
Minimal solution of uncertainty propagation

The most general problem:

f (x1, x2, . . . , xn) −−−−−−−−−−−−→
Yj=Yj (X1,X2,...,Xn)

f (y1, y2, . . . , ym) .

The ‘minimal’ solution: linear combinations, i.e.







E(Xi )
σ(Xi )
ρ(Xi ,Xi ′)

−−−−−−−−−−−−−−−−−−−→
Yj=cj0+cj1X1+cj2X2+···+cjnXn







E(Yj)
σ(Yj)
ρ(Yj ,Yj ′)

But not forgetting the correlations!
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Linear combination of independent variables
Simple, but instructive and important case:
◮ One (output) variable (Y ) depending from many (input)

quantities Xi , i = 1, 2, . . . , n.

Y = c0 + c1X1 + c2X2 + · · ·+ cnXn]

= c0 +
X

i

ci Xi
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Very general, well know property

E[Y ] = c0 + c1E[X1] + c2E[X2] + · · ·+ cnE[Xn]

= c0 +
X

i

ciE[Xi ]

(“the expected value is a linear operator”)
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Very general, well know property

E[Y ] = c0 + c1E[X1] + c2E[X2] + · · ·+ cnE[Xn]

= c0 +
X

i

ciE[Xi ]

(“the expected value is a linear operator”)

Less general (it holds only if Xi are independent) property:

Var[Y ] = c21Var[X1] + c22Var[X2] + · · ·+ c2nE[Xn]

=
X

i

c2i Var[Xi ]
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Linear combination of independent variables
These two properties (and the extension of the second in the case
of correlated input variable) are the main reason to prefer, as
mostly representative summaries of distributions,
◮ expected value
◮ standard deviation (=

√
Var)

having the same physical dimensions of the variable itself.
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of correlated input variable) are the main reason to prefer, as
mostly representative summaries of distributions,
◮ expected value
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Var)

having the same physical dimensions of the variable itself.

The two numbers to put in the famous bottle. . .

(not by chance we use in QM expectations and variances)

But what is the pdf of Y , f (y)?
In general it is a difficult task (if we want a ‘close form’).
Monte Carlo helps! (kein gedanken Experiment!)
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Linear combination of Gaussian variables

A great, extra simplification occurs when all Xi are described by
normal distributions, also of different µi and σi :
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Linear combination of Gaussian variables

A great, extra simplification occurs when all Xi are described by
normal distributions, also of different µi and σi :

“A linear combinations of Gaussians
is still Gaussian”!
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Central Limit Theorem

Given Y =
Pn

i=1 ciXi
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Central Limit Theorem

Given Y =
Pn

i=1 ciXi

◮ E[Y ] =
P

i=1 ci E[Xi ] is a very general property.

◮ σ2[Y ] =
P

i=1 c
2
i σ

2[Xi ] =
P

i=1 c
2
i σ

2
i

assumes independence of Xi .
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assumes independence of Xi .

But nothing yet about f (y)

Central Limit Theorem:

“n → ∞′′ =⇒ Y ∼ N





n
X

i=1

ci E(Xi ),

 

n
X

i=1

c2i σ
2
i

! 1
2





if c2i σ
2
i <<

Pn
i=1 c

2
i σ

2
i for all Xi not described by a Gaussian!

(i.e. a single non-Gaussian variable has not to dominate the
uncertainty about Y .)
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Central Limit Theorem: a cartoon ‘proof’
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