Nota sulla forza di Lorenz (Fisica per SMIA – G. D'Agostini, Maggio 2023)

0.1 Forza di Lorenz

Come prima applicazione del prodotto vettoriale vediamo, anche per completare l'argomento delle forze che una carica elettrica può subire, la forza di Lorenz.

• Forza su una carica in moto (solo se in moto!) dovuta a campo magnetico \vec{B} (forza di Lorenz):

$$\vec{F}_L = q \, \vec{v} \wedge \vec{B}$$

- \vec{F}_L ortogonale al piano definito da \vec{v} e $\vec{B};$
- quindi $d\vec{s} = \vec{v} dt$ è normale a \vec{F}_L : la forza magnetica non compie lavoro, ergo
 - * non varia l'energia cinetica:
 - * il modulo della velocità rimane costante.
- in una regione di spazio in cui una particella carica è soggetta soltanto a un campo magnetico, essa esegue un moto circolare uniforme, con forza centripeta qvB e quindi accelerazione centripeta qvB/m. Ma essendo a_c legata a v e R dalla ben nota $a_c = v^2/R$, si ottiene

$$\frac{q}{m}vB = \frac{v^2}{R}$$

$$R = \frac{m}{q}\frac{v}{B}$$

A parità di q, v e B il raggio di curvatura è proporzionale alla massa della particelle. \rightarrow spettrometro di massa.

- Chiaramente, a questo punto la continuazione diventa un esercizio sul moto circolare uniforme nel quale la forza centripeta è la forza di Lorentz.
 - \rightarrow velocità angolare ω ;
 - \rightarrow periodo T;
 - \rightarrow frequenza ν (frequenza di ciclotrone).