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Summaries

E(λ) = x + 1,

Var(λ) = x + 1,

λm = x
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Some examples of f (λ)

For ‘large’ x f (λ | x) becomes Gaussian with expected value x and
standard deviation

√
x .

The difference between the most probable λ and its expected
value for small x is due to the asymmetry of f (λ).
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Conjugate prior

f (λ | x) ∝ λx e−λ · f◦(λ)
∝ λx e−λ · λa e−b λ

∝ λx+a e−(1+b)λ

Does such a probability function ‘exist’?
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Gamma distribution
X ∼ Gamma(c , r):

f (x |Gamma(c , r)) =
r c

Γ(c)
xc−1e−r x

�

r , c > 0
x ≥ 0

,

where

Γ(c) =

� ∞

0
xc−1e−xdx

(for n integer, Γ(n + 1) = n!).
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◮ If c is integer, the distribution is also known as Erlang,

describing the time to wait before observing the c-th event in
a Poisson process of intensity (’rate’) r .

◮ For c = 1 the Gamma distribution recovers the exponential.
◮ Finally, the χ2 distribution is just a particular Gamma:

f (x |χ2
ν) = f (x |Gamma(ν/2, 1/2))

◮ The Gamma is a key distribution!
The Erlang distribution is important to get a physical intuition
of the properties of Gamma and then of the χ2!
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Gamma distribution
Some examples

A) c = 1, 2, 3, 5; r = 0.5.

2 4 6 8 10
x

0.1

0.2

0.3

0.4

0.5

f

r : rate (if the variable is a time, then r is Poisson rate).
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Gamma distribution
Some examples

B) c = 1, 2, 3, 5; r = 1.

2 4 6 8 10
x

0.2

0.4

0.6

0.8

1
f

r : rate (rate increases → distributions squized)
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Gamma distribution
Some examples

C) c = 1, 2, 3, 5; r = 2.

2 4 6 8 10
x

0.25

0.5

0.75

1

1.25

1.5

1.75

2
f

r : rate (rate increases → distributions squized)
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Gamma (and χ2) distribution
Summaries

E(X ) =
c

r

Var(X ) =
c

r2
=

E(X )

r

mode(X ) =

�

0 if c ≤ 1
c−1
r

if c > 1
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Summaries

E(X ) =
c

r

Var(X ) =
c

r2
=

E(X )

r

mode(X ) =

�

0 if c ≤ 1
c−1
r

if c > 1

Therefore, for the χ2 (→ c = ν/2, r = 1/2)

E(χ2) = ν

Var(χ2) = 2 ν

mode(χ2) =

�

0 if ν ≤ 2
ν − 2 if ν > 2
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )
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Distributions derived from the Bernoulli process

Bernoulli
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(trial of (# of successes

1st success) in ind. n trials)

Pascal
(trial of

k-th success)

Exponential Erlang→Gamma Poisson

(time 1st count) (time k-th count) (# counts in T )

χ2

Gaussian
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Inferring the Poisson’s λ
Use of gamma conjugate prior

◮

f (λ | x ,Gamma(ci , ri )) ∝
�

λxe−λ
�

×
�

λci−1e−ri λ
�
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distribution.

◮ Updating rule
cf = ci + x

rf = ri + 1

◮ A “flat conjugate” prior (not just academic!):
→ exponential with very large τ (or vanishing r)

◮ c = 1, r → 0

f (λ | x ,Gamma(ci = 1, ri → 0)) ∝ λxe−λ
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