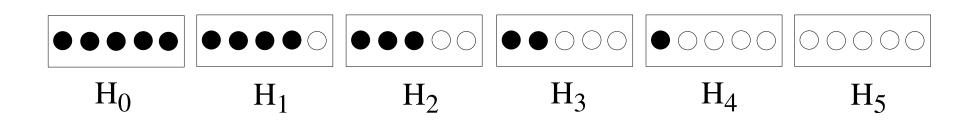
Application to the six box problem



Remind:

•
$$E_1 = White$$

• $E_2 = Black$

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

►
$$P(H_j | I) = 1/6$$

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

$$P(H_j \mid I) = 1/6$$
 $P(E_i \mid I) = 1/2$

© GdA, RM25-06 27/01/25 15/19

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

$$P(H_j | I) = 1/6$$

$$P(E_i | I) = 1/2$$

$$P(E_i | H_j, I) :$$

$$P(E_1 | H_j, I) = j/5$$

$$P(E_2 | H_j, I) = (5-j)/5$$

© GdA, RM25-06 27/01/25 15/19

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

$$P(H_{j} | l) = 1/6$$

$$P(E_{i} | l) = 1/2$$

$$P(E_{i} | H_{j}, l) :$$

$$P(E_{1} | H_{j}, l) = j/5$$

$$P(E_{2} | H_{j}, l) = (5-j)/5$$

• Our prior belief about H_j

Our tool:

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

$$P(H_j | I) = 1/6$$

$$P(E_i | I) = 1/2$$

$$P(E_i | H_j, I) :$$

$$P(E_1 | H_j, I) = j/5$$

$$P(E_2 | H_j, I) = (5-j)/5$$

Probability of E_i under a well defined hypothesis H_j It corresponds to the 'response of the apparatus' in measurements.

 \rightarrow likelihood (traditional, rather confusing name!)

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

$$P(H_{j} | I) = 1/6$$

$$P(E_{i} | I) = 1/2$$

$$P(E_{i} | H_{j}, I) :$$

$$P(E_{1} | H_{j}, I) = j/5$$

$$P(E_{2} | H_{j}, I) = (5-j)/5$$

- Probability of E_i taking account all possible H_j \rightarrow How much we are confident that E_i will occur.

© GdA, RM25-06 27/01/25 15/19

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

$$P(H_{j} | I) = 1/6$$

$$P(E_{i} | I) = 1/2$$

$$P(E_{i} | H_{j}, I) :$$

$$P(E_{1} | H_{j}, I) = j/5$$

$$P(E_{2} | H_{j}, I) = (5-j)/5$$

- Probability of E_i taking account all possible H_j \rightarrow How much we are confident that E_i will occur. (taking into account all possible hypotheses H_j)

Our tool:

$$P(H_j \mid E_i, I) = \frac{P(E_i \mid H_j, I)}{P(E_i \mid I)} P(H_j \mid I)$$

$$P(H_{j} | I) = 1/6$$

$$P(E_{i} | I) = 1/2$$

$$P(E_{i} | H_{j}, I) :$$

$$P(E_{1} | H_{j}, I) = j/5$$

$$P(E_{2} | H_{j}, I) = (5-j)/5$$

But it easy to prove that $P(E_i | I)$ is related to the other ingredients, usually easier to 'measure' or to assess somehow, though vaguely

$$P(H_j | E_i, I) = \frac{P(E_i | H_j, I)}{P(E_i | I)} P(H_j | I)$$

$$P(H_{j} | I) = 1/6$$

$$P(E_{i} | I) = 1/2$$

$$P(E_{i} | H_{j}, I) :$$

$$P(E_{1} | H_{j}, I) = j/5$$

$$P(E_{2} | H_{i}, I) = (5 - j)/5$$

But it easy to prove that $P(E_i | I)$ is related to the other ingredients, usually easier to 'measure' or to assess somehow, though vaguely

'decomposition law': $P(E_i | I) = \sum_j P(E_i | H_j, I) \cdot P(H_j | I)$ (\rightarrow Easy to check that it gives $P(E_i | I) = 1/2$ in our case).