
Laplace’s “Bayes Theorem”

“The greater the probability of an observed event given any one of
a number of causes to which that event may be attributed, the
greater the likelihood of that cause {given that event}.

P(Ci |E ) ∝ P(E |Ci )
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event} is thus a fraction whose numerator is the probability of the
event given the cause, and whose denominator is the sum of
similar probabilities, summed over all causes. If the various causes
are not equally probable a priory, it is necessary, instead of the
probability of the event given each cause, to use the product of
this probability and the possibility of the cause itself.”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )

(Philosophical Essai on Probabilities)

[ In general P(E ) =
�

j P(E |Cj)P(Cj) (weighted average, with
weigths being the probabilities of the conditions) if Cj form a
complete class of hypotheses ]
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )�
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.
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Laplace’s “Bayes Theorem”

P(Ci |E ) =
P(E |Ci )P(Ci )

P(E )
=

P(E |Ci )P(Ci )�
j P(E |Cj)P(Cj)

“This is the fundamental principle (∗) of that branch of
the analysis of chance that consists of reasoning a
posteriori from events to causes”

(*) In his “Philosophical essay” Laplace calls ‘principles’ the ‘fundamental

rules’.

Note: denominator is just a normalization factor.

⇒ P(Ci |E ) ∝ P(E |Ci )P(Ci )

Most convenient way to remember Bayes theorem
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Laplace’s teaching

P(H0 | data)

P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]
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◮ We should possibly use the data, rather then the test variables
‘θ’ (χ2 etc);
[ although in some case ’sufficient summaries’ do exist ]

◮ At least two hypotheses are needed!

◮ . . . and also how they appear belivable a priori!

◮ If P(data |Hi ) = 0, it follows P(Hi | data) = 0:
⇒ falsification (the ‘serious’ one) is a corollary

of the theorem, rather than a principle.

◮ There is no conceptual problem with the fact that
P(data |H1) → 0 (e.g. 10−37), provided the ratio
P(data |H0)/P(data |H1) is not undefined.
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Bayes factor (’likelihood ratio’)
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P(H1 | data)
=

P(data |H0)

P(data |H1)
×

P(H0)

P(H1)

Prob. ratio|posterior = Bayes factor× Prob. ratio|prior

(prior/posterior w.r.t. data)

If H0 and H1 are ‘complementary’, that is H1 = H0, then

posterior odds = Bayes factor× prior odds
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