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Assuming f,(\) constant up to a certain A, > x and making the
integral by parts we obtain
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Assuming f,(\) constant up to a certain A, > x and making the
integral by parts we obtain
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Summaries
E(A\) = x+1,
Var(A\) = x+1,
Am = X
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For ‘large’ x f(\|x) becomes Gaussian with expected value x and
standard deviation {/x.

The difference between the most probable A and its expected
value for small x is due to the asymmetry of f( ).
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Does such a probability function ‘exist’?
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Conjugate prior
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Does such a probability function ‘exist’?

= Gamma distribution
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Gamma distribution
X ~ Gamma(c, r):

f(x | Gamma(c, r)) = rEc)XHe_rX { r,c>0

where o
[(c) = / x¢"le™dx
0
(for n integer, [(n+ 1) = n!).
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(for n integer, [(n+ 1) = n!).
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» If c is integer, the distribution is also known as Erlang,
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a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
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» For ¢ = 1 the Gamma distribution recovers the exponential.
» Finally, the x? distribution is just a particular Gamma:

f-(X‘Xg) = f(x|Gamma(v/2, 1/2))
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where o
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0

(for n integer, [(n+ 1) = n!).
c is called shape parameter, while 1/r is the scale parameter.
» If c is integer, the distribution is also known as Erlang,
describing the time to wait before observing the c-th event in
a Poisson process of intensity ('rate’) r.
» For ¢ = 1 the Gamma distribution recovers the exponential.
» Finally, the x? distribution is just a particular Gamma:

f(x|x2) = f(x|Gamma(r/2, 1/2))
» The Gamma is a key distribution!

The Erlang distribution is important to get a physical intuition
of the properties of Gamma and then of the y?!
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Gamma distribution

Some examples

A)c=1,2 35 r=0.5.

r: rate (if the variable is a time, then r is Poisson rate).
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Gamma distribution

Some examples

r: rate (rate increases — distributions squized)
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Gamma distribution

Some examples

C)c=1,2235r=2

r: rate (rate increases — distributions squized)
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Gamma (and x?) distribution

Summaries

C

c E(X)

Var(X) = 3=
0 if ¢ <1
mode(X) = {C—l if c>1
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Gamma (and x?) distribution

Summaries

C

c E(X)

Var(X) = 2=
0 if ¢ <1
quX)::{c4 if c > 1

Therefore, for the x? (— c=v/2, r = 1/2)

E(x?) =
Var(x?) = 2v
0 if v <2
mode(x") = {y—z if 1> 2
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Distributions derived from the Bernoulli process

K Bernoulli \

Geometric Binomial
(trial of (# of successes
1st success) | in ind. n trials)
Pascal
(trial of
k-th suiccess)

Exponential Erlang—Gamma Poisson

(time 1st cw k-th chnts in T)
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Distributions derived from the Bernoulli process

K Bernoulli \

Geometric Binomial
(trial of (# of sliccesses
1st success) | i ind. 1 trials)
Pasca! }
(trial of
k-th siAccess)

Exponential { i Eriang—Gamma| \ Poisson i

tirne 1st count time k-th count counts iIn
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Inferring the Poisson’s A
Use of gamma conjugate prior
>

f(A|x, Gamma(c;, ri)) [)\Xe_’\} X [)\C"_le_r")‘}
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where ¢; and r; are the initial parameters of the gamma
distribution.
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where ¢; and r; are the initial parameters of the gamma
distribution.

» Updating rule
Cr = CiT+X

re = r+1
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where ¢; and r; are the initial parameters of the gamma
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» A “flat conjugate” prior (not just academic!):
— exponential with very large 7 (or vanishing r)
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Inferring the Poisson’s A

Use of gamma conjugate prior
>

f(A|x, Gamma(c;, ri)) [)\Xe_A} X [)\C"_le_“‘}
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where ¢; and r; are the initial parameters of the gamma
distribution.

» Updating rule
Cr = CiT+X

re = r+1

» A “flat conjugate” prior (not just academic!):
— exponential with very large 7 (or vanishing r)

» c=1,r—0

f(A] x,Gamma(c; =1,r; = 0)) o« Ne
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