Scritto 21 luglio
- Soluzioni concettuali
- Variante dell'esperimento effettuato in aula e lungamente
discusso durante il corso.
- La variazione di energia cinetica è pari al lavoro
compiuto dalla forza sull'oggetto.
- Forza del tipo -βv: →
ne segue che v(t) è esponenziale decrescente
con τ=m/β. Poi, da v(t) segue a(t).
- Applicazione della legge di Stefan-Bolzmann
(la 'costante' solare è proporzionale
alla potenza totale emessa dal Sole).
- Essendo la forza centripeta sul pianeta la forza gravitazionale
su di esso dovuta all'attrattore, invertendo la formula
si ottiene facilmente la dipendenza di M da v e R.
- Semplice circuito risolvibile con riduzioni a serie e parallelo.
- Applicazione della legge di Leonardo e del Teorema di Bernoulli.
- La forza di Lorentz non compie lavoro, quindi...
Invece essa curva la traiettoria
delle particelle cariche in moto e quindi in genere
ne cambia i vettori velocità e quantità di moto
(ma non il loro modulo!).
['In genere' in quanto
la particella può compiere un'orbita circolare
e quindi i vettori v e p si ripetono
dopo ogni periodo.]
- Nell'approssimazione suggerita l'espressione del momento
di inerzia è particolarmente semplice.
L'espressione di ω si ricava R e v;
quindi da I e ω segue Ec.
- Applicazione della regola (approssimata) di propagazione delle
incertezze standard.
In questo caso è preferibile
usare la regola (sempre approssimata) di propagazione
delle incertezze relative essendo l'espressione
di ρ
da d, h e m una forma 'monomia'.