the inferential problem that was
first solved by Bayes and Laplace, we have good reasons to expect that it should
not ‘differ much’ from a Beta. In order to test the correctness of our guess we have
done the simple exercise of superimposing over the MCMC distributions of Fig. 2 the

15See e.g. Ref. [16] and references therein.
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Figure 4: MCMC inferred distributions of ǫ (solid lines exactly as in Fig. 2) with superim-
posed (dashed lines, often coinciding with the solid ones) the corresponding Beta distributions
evaluated from the mean values and the standard deviations resulting from MCMC.

Beta pdf’s evaluated from mean and standard deviation of Tab. 3. The distribution
parameters can be in fact obtained solving Eqs. (19) - (20) for r and s:16

r =
(1− µ) · µ2

σ2
− µ (23)

s =
1− µ

µ
·
[

(1− µ) · µ2

σ2
− µ

]

. (24)

The result is shown in Fig. 4. As we can see, the agreement is rather good for
all cases, especially for Moderna and Pfizer, for which the Beta and MCMC curves
practically coincide.

5.1 Taking into account ‘informative priors’ about ǫ

The fact that the MCMC results are described with high degree of accuracy by a
Beta distribution is not only a sterile curiosity, but has indeed an interesting practical

16To make it clear, no ‘fit’ on the MCMC histogram has been performed.
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consequence.
As we have seen, the pdf’s of ǫ have been obtained starting from a uniform prior.

The same must be for Pfizer, since they also did a Bayesian analysis, as explicitly
stated in their paper [3] and as revealed by the expression ‘credible interval’ (see
Tab. 2), and their values practically coincide with ours. Instead, in the case of the
other results, the expression ‘confidence interval’ seems to refer to a frequentistic
analysis, in which “there are no priors”. But in reality it is not difficult to show that
sound frequentist analyses (e.g. those based on likelihood) can be seen as approxi-
mations of Bayesian analyses in which a flat prior was used (see e.g. Ref. [13]). The
resulting ‘estimate’ corresponds to the mode of the posterior distribution under that
assumption.

The question is now what to do if an expert has a ‘non flat’ informative prior
(indeed none would à priori believe that values of ǫ close to zero or to unity would be
equally likely!). Should she ask to repeat the analysis inserting her prior distribution
of ǫ? Fortunately this is not the case. Indeed, as we have discussed in Ref. [16], due to
the symmetric and peer roles of likelihood and prior in the so called Bayes’ rule, each of
the two has the role of ‘reshaping’ the other. Moreover, since a posterior distribution
based on a uniform prior concerning the variable of interest can be interpreted as a
likelihood (besides factors irrelevant for the inference), we can apply to it an expert’s
prior in a second time (see Ref. [16] for details). It becomes then clear the importance
of the observation that the pdf’s of ǫ derived by MCMC can be approximated by Beta
distributions: from the MCMC mean and standard deviation we can evaluate the
parameters of the Beta of interest, as we have seen above; this function can be then
easily multiplied by the expert’s prior; the normalization can be done by numerical
integration and finally the posterior distribution of ǫ also conditioned on the expert’s
prior can be obtained.

This implementation in a second step of the expert opinion becomes particularly
simple if also her prior is modeled by a Beta, recognized to be a quite flexible distri-
bution. For example, indicating by rF and sF the Beta parameters [calculated with
Eq. (23) - (24)] obtained by a flat prior and by r0 and s0 the parameters of the Beta
informative prior, the posterior distribution will still be a Beta with parameters

rp = r0 + rF − 1 (25)

sp = s0 + sF − 1 , (26)

as it can be easily shown.17

17In fact, assuming that the MCMC based pdf of ǫ starting from a flat prior (‘F ’) can be approx-
imated by a Beta, we can write it, neglecting irrelevant factors, as

fF (ǫ) ∝ ǫrF−1 · (1 − ǫ)sF−1 .

Expressing also the informative prior by a Beta, that is

f0(ǫ) ∝ ǫr0−1 · (1− ǫ)s0−1 ,
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Figure 5: Variation of the model of Fig. 1, in this figure inside a box, in order to consider the
effect of the vaccine on n′

V individuals of a different population (see text).

6 Expected numbers of vaccinated individuals that

shall become infected

Once we have got the efficacy of a vaccine, or, even better, the full information about
ǫ inferred by the data, we can tackle another interesting problem: if we vaccinate n′

V

individuals in (possibly) another population, how many of them will become infected?
Obviously, this depends not only on f(ǫ) but also on many other parameters that we
can model with the assault probability p′A in the new population, and, obviously, on
the fact that n′

V must be only a small part of the entire population, so that we do
not have to consider issues related to herd immunity. In order to do this exercise we
need to enlarge our causal model, thus getting the one shown in Fig. 5.

But, indeed, there is no need to set up a new JAGS model and rerun the MCMC.
We can just use the chain of ǫ obtained processing through the MCMC the original
model of Fig. 1, and do the remaining work with ‘direct’ Monte Carlo. However,
having observed that the resulting pdf of ǫ is approximated a Beta, we can do it
starting from the mean and standard deviation obtained from the MCMC. Here is

and applying the Bayes’ rule, we get for the posterior (‘p’)

fp(ǫ) ∝ fF (ǫ)× f0(ǫ)

∝ ǫrF−1+r0−1 · (1− ǫ)sF−1+s0−1

∝ ǫ(rF+r0−1)−1 · (1− ǫ)(sF+s0−1)−1 ,

from which Eqs. (25) - (26) follow.
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e.g. how the evaluation of n′

VI
can be performed by sampling (in the R code we have

indicated n′

V as nV, and so on):

mu <- 0.944; sigma <- 0.019; e.rep <- 0.950 # Pfizer

# mu <- 0.935; sigma <- 0.019; e.rep <- 0.941 # Moderna

# mu <- 0.861; sigma <- 0.075; e.rep <- 0.900 # AZ LDSD

# mu <- 0.599; sigma <- 0.090; e.rep <- 0.621 # AZ SDSD

# uncomment the following line to simulate a negligible uncertainty

# sigma <- 0.0001

r = (1-mu)*mu^2/sigma^2 - mu

s = r*(1-mu)/mu

cat(sprintf("r = %.2f, s = %.2f\n", r, s))

ns <- 1000000

nV <- 100000

pA <- 0.01

nA <- rbinom(ns, nV, pA)

cat(sprintf("nA: mean+-sigma: %.1f +- %.1f\n", mean(nA), sd(nA)))

eps <- rbeta(ns,r,s)

nvI <- rbinom(ns, nA, 1-eps)

hist(nvI, nc=100, col=’cyan’, freq=FALSE, main=’’)

cat(sprintf("nvI: mean+-sigma: %.1f +- %.1f\n", mean(nvI), sd(nvI)))

lines(rep(pA*nV*(1-mu), 2), c(0,1), col=’red’, lty=1, lwd=2)

lines(rep(pA*nV*(1-e.rep), 2), c(0,1), col=’red’, lty=2, lwd=2)

A number of hundred thousand vaccinated individuals has been used, with an abso-
lutely hypothetical value of assault probability of 1%. The script can also be used to
simulate the effect of a precise value of ǫ, thus exactly corresponding to the efficacy,
just setting its standard deviation to a very small value. The result of this idealized
situation, using e.g. ǫ = 0.944, i.e. the mean resulting from the MCMC analysis
of Pfizer data,18 is shown in the top histogram of Fig. 6. In this idealized case the
distribution of n′

VI
is simply a binomial, i.e.

n′

VI
∼ Binom(n′

V , pov) ,

with the overall probability pov being equal to p′A · (1−ǫ), that is pov = 0.00056 for
the numbers reported in the script. Expected value and standard deviation are then

18There is nothing special with this choice, and what follows is a little more than an exercise,
strongly dependent on the assumption on p′A.
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Figure 6: Distribution of the predicted number of vaccinated infectees, subject to (top-down):
exact values of ǫ and p′A; uncertain ǫ; uncertain p′A; uncertain ǫ and p′A (see text for details).
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56.0 and 7.5, in perfect agreement with the Monte Carlo result shown in the upper
panel of Fig. 6.

The effect of the uncertainty about ǫ is shown in the second (top-down) histogram
of the same figure. As we can see, the distribution becomes remarkably wider and
more asymmetric, with a right-hand skewness, effect of the left-hand skewness of f(ǫ).
We see then, in the third histogram, the effect of a hypothetical uncertainty about
p′A, modeled here with a standard deviation of σ(p′A) = 0.1 × p′A (but this has to be
understood really as an exercise done only to have an idea of the effect, because a
reasonable uncertainty could indeed be much larger). Finally, including both sources
of uncertainty, we get the histogram and the numbers at the bottom of the figure.
Vertical lines show the predicted values for n′

VI
by using the MCMC mean value (solid

line) and using the modal value (dashed lines).
As a further step, following Ref. [16] (see in particular Secs. 5.2.1 and 5.3.1 there),

let us try to get approximated formulae for the expected value and the standard
deviation of n′

VI
. The idea, we shortly remind, is to start with the expected value and

variance evaluated for the expected values of ǫ and p′A, and then make a ‘propagation
of uncertainty’ by linearization (as if ǫ and p′A were ‘systematics’). Here are the
resulting formulae

E(n′

VI
) ≈ n′

V · E(p′A) · [1− E(ǫ)] (27)

σ2(n′

VI
) ≈ σ2

[

n′

VI
| p′A = E(p′A), ǫ = E(ǫ)

]

+ (n′

V · [1− E(ǫ)])
2 · σ2(p′A) + (n′

V · E(p′A))
2 · σ2(ǫ)

≈ n′

V · E(p′A) · [1− E(ǫ)] · [1− E(p′A) · [1− E(ǫ)]]

+n′2

V · [1− E(ǫ)]2 · σ2(p′A) + n′2

V · E2(p′A) · σ2(ǫ) , (28)

which we have checked to be in excellent agreement with the results from direct
Monte Carlo.19

6.1 More on the probability that a vaccinated person gets

shielded from the virus – a Monte Carlo approach

Section 4 has been devoted to explain the reason why the proper number to be
reported as ‘efficacy’, meant as the probability that a vaccinated person is shielded

19For example, here is the R code to be added in the above script, immediately after the assignment
‘pA <- 0.01’, in order to implement Eqs. (27) - (28):

spA <- 0.1 * pA

est.nvI <- nV * pA * (1-mu)

est.sigma.nvI <- sqrt( nV * pA * (1-mu) * (1 - pA * (1-mu)) +

(nV*(1-mu))^2 * spA^2 + (nV*pA)^2 * sigma^2 )

cat(sprintf("Approximated nvI: mean+-sigma: %.1f +- %.1f\n",est.nvI,est.sigma.nvI))
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from the virus, is the mean of the pdf of the model parameter ǫ. Having talked in
this section about predicting the number of infects, we can use the same extended
model of Fig. 5 in order to check the outcome of that reasoning. It is in fact enough
to set n′

V = 1 and p′A = 1 and analyze the result of the MCMC. Indeed, n′

VA
will be

identically 1, in the sense that the person will be ‘assaulted’ with certainty, but the
output n′

VI
can have now only two possible values, 0 (person not infected) or 1 (person

infected). If ǫ were exactly known, and let us indicate it by ǫK , the probability of
n′

VI
= 0 would be ǫK and that of n′

VI
= 1 would be 1 − ǫK . A simple direct Monte

Carlo would then produce a fraction of occurrences of n′

VI
= 0 around ǫ. If, instead, ǫ

is unknown, then the values used in the bottom-left side of the network will be those
occurring in the MCMC chain. Therefore, we reobtain the same result seen in Sec.4,
i.e. that the relative frequency of the occurrence of n′

VI
= 0 will be equal to the mean

of ǫ in the chain.
This MCMC strategy offers a further argument, to which some practitioners might

be more reactive, in support of the thesis that the number to be reported as ‘efficacy’
should be the average of the probability distribution of ǫ, rather than other possible
summaries of the distribution.

7 Efficacy against disease severity

A last point we wish to address in this paper is related to the efficacy of the vaccines
against disease severity, based on the data reported by Moderna and Pfizer (see
Tab. 1): in the first case 30 people got a ‘severe form’ out of 185 infectees in the control
group; none of the severe cases occurred in the group of 11 vaccinated infectees; in
the second the corresponding numbers are 9 in 162 and 1 in 8.

In order to analyze this further pieces of information we can simply extend the
Bayesian network of Fig. 1 adding four nodes (see Fig. 7): nVIs

and nPIs
represent the

number of infected individuals that got the disease in a severe form, while pVIs
and

pPIs
represent the corresponding probability of developing severe diseases in either

group. Again we can use the binomial distributions:

nVIs
∼ Binom(nVI

, pVIs
) (29)

nPIs
∼ Binom(nPI

, pPIs
) , (30)

and the following JAGS model would result:

model {

nP.I ~ dbin(pA, nP) # 1.

nV.A ~ dbin(pA, nV) # 2.

pA ~ dbeta(1,1) # 3.

nV.I ~ dbin(ffe, nV.A) # 4. [ ffe = 1 - eff ]
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Figure 7: Extended Bayesian network of the vaccine vs placebo experiment (see text).

ffe ~ dbeta(1,1) # 5.

eff <- 1 - ffe # 6.

pS_P ~ dbeta(1,1) # 7.

pS_V ~ dbeta(1,1) # 8.

nS.V ~ dbin(pS_V,nV.I) # 9.

nS.P ~ dbin(pS_P,nP.I) # 10.

}

However, looking at the Bayesian network of Fig. 7, it is clear that, being nVI
and

nPI
observed nodes, i.e. nVI

and nPI
are just data, the bottom nodes involving

(nVIs
, nVI

, pVIs
) and (nPIs

, nPI
, pPIs

) get ‘separated’ from the rest of the network. In
other words there is no flow of evidence from (nVIs

, pVIs
), or from (nPIs

, pPIs
), to the

rest of the network. Therefore the problem has a rather simple solution. In particular,
using uniform priors for pVIs

and pPIs
, we get

pVIs
∼ Beta(nVIs

+1, nVI
−nVIs

+ 1)

pPIs
∼ Beta(nPIs

+1, nPI
−nPIs

+ 1) .

Nevertheless, for didactic purposes, we report in Fig. 8 the histograms of the MCMC
results with superimposed the Beta pdf’s (solid lines – we shall come back later to
meaning of the dashed line added in the case of Moderna).
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Figure 8: Distribution of the probability of getting a severe form of Covid-19 (see text).
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As far as the control groups are concerned (green, narrower histograms and curves
in Fig. 8), the results from Moderna and Pfizer data are quite different. In both
cases we get rather narrow distributions, as expected from the rather large numbers
involved (and therefore the central values are close to the proportion of severe cases
with respect to the total number). But they differ substantially and, using mean and
standard deviation to summarize them, we get

Moderna: pPIs
= 0.170± 0.028

Pfizer: pPIs
= 0.055± 0.018 ,

differing by 0.115± 0.033. In particular, what results by analyzing Moderna data is
in good agreement with the estimates by the WHO, which states that “approximately
10-15% of cases progress to severe disease, and about 5% become critically ill” [23].
Obviously, we are not in the position to make any statement about the reason of the
disagreement, that could be due to the different populations on which the trials have
been performed. But, if this were the case, one could have some doubts about the
validity of comparing the different sets of data. We can only leave the question to
epidemiology experts.

Passing to the vaccine groups (red, broader histograms and curves in Fig. 8), the
crude summaries in terms of mean and standard deviation give

Moderna: pVIs
= 0.077± 0.071

Pfizer: pVIs
= 0.200± 0.121 .

If we consider just the mean values, it seems that there is a very large difference
between the performances of the two vaccines. However their difference is hardly
significant, being their difference −0.12 ± 0.14. Also the fact that the two curves
looks substantially different should not impress a statistics expert if she knew from
which number they have been derived. The main difference is due to the fact that
Moderna has zero severe disease against one of Pfizer. If they had had one too,
which would not be surprising in a hypothetical ‘second trial’, the curve would be
not dissimilar from the Pfizer one (dashed line in Fig. 8), vanishing at zero and
yielding pVIs

= 0.154± 0.096 – practically the same, an experienced physicist would
say.

It is quite evident that it is not possible to draw general conclusions on the efficacy
of the generic vaccine on softening the impact of the disease. But the real point we
wish to highlight, given the spread of distributions, is that we do not have enough
data for drawing sound conclusion. For this reason we wish to point out that, even
for this aspect, press releasing a 100% efficacy and not dealing with the unavoidable
uncertainties and their impact when applied to decision making is quite misleading.
Figure 8 indeed shows that the probability of becoming severely ill in the vaccine
group is definitively low but, quite obviously, not zero and with a relevant overlap
with the distribution evaluated for the control group.
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8 Summing up

In this paper, spurred by the press releases first and then by the published results
about the performance of the candidate vaccines, we have reanalyzed the published
data with the help of a Bayesian network processed with MCMC methods. The
aim was that of obtaining, for each data set, the pdf of the model variable ǫ, whose
meaning is the following: if we assume for it an exact value, then the probability that
a ‘virus assaulted individual’ gets infected would be exactly 1−ǫ.

Our results are in excellent agreement with the published ones, if the latter are
properly interpreted. In fact, it turns out that they coincide with the modes of the
respective pdf f(ǫ), although we maintain that if a single number has to be provided,
especially to the media, it should be the mean of the distribution. This has, in fact,
the meaning of the probability that a vaccinated person will be shielded by the virus,
taking into account the unavoidable uncertainty on ǫ, fully described by f(ǫ). And
this is what really matters to define the efficacy of a vaccine. Willing however to
reduce the result of our analysis to a single number to be compared with the re-
leased ones, we get respectively and with reasonable rounding, 93%, 94%, 94%, 86%
and 60% for Moderna-1, Moderna-2, Pfizer, AstraZeneca (LDSD) and AstraZeneca
(SDSD), versus 94.5%, 94.1%, 95.0%, 90.0% and 62.1% of Tab. 2. Therefore, as far
as these numbers are concerned, there is then a substantial agreement of the out-
come of our analysis with the published results, simply because when a probability
distribution is unimodal and rather symmetrical then mode and mean tend to coin-
cide. Therefore, with respect to the main results, our contribution to this point is
mainly methodological. The probability theory based result is, instead, at odds with
Moderna 100% claimed efficacy against severe disease, for which a more sound 92%
should be quoted.

In order to summarize more effectively the probability distribution of ǫ with just
a couple of numbers, our preference goes to mean and standard deviation, although
we also report the bounds of the central 95% credible interval. This interval is, once
more, in excellent agreement not only with the Pfizer result, which has also published
an interval having exactly the same meaning, but also with the uncertainty intervals
of the other companies, although they provide confidence intervals, which, strictly
speaking, do not have the same meaning of the credible intervals. This is not a
surprise to us. We are in fact aware that in many practical cases not only frequentistic
point estimates are equivalent to the mode of the posterior distribution of the model
parameter, if a uniform prior was used in a Bayesian analysis based on the same data,
but also ‘95% confidence intervals’ tend to be, numerically, equal to the 95% probable
intervals.20

This takes us to the question of the priors. As just reminded, a uniform prior
over ǫ has been used in our analysis. But, clearly, not because we believe that

20But this is not a general rule, as discussed in detail in Ref. [13].
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the efficacy of a vaccine that has reached the Phase-3 trial has the same chance
to be close to zero or to one. Instead, a flat prior can be considered a convenient
practical choice, if the inference is dominated by the data, as it is often the case.
Moreover, the advantage of a uniform prior in parametric inference is that the effect
of an informative prior reflecting the opinion of experts can be taken into account
at a later time. This ‘posterior use of priors’ might sound paradoxical, but it is
important to remind that in Bayesian inference ‘prior’ does not indicate time order
but rather ‘based on the status of knowledge without taking into account the new
piece of information’ provided by the data entering the specific analysis. Having, in
fact, prior and likelihood symmetric and peer roles in the Bayes’ rule, an expert can
use her prior to ‘reshape’ the posterior pdf resulting from data analysis, if a flat prior
was used, without having to ask to repeat the analysis (see Ref. [16] for details).

This reshaping becomes particularly simple if the prior is modeled by a convenient,
rather flexible probability distribution such as the Beta. In fact, as we have seen, the
pdf of ǫ starting from a flat prior tends to resemble a Beta. The same is then true if
also the prior is modeled by a Beta (this is related to the well known fact of the Beta
being the conjugate prior of a binomial distribution, even though our model is not
just a simple binomial). These observations are particularly interesting because they
lead to Eqs. (25) - (26), which, together with Eqs. (23) - (24), allow to take easily into
account the expert priors. In fact, if the priors are rather vague, r0 and s0 appearing
in Eqs. (25) - (26) are quite small (although larger than one, since ǫ = 0 and ǫ = 1
are à priori reasonably ruled out) and, in particular, smaller that rF and sF .

21 If,
instead, the expert has a strong opinion about the possible values of ǫ, then r0 and s0
will play a role in her posterior, and in that of her community, if its members trust
her.22

Coming back to the way to summarize f(ǫ), our preference goes to its mean
and standard deviation. The mean because, as reminded above, has the meaning
of efficacy for vaccine treated people not having been involved in the trial, if all
possible values of ǫ are taken into account. The standard deviation because it is
mostly convenient, together with the mean, to make use of the result of the inference
in further considerations and in ‘propagation of uncertainties’, thanks to general
probability rules.

We have just reminded the utility of mean and standard deviation in order to
re-obtain f(ǫ), under the hypothesis that it is almost a Beta distribution, making use
of Eqs. (23) - (24). The application related to ‘propagation of uncertainties’ that we

21Just to have an idea of the numbers we are dealing with, the values of {rF , sF} resulting from
our analysis are equal to {73, 5.3}, {156, 11}, {137, 8.1}, {17, 2.8} and {17, 11}, respectively for
Moderna-1, Moderna-2, Pfizer, AstraZeneca (LDSD) and AstraZeneca (SDSD).

22Remember that Science and its popularization is based on a long chain of rational beliefs [13].
Think for example to the reasons you believe in gravitational waves, provided that you really believe
that they could exist and that they have finally being detected on Earth starting from 2015 – our
trusted source ensures us that 67 of them have been ‘observed’ so far [24].
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have seen in the paper has to do with predicting the number of individual that will get
infected in a group that it is going to be vaccinated. This is a problem in probabilistic
forecasting and the number of interest is uncertain for several reasons. There is,
unavoidably, the uncertainty deriving from the inherent binomial distribution, having
assumed an assault probability p′A in the new population. But also the uncertainties
on the values of p′A and ǫ play a role, that can even be dominant with respect to the
‘statistical’ effect of the binomial.

Now, the probability distribution of the number of vaccinated infectees can be
evaluated extending our basic Bayesian network, as we have done here. But we
have also stressed the importance of having approximated expressions, based on lin-
earization, for its expected value and standard deviation. And such expressions, thus
obtained considering ǫ and p′A as ‘systematic’ [13], depend then on their mean and
standard deviation. For example the contribution to σ(n′

VI
) due to the uncertain ǫ,

and then to be added ‘in quadrature’ to the other sources of uncertainty, is given by
n′

V ·E(p′A) ·σ(ǫ). This gives at a glance the contribution to the global uncertainty
without having to run a Monte Carlo.23

Finally, a comment on how to possible reduce σ(ǫ) is in order. In fact, the relative
uncertainty on ǫ depends on the small number of vaccinated infectees. This suggests
that the quality of its ‘measurement’ could be improved, keeping constant the total
numbers of individuals entering the trial, if the size of the placebo group is reduced.
We have checked by simulation that reducing it by 2/3, thus having about a factor
of five between the two groups, σ(ǫ) is expected to be reduced by about 20%. Not
much indeed, but this different sharing of individuals in the two groups would have
the advantage of increasing the chance of detecting side effect of the vaccine, basically
at the same cost.

9 Conclusion

A re-analysis of the 2020 data on vaccine trials by Pfizer, Moderna and AstraZeneca
has been performed with didactic intent and focusing on uncertainties and on what
most effectively should be reported as outcome. With this respect, we appreciate
once more the role provided by Bayesian networks in clarifying the meaning of each
variable entering the model and its relation with the others. In particular, we make
a distinction between the ‘efficacy variable’ ǫ and the efficacy to be reported to the
scientific community and to the general public as probability that a newly vaccinated
person will shielded from Covid-19. The uncertain values of ǫ are characterized by
the pdf f(ǫ), obtained in this work by MCMC, and whose mean value has exactly

23Note also that what really enters in Eqs. (27) - (28) is 1−ǫ whose relative uncertainty is around
30% even in the best cases of Moderna-2 and Pfizer [it reaches 54% for AstraZeneca (LDSD),
becoming ‘only’ 22% for AstraZeneca (SDSD), characterized however by a large value of 1−ǫ ].
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the meaning of efficacy, in analogy to Laplace’s rule of succession to quantify the
probability of a future event.

We have stressed not only the importance of providing the most complete infor-
mation of f(ǫ), whose graphical representation provides better than many words its
uncertainty, but also that of summarizing the results (if only two numbers have to be
chosen) with mean and standard deviation of the distribution. In fact, although the
probability distribution of ǫ is what is really needed to the development of predictive
what-if scenarios, mean and standard deviation are the most useful quantities to be
used for further approximated evaluations.

With regards to the comparison with the published result, the efficacy values
obtained in this analysis as mean of the probability distribution of ǫ are in good
agreement with them for the reasons just reminded in the previous section, with the
exception of the 100% claim that speaks for itself. This agreement plays an important
role in validating the causal model on which the present analysis is based, indeed very
simple (but not simplistic!), that can be used by students and researchers to repeat
the analysis – for this reason pieces of programming code have also been provided.

Note added
We have learned in the meanwhile that the strategy of choosing the vaccine sample
much larger than the placebo one, which we suggest at the end of the previous
section, has been used in real life trials by Sputnik [25] and AstraZeneca [26], which
used vaccine vs placebo sample ratios of 3:1 and 2:1, respectively.
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