From the six boxes
to the Bayes 'billiard

—> Introducing parametric inference
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Inferring ‘proportions’

Let's turn the toy experiment to a ‘serious’ physics case:

» Inferring H; is the same as inferring the proportion of white
balls:

H <— J <— p==<=
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Inferring ‘proportions’

Let's turn the toy experiment to a ‘serious’ physics case:

» Inferring H; is the same as inferring the proportion of white
balls:

H <«— J <— p=7<=

01|~

» Increase the number of balls
n: 6— o0
= p continuous in [0, 1]
» Generalize White/Black — Success/Failure

= efficiencies, branching ratios, ...
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Bayes' billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late "700:
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Bayes' billiard and Bernoulli trials

It is easy to recognize the analogy:

» Left/Right — Success/Failure

» if Left «> Success:
» [/L <+ p of binomial (Bernoulli trials)
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Bayes' billiard and Bernoulli trials

It Is easy to recognize the analogy:

» |eft/Right — Success/Failure

» if Left <+ Success:
» |/L <+ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S,S,F,S,...} [fy is uniform]:
f(p[S) o f(S|p)=0p
f(p|S,S) o f(S|p)-f(p|S)=p’
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Bayes' billiard and Bernoulli trials

It Is easy to recognize the analogy:

» |eft/Right — Success/Failure

» if Left <+ Success:
» [/L <+ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S,S,F,S,...} [fy is uniform]:

f(p|S)
f(plS,S)
f(p|S,S,F)

f(p|#S,#F)
f(p|x,n)

XX

X

X

=

R

f(SIp)=rp
f(S|p)-f(p|S)=0p’
f(Flp)-f(p|S,S)=p°(1—p)

p?2(1—p)*F = p#° (1 — p)"#9)
p (1 —p)") [x = #S]
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n independent Bernoulli processes

Inferring p
v
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n independent Bernoulli processes
Inferring p
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f(p,x|n)
f(x|n)

f(p|x,n)
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n independent Bernoulli processes
Inferring p

<

f(p,x|n)
f(x|n)

f(x|n,p)-fo(p)
f(x|n)

f(x|n,p)-folp)
3 £(x|n,p) - fo(p) dp

X f(X‘ILp)fo(p)
(denominator just normalization!)

f(p’X, n) —
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Inferring the “Bernoulli’'s p”

Mathematically convenient priors
Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!
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Beta distribution
Indeed, such a pdf exists (a=r—1; b=s—1).
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1 . . r,s >0
f(x]Beta(r,s)):ﬁ(r s)X 11 —x)t {O<x<1
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1
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Indeed this integral defines the beta function, resulting in
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Beta distribution

Indeed, such a pdf exists (a=r—1; b=s—1).
In general, given the generic uncertain number X,

1 o . r,s >0
f(x]Beta(r,s))zﬁ(r s)X 11 —x)t {O<x<1

» The denominator is just for normalization, i.e.

1
B(r,s) = / xH1 — x)*tdx
0
Indeed this integral defines the beta function, resulting in

(r)T(s)

Blr:s) = [(r+s)

Try e.g.
> p<-seq(0,1,by=0.01)
> plot(p, dbeta(p, 3, 5), ty=’1’, col=’blue’)
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Beta distribution

Some examples
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Beta distribution

Some examples

E) s=08r=1.21523 F) s=2,r=0.806,04,0.2

£
4y , 4
!
3.5} ! 3.5
III
3t | 3t
/ol
2.5} Y 2.5}
r" /
2- 1’,/// 2'
s 7
e
1.5} s 1.5}
L =
1t ===z 1
— f’l_a”’
0.5¢ — =T 0.5¢
/’,— _______
0.2 0.4 0.6 0.8 1 = x

2.

8.

6.
1.

4.
0. 27

© GdA, RM25-12 14/02/25  40/48




Beta distribution

Summaries

r
r+s

E(X) =

VarlX) = sr DT

Mode, unique if r > 1 and s > 1:

r—1
r+s—2
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A useful app

https://play.google.com/store/apps/details?id=com.mbognar.probdist

Probability Distributions
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A useful app

An example

#% Probability Distributions

X~Beta(a,B) P

a= 95 B=3

X=- Px<x= 041990

1.5

0.5

0.2 0.4 0.6 0.8

Help Formulas Moments
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli's p

f(p|n,x,Beta(r;,s;)) o [p*(1—p)™*] x [pi~t(1— p) ]
x px+r,-—1(1 o p)n—x+s,-—1 .
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli's p

pX(l . p)n—x} < [pr,-—l(l . p)s;—l}
X—|—I’,‘—1(1 o p)n—x+s,-—1 .

f(p|n,x,Beta(r;,s;)) o |
X p
Simple updating rule:
rF = i+ X
sf = si+(n—x)
Check the case of uniform prior (r; = s; = 1)
ree o x+1

E(X) = —
( ) rF + Sf n-+ 2
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli's p

f(p|n,x,Beta(r;,s;)) o [p*(1—p)™*] x [pi~t(1— p) ]
x px+r,-—1(1 o p)n—x+s,-—1 .

Simple updating rule:

rF = I+ X

Sf = S,'—I—(n—X)

Check the case of uniform prior (r; = s; = 1)

E(X) B rf _X—I—].
B I’f—I—Sf_n—I—2

1)(n — 1

Var(X) = It >f _ ek D(n = x+ 1)

(re4+sf+1)(re+5¢)2  (n+3)(n+2)2
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Conjugate priors

The Beta distribution is an example of conjugate prior:
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» a pdf such that prior and posterior belong to the same family;

» its parameters are updated by the the ‘likelihood'.
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» not all conjugate priors are as flexible as the Beta.
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Conjugate priors

The Beta distribution is an example of conjugate prior:
» a pdf such that prior and posterior belong to the same family;
» its parameters are updated by the the ‘likelihood'.

Note:
» not all conjugate priors are as flexible as the Beta.

(In particular, the Gaussian is self-conjugate,
which is not so great. .. )
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