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=
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R 1
0 f (x | n, p) · f 0(p) dp

∝ f (x | n, p) · f 0(p)
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For teaching purposes we start from a uniform prior,
i.e. �◦(�) = 1:

f (p | x , n) =
px (1− p)n−x

R 1
0 p

x (1− p)n−x dp

◮ The integral at the denominator is the special function “β”
(also defined for real values of x and n).

◮ In our case these two numbers are integer and the integral
becomes equal to

x! (n − x)!

(n + 1)!
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Inferring “Bernoulli’s p”
Solution for uniform prior (think to Bayes’ billard)
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Inferring the “Bernoulli’s p”
About the meaning of E(p)

◮ We have used the “first”(∗) n trials to learn about “p”.
[(∗) “First” does not imply time order, but just order in usage.]
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Inferring the “Bernoulli’s p”
Large number behaviour

When the number of successes and the number of failures become
‘large’ (x large is not enough, as it can be easily understood from
the simmetric properties of the binomial p ↔ q):
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‘large’ (x large is not enough, as it can be easily understood from
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Moreover f (p) tends to a Gaussian distribution:

p ∼ N (pm,σp)

When n → ∞, then σp → 0, → and hence

P(Ei>n | x , n) “ −→ ”
x

n

(Similarly to Bernoulli’s theorem, it is not a ‘mathematical’ limit!)
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— f (p | x , n) tends to Gaussian,
— a reflection of the Gaussian limit of f (x | p, n)
— The probability of a future events is evaluated
— from the relative frequency of the past events
— No need of ‘frequentistic definition’ !
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Frequency and probability are related in probability theory:

◮ Relative frequencies of successes in future trials can be
‘forecasted’ from p (Bernoulli theorem).

◮ Probability p can be evaluated from past frequencies, under
some assumptions (‘Bayes theorem’ → Laplace’s rule)

BUT

◮ There is no need to identify the two concepts.

◮ It does not justify the frequentistic definition.

� GdA, RM25-12 14/02/25 27/48


