
From the six boxes
to the Bayes ‘billiard’

⇒ Introducing parametric inference
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Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

� GdA, RM25-12 14/02/25 12/48



Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

◮ Increase the number of balls

n : 6 → ∞

⇒ p continuous in [0, 1]

� GdA, RM25-12 14/02/25 12/48



Inferring ‘proportions’

Let’s turn the toy experiment to a ‘serious’ physics case:

◮ Inferring Hj is the same as inferring the proportion of white
balls:

Hj ←→ j ←→ p =
j

5

◮ Increase the number of balls

n : 6 → ∞

⇒ p continuous in [0, 1]

◮ Generalize White/Black −→ Success/Failure

⇒ efficiencies, branching ratios, . . .
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Bayes’ billiard
This is the original problem in the theory of chances solved by
Thomas Bayes in late ’700:
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left ↔ Success:
◮ l/L ↔ p of binomial (Bernoulli trials)
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Bayes’ billiard and Bernoulli trials

It is easy to recognize the analogy:

◮ Left/Right → Success/Failure

◮ if Left ↔ Success:
◮ l/L ↔ p of binomial (Bernoulli trials)

Solution with modern notation:
Imagine a sequence {S , S ,F , S , . . .} [f0 is uniform]:

f (p | S) ∝ f (S | p) = p

f (p | S , S) ∝ f (S | p) · f (p | S) = p2

f (p | S , S ,F ) ∝ f (F | p) · f (p | S , S) = p2(1− p)

. . . . . .

f (p |#S ,#F ) ∝ p#S(1− p)#F = p#S(1− p)(n−#s)

f (p | x , n) ∝ px(1− p)(n−x) [x = #S ]
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n independent Bernoulli processes
Inferring p
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Inferring p

p n

x

√

√

f (p | x , n) =
f (p, x | n)
f (x | n)

=
f (x | n, p) · f 0(p)

f (x | n)

=
f (x | n, p) · f 0(p)

R 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
(denominator just normalization!)
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!
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Inferring the “Bernoulli’s p”
Mathematically convenient priors

Before the advent of powerful computers, applying Laplace’ ideas
(“Bayesian”) has always been a severe problem!

→ Computational barrier

Some tricks have been invented (like what we have called the
“Gaussian trick”).
Here is a very elegant one, particularly suitable useful to infer
Bernoulli’s p.
◮ imagine that we could express f0(p) in the following form

f0(p) ∝ pa (1− p)b

◮ Then the inference becomes

f (p | x , n) ∝ px (1− p)n−x · pa (1− p)b

∝ pa+x (1− p)b+(n−x)

∝ pa
′

(1− p)b
′
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
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◮ The denominator is just for normalization, i.e.
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Beta distribution
Indeed, such a pdf exists (a = r − 1; b = s − 1).
In general, given the generic uncertain number X ,

f (x |Beta(r , s)) = 1

β(r , s)
x r−1(1− x)s−1

�

r , s > 0
0 ≤ x ≤ 1

◮ The denominator is just for normalization, i.e.

β(r , s) =

Z 1

0
x r−1(1− x)s−1 dx

Indeed this integral defines the beta function, resulting in

β(r , s) =
Γ(r) Γ(s)

Γ(r + s)

Try e.g.
> p<-seq(0,1,by=0.01)

> plot(p, dbeta(p, 3, 5), ty=’l’, col=’blue’)
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Beta distribution
Some examples

A) r = s = 1, 1.1 e 0.9 B) r = s = 2, 3, 4, 5
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C) r = s = 0.8, 0.5, 0.2, 0.1 D) r = 0.8; s = 1.2, 1.5, 2, 3
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Beta distribution
Some examples

E) s = 0.8; r = 1.2, 1.5, 2, 3 F) s = 2; r = 0.8, 0.6, 0.4, 0.2
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G) (r , s) = (3, 5), (5, 5), (5, 3) H) (r , s) = (30, 50), (50, 50), (50, 30)
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Beta distribution
Summaries

E(X ) =
r

r + s

Var(X ) =
rs

(r + s + 1) (r + s)2
.

Mode, unique if r > 1 and s > 1:

r − 1

r + s − 2

� GdA, RM25-12 14/02/25 41/48



A useful app
https://play.google.com/store/apps/details?id=com.mbognar.probdist
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A useful app
An example
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Beta distribution as prior
Let us finally apply it to infer the Bernoulli’s p

f (p | n, x ,Beta(ri , si )) ∝
�

px(1− p)n−x
�

×
�

pri−1(1− p)si−1
�

∝ px+ri−1(1− p)n−x+si−1 .
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Check the case of uniform prior (ri = si = 1)

E(X ) =
rf
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=

x + 1
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Conjugate priors

The Beta distribution is an example of conjugate prior:
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Conjugate priors

The Beta distribution is an example of conjugate prior:

◮ a pdf such that prior and posterior belong to the same family;

◮ its parameters are updated by the the ‘likelihood’.

Note:

◮ not all conjugate priors are as flexible as the Beta.

(In particular, the Gaussian is self-conjugate,
which is not so great. . . )
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