Basic probabilistic issues in the Sciences and in Forensics (hopefully) clarified by a Toy Experiment modelled by a BN

Giulio D'Agostini

$$
\begin{gathered}
\text { giulio.dagostini@roma1.infn.it } \\
\text { http://www.roma1.infn.it/~dagos/ }
\end{gathered}
$$

Dipartimento di Fisica, Università di Roma La Sapienza
"Probability is the very guide of life" (Digest of Cicero's thought)
"Probability is good sense reduced to a calculus"
(S. Laplace)

Short presentation

- Experimental particle physicist

Short presentation

- Experimental particle physicist...
- but not a former physicist doing forensic physics. ...

Short presentation

- Experimental particle physicist...
- but not a former physicist doing forensic physics. ...
- I am here because I am interested in probability (and in particle physics community I am know as a Bayesian expert).

Short presentation

- Experimental particle physicist...
- but not a former physicist doing forensic physics. ...
- I am here because I am interested in probability (and in particle physics community I am know as a Bayesian expert).
- But I am not really 'a Bayesian', as I am not a Fermian, or Einsteinian, etc. (We do not like labels for this kind.)

Short presentation

- Experimental particle physicist...
- but not a former physicist doing forensic physics. ...
- I am here because I am interested in probability (and in particle physics community I am know as a Bayesian expert).
- But I am not really 'a Bayesian', as I am not a Fermian, or Einsteinian, etc. (We do not like labels for this kind.)
- I have not learned Bayesian reasoning in books or courses, but I developed it by myself in 1993, reobtaining main results by Laplace and others.

Short presentation

- Experimental particle physicist...
- but not a former physicist doing forensic physics. ...
- I am here because I am interested in probability (and in particle physics community I am know as a Bayesian expert).
- But I am not really 'a Bayesian', as I am not a Fermian, or Einsteinian, etc. (We do not like labels for this kind.)
- I have not learned Bayesian reasoning in books or courses, but I developed it by myself in 1993, reobtaining main results by Laplace and others.

More on my web page.

What is measurement?

(C) GdA, Cambridge, 20/09/16 $3 / 44$

What is measurement?

What is measurement?

© GdA, Cambridge, 20/09/16 $3 / 44$

What is measurement?

(C) GdA, Cambridge, 20/09/16 $3 / 44$

What is measurement?

Two-photon invariant mass

What is measurement?

ATLAS Experiment at LHC (CERN, Geneva)

(c) GdA, Cambridge, 20/09/16 $3 / 44$

What is measurement?

ATLAS Experiment at LHC [length: $46 \mathrm{~m} ; \varnothing 25 \mathrm{~m}$]

$\approx 3000 \mathrm{~km}$ cables
≈ 7000 tonnes
≈ 100 millions electronic channels
(c) GdA, Cambridge, 20/09/16 $3 / 44$

What is measurement?

Two flashes of 'light' (2 γ 's) in a 'noisy' environment.

What is measurement?

Two flashes of 'light' (2 γ 's) in a 'noisy' environment. Higgs $\rightarrow \gamma \gamma$?

What is measurement?

Two flashes of 'light' (2 γ 's) in a 'noisy' environment. Higgs $\rightarrow \gamma \gamma$? Probably not...

What is measurement?

Higes $\rightarrow \gamma \gamma$

What is measurement?

Higes $\rightarrow \gamma \gamma$

What is measurement?

Higes $\rightarrow \gamma \gamma$

Quite indirect measurements of something we do not "see"!

Can we "see" physics quantities?

But, can we see our mass?

Can we "see" physics quantities?

... or a voltage?

Can we "see" physics quantities?
... or our blood pressure?

Can we "see" physics quantities?

Certainly not!

Can we "see" physics quantities?

Certainly not!

... although for some quantities we can have
a 'vivid impression' (in the David Hume's sense)

Measuring a mass on a scale

Equilibrium:

$$
\begin{aligned}
m g-k \Delta x & =0 \\
\Delta x & \rightarrow \theta \rightarrow \text { scale reading }
\end{aligned}
$$

(with ' g ' gravitational acceleration; ' k ' spring constant.)

Measuring a mass on a scale

joyce@gohide-intl.com

Equilibrium:

$$
\begin{aligned}
m g-k \Delta x & =0 \\
\Delta x & \rightarrow \theta \rightarrow \text { scale reading }
\end{aligned}
$$

(with ' g ' gravitational acceleration; ' k ' spring constant.)

From the reading to the value of the mass:

$$
\text { scale reading } \xrightarrow[\text { given } g, k, " e t c . " \ldots]{ } m
$$

Measuring a mass on a balance

$$
\text { scale reading } \xrightarrow[\text { given } g, k, " e t c . " . .]{ }
$$

Dependence on ' g ':

$$
g \stackrel{?}{=} \frac{G M_{\text {万 }}}{R_{\text {ठ }}^{2}}
$$

Measuring a mass on a balance

$$
\text { scale reading } \xrightarrow[\text { given } g, k, " e t c . " \ldots]{ } m
$$

Dependence on ' g ': $g \stackrel{?}{=} \frac{G M_{+}}{R_{+}^{2}}$

- Position is usually not at " R_{f} " from the Earth center;
- Earth not spherical...
- ... not even ellipsoidal...
- ... and not even homogeneous.
- Moreover we have to consider centrifugal effects
- ... and even the effect from the Moon

Measuring a mass on a balance

$$
\text { scale reading } \xrightarrow[\text { given } g, k, \text { "etc."... }]{ } m
$$

Dependence on ' g ':

$$
g \stackrel{?}{=} \frac{G M_{\text {万 }}}{R_{\text {ठ }}^{2}}
$$

- Position is usually not at " $R_{\mathrm{\delta}}$ " from the Earth center;
- Earth not spherical...
- ... not even ellipsoidal...
- ... and not even homogeneous.
- Moreover we have to consider centrifugal effects
- ... and even the effect from the Moon

Certainly not to watch our weight

Measuring a mass on a balance

$$
\text { scale reading } \xrightarrow[\text { given } g, k, ~ " e t c . " . . . ~]{ } \quad m
$$

Dependence on ' g ': $g \stackrel{?}{=} \frac{G M_{+}}{R_{+}^{2}}$

- Position is usually not at " R_{f} " from the Earth center;
- Earth not spherical...
- ... not even ellipsoidal...
- ... and not even homogeneous.
- Moreover we have to consider centrifugal effects
- ... and even the effect from the Moon

Certainly not to watch our weight
But think about it!

Measuring a mass on a balance

scale reading
Dependence on ' k ':

- temperature
- non linearity

Measuring a mass on a balance

scale reading

Dependence on ' k ':

- temperature
- non linearity
-...
$\Delta \mathbf{x} \rightarrow \theta \rightarrow$ scale reading:
- left to your imagination...

Measuring a mass on a balance

$$
\text { scale reading } \xrightarrow[\text { given } g, k, " e t c . " \ldots]{ }
$$

Dependence on ' k ':

- temperature
- non linearity
$\Delta \mathbf{x} \rightarrow \theta \rightarrow$ scale reading:
- left to your imagination. . .
+ random effects:
- stopping position of damped oscillation;
- variability of all quantities of influence (in the ISO-GUM sense);
- reading of analog scale.

Measuring a mass on a balance

scale reading

Dependence on ' k ':

- temperature
- non linearity
- ...
$\boldsymbol{\Delta} \mathbf{x} \rightarrow \theta \rightarrow$ scale reading:
- left to your imagination...
+ random effects:
- stopping position of damped oscillation;
- variability of all quantities of influence (in the ISO-GUM sense);
- reading of analog scale.

Pure empirical information?

A number, outside a contest, and denuted of all contextual information provides little (or zero) knowledge:
\rightarrow it is not a measurement.

Pure empirical information?

A number, outside a contest, and denuted of all contextual information provides little (or zero) knowledge:
\rightarrow it is not a measurement.

Mistrust the

Dogma of the Immaculate Observation!

Pure empirical information?

A number, outside a contest, and denuted of all contextual information provides little (or zero) knowledge:
\rightarrow it is not a measurement.

Mistrust the

Dogma of the Immaculate Observation!

In particular our conclusions on the credibility of the hypotheses of interest might dependent on the the 'question' ${ }^{(*)}$ asked!
\rightarrow Monty Hall problem and variations;
\rightarrow Three prisoners problem.
[${ }^{(*)}$ Performing an experiment is just a subclass of 'questioning']

Pure empirical information?

A number, outside a contest, and denuted of all contextual information provides little (or zero) knowledge:
\rightarrow it is not a measurement.

Mistrust the

Dogma of the Immaculate Observation!

In particular our conclusions on the credibility of the hypotheses of interest might dependent on the the 'question' ${ }^{(*)}$ asked!
\rightarrow Monty Hall problem and variations;
\rightarrow Three prisoners problem.
\rightarrow Very relevant in Forensics!
[${ }^{(*)}$ Performing an experiment is just a subclass of 'questioning']

Learning from data

continuous Hypotheses discrete
(*) A quantity might be meaningful only within a theory/model

From past to future

Our task:

- Describe/understand the 'physical' world
\Rightarrow inference of laws and their parameters
- Predict observations
\Rightarrow forecasting

From past to future

\Rightarrow Uncertainty:

1. Given the past observations, in general we are not sure about the theory parameters (and/or the theory itself)
2. Even if we were sure about theory and parameters, there could be internal (e.g. Q.M.) or external effects (initial/boundary conditions, 'errors', etc) that make the forecasting uncertain.

From past to future

\Rightarrow Decision

- What is be best action ('experiment') to take in order 'to be confident' that what "we would like" will occur?
(Non trivial decision issues always assume uncertainty about future outcomes.)
- Before tackling problems of decision we need to learn to reason about uncertainty, possibly in a quantitative way.

From past to future

Deep reason of uncertainty

From past to future

Deep reason of uncertainty

Theory $-\boldsymbol{?}$	\longrightarrow	Future observations
Past observations $-\boldsymbol{?}$	\longrightarrow	Theory
Theory $-\boldsymbol{?}$	Future observations	

\Longrightarrow Uncertainty about causal connections CAUSE \Longleftrightarrow EFFECT

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

Causes \rightarrow effects

The same apparent cause might produce several,different effects

Given an observed effect, we are not sure about the exact cause that has produced it.

$$
\mathbf{E}_{2} \Rightarrow\left\{C_{1}, C_{2}, C_{3}\right\} ?
$$

"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.
"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.
I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method."
(H. Poincaré - Science and Hypothesis)
"Now, these problems are classified as probability of causes, and are most interesting of all their scientific applications. I play at écarté with a gentleman whom I know to be perfectly honest. What is the chance that he turns up the king? It is $1 / 8$. This is a problem of the probability of effects.
I play with a gentleman whom I do not know. He has dealt ten times, and he has turned the king up six times. What is the chance that he is a sharper? This is a problem in the probability of causes. It may be said that it is the essential problem of the experimental method."
(H. Poincaré - Science and Hypothesis)

Why we (or most of us) have not been taught how to tackle
this kind of problems?

From 'true value' to observations

Given μ (exactly known) we are uncertain about x

From 'true value' to observations

Uncertainty about μ makes us more uncertain about x

... and back: Inferring a true value

The observed data is certain: \rightarrow 'true value' uncertain.

... and back: Inferring a true value

The observed data is certain: \rightarrow 'true value' uncertain. "data uncertainty"?

... and back: Inferring a true value

The observed data is certain: \rightarrow 'true value' uncertain. "data uncertainty" ? Data corrupted?
... and back: Inferring a true value

The observed data is certain: \rightarrow 'true value' uncertain.
"data uncertainty" ? Data corrupted?
Even if the data were corrupted, the data were the corrupted data!!...

... and back: Inferring a true value

Where does the observed value of x comes from?

.... and back: Inferring a true value

We are now uncertain about μ, given x.

.... and back: Inferring a true value

Note the symmetry in reasoning.

A very simple experiment

Let's make an experiment

A very simple experiment

Let's make an experiment

- Here
- Now

A very simple experiment

Let's make an experiment

- Here
- Now

For simplicity

- μ can assume only six possibilities:

$$
\mathbf{0}, \mathbf{1}, \ldots, 5
$$

- x is binary:

$$
\begin{gathered}
\mathbf{0}, \mathbf{1} \\
{[(1,2) ; \text { Black/White; Yes/Not; ...] }}
\end{gathered}
$$

A very simple experiment

Let's make an experiment

- Here
- Now

For simplicity

- μ can assume only six possibilities:

$$
\mathbf{0}, \mathbf{1}, \ldots, 5
$$

- x is binary:

$$
0,1
$$

[(1,2); Black/White; Yes/Not; ...]
\Rightarrow Later we shall make μ continuous.

Which box? Which ball?

Let us take at random one of the boxes.

Which box? Which ball?

Let us take at random one of the boxes.
We are in a state of uncertainty concerning several events, the most important of which correspond to the following questions:
(a) Which box have we chosen, $H_{0}, H_{1}, \ldots, H_{5}$?
(b) If we extract randomly a ball from the chosen box, will we observe a white $\left(E_{W} \equiv E_{1}\right)$ or black $\left(E_{B} \equiv E_{2}\right)$ ball?

Our certainties:

$$
\begin{aligned}
\cup_{j=0}^{5} H_{j} & =\Omega \\
\cup_{i=1}^{2} E_{i} & =\Omega .
\end{aligned}
$$

Which box? Which ball?

Let us take at random one of the boxes.
We are in a state of uncertainty concerning several events, the most important of which correspond to the following questions:
(a) Which box have we chosen, $H_{0}, H_{1}, \ldots, H_{5}$?
(b) If we extract randomly a ball from the chosen box, will we observe a white $\left(E_{W} \equiv E_{1}\right)$ or black $\left(E_{B} \equiv E_{2}\right)$ ball?

Our certainties: $\quad \cup_{j=0}^{5} H_{j}=\Omega$

$$
\cup_{i=1}^{2} E_{i}=\Omega .
$$

\Rightarrow Comparison with a box containing 5 White and 5 Black balls.

Which box? Which ball?

Let us take at random one of the boxes.
We are in a state of uncertainty concerning several events, the most important of which correspond to the following questions:
(a) Which box have we chosen, $H_{0}, H_{1}, \ldots, H_{5}$?
(b) If we extract randomly a ball from the chosen box, will we observe a white $\left(E_{W} \equiv E_{1}\right)$ or black $\left(E_{B} \equiv E_{2}\right)$ ball?

Our certainties:

$$
\begin{aligned}
\cup_{j=0}^{5} H_{j} & =\Omega \\
\cup_{i=1}^{2} E_{i} & =\Omega .
\end{aligned}
$$

\Rightarrow Comparison with a box containing 5 White and 5 Black balls. (Ellsberg's paradox)

Which box? Which ball?

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation

Which box? Which ball?

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation
- Can we do it quantitatively, in an 'objective' way?

Which box? Which ball?

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation
- Can we do it quantitatively, in an 'objective' way?
- And after a sequence of extractions?

Which box? Which ball?

- What happens after we have extracted one ball and looked its color?
- Intuitively feel how to roughly change our opinion about
- the possible cause
- a future observation
- Can we do it quantitatively, in an 'objective' way?
- And after a sequence of extractions?
- Imagine we observe W, W, W, W, ...

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

The toy experiment is conceptually very close to what we do in the pure and applied sciences
\Rightarrow try to guess what we cannot see (the electron mass, a magnetic field, etc)
... from what we can see (somehow) with our senses.
The rule of the game is that we are not allowed to watch inside the box!

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

The toy experiment is conceptually very close to what we do in the pure and applied sciences
\Rightarrow try to guess what we cannot see (the electron mass, a magnetic field, etc)
... from what we can see (somehow) with our senses.
The rule of the game is that we are not allowed to watch inside the box!
\Rightarrow But also similar to forensic cases
\Rightarrow Those who are called to judge have never experienced with their own senses what really happened.

The toy inferential experiment

The aim of the experiment will be to guess the content of the box without looking inside it, only extracting a ball, record its color and reintroducing in the box

The toy experiment is conceptually very close to what we do in the pure and applied sciences
\Rightarrow try to guess what we cannot see (the electron mass, a magnetic field, etc)
... from what we can see (somehow) with our senses.
The rule of the game is that we are not allowed to watch inside the box!
\Rightarrow But also similar to forensic cases
\Rightarrow Those who are called to judge have never experienced with their own senses ${ }^{(*)}$ what really happened.
[${ }^{(*)}$ And senses (+ memory \& 'information process') are notoriously fallacious!]

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes,

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is the probability?

Where is probability?

We all agree that the experimental results change

- the probabilities of the box compositions;
- the probabilities of a future outcomes, although the box composition remains unchanged ('extractions followed by reintroduction').

Where is the probability?

Certainly not in the box!

Subjective nature of probability

"Since the knowledge may be different with different persons

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times,

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence,

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"

Subjective nature of probability

"Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"
(Schrödinger, 1947)

Subjective nature of probability

> "Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"

(Schrödinger, 1947)

Probability depends on the status of information of the subject who evaluates it.

Subjective nature of probability

> "Since the knowledge may be different with different persons or with the same person at different times, they may anticipate the same event with more or less confidence, and thus different numerical probabilities may be attached to the same event"

(Schrödinger, 1947)

Probability depends on the status of information of the subject who evaluates it.
\Rightarrow Probability is always conditional probability.

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true...

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true... the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true. . . the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
(Schrödinger, 1947)

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true. . . the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
\Rightarrow How much we believe something

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true... the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
\rightarrow 'Degree of belief' \leftarrow

What are we talking about?

"Given the state of our knowledge about everything that could possible have any bearing on the coming true. . . the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"
\rightarrow 'Degree of belief' \leftarrow

But not only referring to events meant as 'effects.'

What are we talking about?

> "Given the state of our knowledge about everything that could possible have any bearing on the coming true. . . the numerical probability P of this event is to be a real number by the indication of which we try in some cases to setup a quantitative measure of the strength of our conjecture or anticipation, founded on the said knowledge, that the event comes true"

\rightarrow 'Degree of belief' \leftarrow

But not only referring to events meant as 'effects.'
\rightarrow All 'ideas' our mind can conceive

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind)

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man;

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."
- To some ideas we attach a belief (a "feeling")...

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."
- To some ideas we attach a belief (a "feeling")... whose intensity has a degree:

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."
- To some ideas we attach a belief (a "feeling")... whose intensity has a degree:
\rightarrow Probability.

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."
- To some ideas we attach a belief (a "feeling")... whose intensity has a degree:
\rightarrow Probability.
- Very simple

Ideas, belief and probability

First deep analysis which goes to the roots of Human Understanding

- David Hume
- Ideas (from 'impressions' and elaborated by the human mind) "Nothing is more free than the imagination of man; and though it cannot exceed that original stock of ideas furnished by the internal and external senses, it has unlimited power of mixing, compounding, separating, and dividing these ideas, in all the varieties of fiction and vision."
- To some ideas we attach a belief (a "feeling")... whose intensity has a degree:
\rightarrow Probability.
- Very simple ... and human.

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
"If we were not ignorant there would be no probability, there could only be certainty.

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
"If we were not ignorant there would be no probability, there could only be certainty. But our ignorance cannot be absolute, for then there would be no longer any probability at all.

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
"If we were not ignorant there would be no probability, there could only be certainty. But our ignorance cannot be absolute, for then there would be no longer any probability at all. Thus the problems of probability may be classed according to the greater or less depth of our ignorance."
(Poincaré)

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
\Rightarrow Famous position of Laplace about intrinsic determinism of the world.

- Since \approx one century there is (almost) general consensus that there is intrinsic randomness in the world \rightarrow Quantum Mechanics.
\rightarrow 'Physical probability'

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
\Rightarrow Famous position of Laplace about intrinsic determinism of the world.

- Since \approx one century there is (almost) general consensus that there is intrinsic randomness in the world \rightarrow Quantum Mechanics.
\rightarrow 'Physical probability' (propensity, bent...)

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
David Hume
"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding, and begets a like species of belief or opinion.

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
David Hume
"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding, and begets a like species of belief or opinion.
There is certainly a probability, which arises from a superiority of chances on any side; and according as this superiority increases, and surpasses the opposite chances, the probability receives a proportionable increase, and begets still a higher degree of belief or assent to that side, in which we discover the superiority.

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
David Hume
"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding, and begets a like species of belief or opinion.
There is certainly a probability, which arises from a superiority of chances on any side; and according as this superiority increases, and surpasses the opposite chances, the probability receives a proportionable increase, and begets still a higher degree of belief or assent to that side, in which we discover the superiority. If a dye were marked with one figure or number of spots on four sides, and with another figure or number of spots on the two remaining sides, it would be more probable, that the former would turn up than the latter;

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
David Hume
"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding, and begets a like species of belief or opinion.
There is certainly a probability, which arises from a superiority of chances on any side; and according as this superiority increases, and surpasses the opposite chances, the probability receives a proportionable increase, and begets still a higher degree of belief or assent to that side, in which we discover the superiority. If a dye were marked with one figure or number of spots on four sides, and with another figure or number of spots on the two remaining sides, it would be more probable, that the former would turn up than the latter; though, if it had a thousand sides marked in the same manner ... "

Belief Vs Chance

Is there a 'Chance' in the world, or we are simply ignorant?
David Hume
"Though there be no such thing as Chance in the world; our ignorance of the real cause of any event has the same influence on the understanding, and begets a like species of belief or opinion.
There is certainly a probability, which arises from a superiority of chances on any side; and according as this superiority increases, and surpasses the opposite chances, the probability receives a proportionable increase, and begets still a higher degree of belief or assent to that side, in which we discover the superiority. If a dye were marked with one figure or number of spots on four sides, and with another figure or number of spots on the two remaining sides, it would be more probable, that the former would turn up than the latter; though, if it had a thousand sides marked in the same manner ... "

Die with two kinds of marks \rightarrow box of known composition of Black and White balls

The twofold meaning of 'probability'

- The proportion of white balls in a box of known composition can play the convenient role of 'physical probability' physicists tend to like
\rightarrow an intrinsic property of the box to give White.

The twofold meaning of 'probability'

- The proportion of white balls in a box of known composition can play the convenient role of 'physical probability' physicists tend to like
\rightarrow an intrinsic property of the box to give White.
\rightarrow a physical property like mass or length.
- But our belief on the occurrence of White depends on our beliefs on the different compositions

The twofold meaning of 'probability'

$\bullet \bullet \bullet \bullet$	- - ••	$\bullet \bullet$ -	- - 000	- 0000	OOOOO
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

- The proportion of white balls in a box of known composition can play the convenient role of 'physical probability' physicists tend to like
\rightarrow an intrinsic property of the box to give White.
\rightarrow a physical property like mass or length.
- But our belief on the occurrence of White depends on our beliefs on the different compositions
- Only if we are certain about the value of a 'physical probability' (\rightarrow box composition) then this value will become our probability, i.e. our degree of belief.

The twofold meaning of 'probability'

$\bullet \bullet \bullet \bullet$	- - ••	$\bullet \bullet$ -	- - 000	- 0000	OOOOO
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

- The proportion of white balls in a box of known composition can play the convenient role of 'physical probability' physicists tend to like
\rightarrow an intrinsic property of the box to give White.
\rightarrow a physical property like mass or length.
- But our belief on the occurrence of White depends on our beliefs on the different compositions
- Only if we are certain about the value of a 'physical probability' (\rightarrow box composition) then this value will become our probability, i.e. our degree of belief.
- Otherwise we have to weigh each value with our belief on each of them:

$$
P(W \mid I)=\sum_{i} P\left(W \mid H_{i}, I\right) \cdot P\left(H_{i} \mid I\right)
$$

The twofold meaning of 'probability'

- - - - -	\bullet - - -	$\bullet \bullet$ -	- - 00	- 0000	00000
H_{0}	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}

- The proportion of white balls in a box of known composition can play the convenient role of 'physical probability' physicists tend to like
\rightarrow an intrinsic property of the box to give White.
\rightarrow a physical property like mass or length.
- But our belief on the occurrence of White depends on our beliefs on the different compositions
- Only if we are certain about the value of a 'physical probability' (\rightarrow box composition) then this value will become our probability, i.e. our degree of belief.
- Otherwise we have to weigh each value with our belief on each of them:

$$
P(W \mid I)=\sum_{i} P\left(W \mid H_{i}, I\right) \cdot P\left(H_{i} \mid I\right)
$$

(Note how this famous formula can be read as probabilities of probabilities!)

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
(Usual objection)

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
(Usual objection)

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"

NO!

(Usual objection)
Probability and frequencies are somehow related within probability theory.

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"

NO!

(Usual objection)
Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"

NO!

(Usual objection)
Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"

NO!

(Usual objection)
Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
 NO!
 (Usual objection)

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
 NO!
 (Usual objection)

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].
But they are different things!

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
 \section*{NO!}
 (Usual objection)

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].
But they are different things!
Moreover, as of many other physical quantities, 'physical probability' might change with time:

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
 (Usual objection)

NO!

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].
But they are different things!
Moreover, as of many other physical quantities, 'physical probability' might change with time:
- At most we can make one/few observations at different times, at each of which the presumed 'true' value might be different.

Probability Vs (relative) frequency

"But the physical probability must have a frequentistic interpretation"
 (Usual objection)

NO!

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].

But they are different things!

Moreover, as of many other physical quantities, 'physical probability' might change with time:

- At most we can make one/few observations at different times, at each of which the presumed 'true' value might be different.
- No way to make " n measurements for $n \rightarrow \infty$ ".

Probability Vs (relative) frequency

> "But the physical probability must have a frequentistic interpretation"
> (Usual objection)

NO!

Probability and frequencies are somehow related within probability theory.

- Prediction of future frequency from a probability value [Binomial distribution \rightarrow Bernoulli theorem];
- Evaluation of of a 'physical probability' (Bernoulli's p) from past frequency [Bayes theorem \rightarrow Laplace's rule (interesting remarks by Hume omitted)].
But they are different things!
Moreover, as of many other physical quantities, 'physical probability' might change with time:
- At most we can make one/few observations at different times, at each of which the presumed 'true' value might be different.
- No way to make " n measurements for $n \rightarrow \infty$ ".
- But we can model how p changes with time, and infer its value (with uncertainty) $\forall t$.

Probability Vs 'propensity'

- Calling different things with different names it helps.

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]
- Recent talk at MaxEnt 2016 in July,
"Probability, propensity and probabilities of propensities", although I do not like the word 'propensity'

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]
- Recent talk at MaxEnt 2016 in July,
"Probability, propensity and probabilities of propensities", although I do not like the word 'propensity' . . . and Popper.

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]
- Recent talk at MaxEnt 2016 in July, "Probability, propensity and probabilities of propensities", although I do not like the word 'propensity' . . . and Popper.
- Suggestions are welcome ('bent'?), but what is important to use for 'physical probability' a name different for 'probability' (if we want to have a single noun to indicate it),

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]
- Recent talk at MaxEnt 2016 in July, "Probability, propensity and probabilities of propensities", although I do not like the word 'propensity' . . . and Popper.
- Suggestions are welcome ('bent'?), but what is important to use for 'physical probability' a name different for 'probability' (if we want to have a single noun to indicate it), reserving probability for 'degree of belief', as it has been historically (Cicero, Hume, Laplace, Gauss, ...) and in normal language.

Probability Vs 'propensity'

- Calling different things with different names it helps. [For example the infamous L-word, "introduced by R. A. Fisher with the object of avoiding the use of Bayes' theorem" (I.J. Good) is recognized as a major source of misunderstandings and of serious errors in physics and elsewhere and therefore in my opinion should be banned/restricted, together with LR's.]
- Recent talk at MaxEnt 2016 in July, "Probability, propensity and probabilities of propensities", although I do not like the word 'propensity' . . . and Popper.
- Suggestions are welcome ('bent'?), but what is important to use for 'physical probability' a name different for 'probability' (if we want to have a single noun to indicate it), reserving probability for 'degree of belief', as it has been historically (Cicero, Hume, Laplace, Gauss, ...) and in normal language.
[For the same reason I prefer "Bayes factor" (BF), or perhaps even "Bayes-Turing factor" (BTF), to LR.]

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$.

$$
P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right)
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause \{given that event $\}$. The probability of the existence of any one of these causes \{given the event \} is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes.

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right)}
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause \{given that event \}. The probability of the existence of any one of these causes \{given the event $\}$ is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally probable a priory, it is necessary, instead of the probability of the event given each cause, to use the product of this probability and the possibility of the cause itself."

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

Laplace's "Bayes Theorem"

"The greater the probability of an observed event given any one of a number of causes to which that event may be attributed, the greater the likelihood of that cause $\{$ given that event $\}$. The probability of the existence of any one of these causes \{given the event $\}$ is thus a fraction whose numerator is the probability of the event given the cause, and whose denominator is the sum of similar probabilities, summed over all causes. If the various causes are not equally probable a priory, it is necessary, instead of the probability of the event given each cause, to use the product of this probability and the possibility of the cause itself."

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{P(E)}
$$

(Philosophical Essai on Probabilities)

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fundamental rules'.

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fundamental rules'.

Note: denominator is just a normalization factor.

$$
\Rightarrow \quad P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right) P\left(C_{i}\right)
$$

Laplace's "Bayes Theorem"

$$
P\left(C_{i} \mid E\right)=\frac{P\left(E \mid C_{i}\right) P\left(C_{i}\right)}{\sum_{j} P\left(E \mid C_{j}\right) P\left(C_{j}\right)}
$$

"This is the fundamental principle ${ }^{(*)}$ of that branch of the analysis of chance that consists of reasoning a posteriori from events to causes"
$\left(^{*}\right)$ In his "Philosophical essay" Laplace calls 'principles' the 'fundamental rules'.

Note: denominator is just a normalization factor.

$$
\Rightarrow \quad P\left(C_{i} \mid E\right) \propto P\left(E \mid C_{i}\right) P\left(C_{i}\right)
$$

Most convenient way to remember Bayes theorem

Cause-effect representation

box content \rightarrow observed color

$P\left(B^{(1)} \mid H_{j}\right), \quad P\left(B^{(2)} \mid H_{j}\right), \ldots$
$P\left(W^{(1)} \mid H_{j}\right), \quad P\left(W^{(2)} \mid H_{j}\right), \ldots$

Cause-effect representation

box content \rightarrow observed color

An effect might be the cause of another effect

A network of causes and effects

A network of causes and effects

Preparation 'node' models prior knowledge about Box.

$$
\Rightarrow P\left(H_{j} \mid \operatorname{Prep}_{k}\right)
$$

A network of causes and effects

Preparation 'node' models prior knowledge about Box.

$$
\Rightarrow P\left(H_{j} \mid \operatorname{Prep}_{k}\right)
$$

R_{i} model extra uncertainty in cascade.

$$
\Rightarrow P\left(W_{R} \mid W\right), P\left(B_{R} \mid W\right), \text { etc. }
$$

A network of causes and effects

Preparation 'node' models prior knowledge about Box.

$$
\Rightarrow P\left(H_{j} \mid \operatorname{Prep}_{k}\right)
$$

R_{i} model extra uncertainty in cascade.

$$
\Rightarrow P\left(W_{R} \mid W\right), P\left(B_{R} \mid W\right), \text { etc. }
$$

We shall also include multi-reporters and systematic effects

Multi-reporters

Multiple 'testimonies' of the same empirical fact.

Multi-reporters

Multiple 'testimonies' of the same empirical fact.

\Rightarrow Our belief on O_{1} being Black or White will depend on the consistencies of the 'testimonies'

Systematic effects

The box content could be biased. . .

Systematic effects

The box content could be biased. . .

... if one or more balls of either color might be added to the original box content

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)
- Many actors of the legal world might help to validate the general structure, or the local links

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)
- Many actors of the legal world might help to validate the general structure, or the local links
- Although intuition can be misleading in propagation of probabilities.

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)
- Many actors of the legal world might help to validate the general structure, or the local links
- Although intuition can be misleading in propagation of probabilities.
- Anyone can add 7 and 7

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)
- Many actors of the legal world might help to validate the general structure, or the local links
- Although intuition can be misleading in propagation of probabilities.
- Anyone can add 7 and 7 (and understand that perhaps the first 7 could also be 6 ; and the second 7 could be 6 or 8).

Importance of Bayesian Networks

\Rightarrow Nowadays, thanks to progresses in mathematics and computing, drawing the problem as a 'belief network' is more than $1 / 2$ step towards its solution!

- BN's have to be seen not only as a technical tool, but, more in general, a very powerful conceptual tool
(I like the analogy to the Entity-Relation model when designing/understanding a Data Base, in which also IT uneducated top manager might contribute)
- Many actors of the legal world might help to validate the general structure, or the local links
- Although intuition can be misleading in propagation of probabilities.
- Anyone can add 7 and 7 (and understand that perhaps the first 7 could also be 6 ; and the second 7 could be 6 or 8). But adding 35783 times 7 is an operation we delegate to a pocket calculator.
- A similar role should have BN's in combining pieces of evidence, with professional support by experts.

Propagating the evidence in a simple BN

Let's play!

Six Boxes with reported evidence

For sake of simplicity symmetric probabilities of the reported color given the outcome of the extraction

$$
\begin{aligned}
P\left(R_{i}=W \mid O_{i}=W\right) & =5 / 6 \approx 83 \% \\
P\left(R_{i}=B \mid O_{i}=W\right) & =1 / 6 \approx 17 \% \\
P\left(R_{i}=B \mid O_{i}=B\right) & =5 / 6 \approx 83 \% \\
P\left(R_{i}=W \mid O_{i}=B\right) & =1 / 6 \approx 17 \%
\end{aligned}
$$

Six Boxes with reported evidence

Effect of the testimony: R_{1}

$\rightarrow B_{0}$ no longer falsified
\rightarrow We believe 5/6 (83.3\%) that the ball was really white.

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

\rightarrow We believe more the testimony of the second report (90.5\% Vs 83.3\%)

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

\rightarrow We believe more the testimony of the second report (90.5\% Vs 83.3\%)
???

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

\rightarrow We believe more the testimony of the second report (90.5\% Vs 83.3\%)

- From the previous slide we can see that indeed, after the first testimony, ourexpectation of White in the second extraction has increased to $\approx 66 \%$, and this value acts as prior in the second inference.

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

\rightarrow We believe more the testimony of the second report (90.5\% Vs 83.3\%)

- From the previous slide we can see that indeed, after the first testimony, ourexpectation of White in the second extraction has increased to $\approx 66 \%$, and this value acts as prior in the second inference.
- But how credible is now the hypothesis that the ball of the first extraction was really White?

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

- Indeed we believe both at 90.5% !!

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

- Indeed we believe both at 90.5% !!
- Effect of mutual corroboration

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

- Indeed we believe both at 90.5% !!
- Effect of mutual corroboration even if R_{1} and R_{2} are not reporting about the same extraction!

Six Boxes with reported evidence

Effect of the testimony: R_{1} followed by R_{2}

- Indeed we believe both at 90.5% !!
- Effect of mutual corroboration even if R_{1} and R_{2} are not reporting about the same extraction!
- But they are both indicating high probability of large number of white balls inside the same box.

Six Boxes with reported evidence

Effect of the testimony: R_{1}, R_{2}, R_{3} and R_{4} all reporting White

Corroboration effect continues.

Six Boxes with reported evidence

Effect of the testimony: R_{1}, R_{2}, R_{3} and R_{4} all reporting White

Corroboration effect continues. Then R_{5} reports Black:

The poor R_{5} is believed less than the others!
(And remember they are 'talking' about different outcomes.)

Six Boxes with reported evidence

Effect of the testimony: 4 reports followed by a certain evidence

Six Boxes with reported evidence

Effect of the testimony: 4 reports followed by a certain evidence

- Intuition fails (or at least it performs badly at quantitative levels).
- Formal guidance needed.

Conclusions

- Subjective probability recovers intuitive idea of probability.
- Nothing negative in the adjective 'subjective'. Just recognize, honestly, that probability depends on the status of knowledge, different from person to person.
- Most general concept of probability that can be applied to a large variety of cases.
- Bayesian networks are powerful conceptual/mathematical/ software tools to handle complex problems with variables related by 'probabilistic' links (not only 'casual' links).

Conclusions

- Proper education is needed already at middle/high school level

Conclusions

- Proper education is needed already at middle/high school level
"The celebrated Monsieur Leibnitz has observed it to be a defect in the common systems of logic, that they are very copious when they explain the operations of the understanding in the forming of demonstrations, but are too concise when they treat of probabilities, and those other measures of evidence on which life and action entirely depend, and which are our guides even in most of our philosophical speculations."

> (David Hume)

- The situation has not changed by much after three centuries!

More on the subject by the author

- A defense of Columbo (and of the use of Bayesian inference in forensics): A multilevel introduction to probabilistic reasoning, http://arxiv.org/abs/1003. 2086
- The Waves and the Sigmas (To Say Nothing of the 750 GeV Mirage), http://arxiv.org/abs/1609.01668
- Bayesian reasoning in data analysis - A critical introduction, World Scientific Publishing 2003 (soft cover 2013).
- Così è... probabilmente. Il saggio, l'ingenuo e la signorina Bayes, with Dino Esposito.
- L'improbabile mondo del Mago di Odds, with Gianluca Testa.

More on
http://www.roma1.infn.it/~dagos/prob+stat.html.

