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“Two and two equal four.
The trouble is, in that world of shadows and distorting mirrors

what may or may not appear to be two,
when multiplied by a factor that may or may not be two,
could possibly come out at four but probably will not.”

(Frederick Forsyth – The fist of God)
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Propagation of uncertainties
All we have seen so far in this short review of ‘direct probability’ is
how to ‘propagate probability’ to logically connected events or
variables.
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⇒ Therefore, the famous problem of propagation of uncertainty is
straightforward in a probabilistic approach: just use probability
theory.

[Note that in the frequentistic approach one does something
similar, but in a ‘strange’ way, because one is not allowed to use
probability for values of physical quantities, but only for
estimators.]
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Propagation of uncertainties
All we have seen so far in this short review of ‘direct probability’ is
how to ‘propagate probability’ to logically connected events or
variables.

⇒ Therefore, the famous problem of propagation of uncertainty is
straightforward in a probabilistic approach: just use probability
theory.

[Note that in the frequentistic approach one does something
similar, but in a ‘strange’ way, because one is not allowed to use
probability for values of physical quantities, but only for
estimators.]

The general problem:

f (x1, x2, . . . , xn) −−−−−−−−−−−−→
Yj=Yj (X1,X2,...,Xn)

f (y1, y2, . . . , ym) .

This calculation can be quite challenging, but it can be easily
performed by Monte Carlo techniques.
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Minimal solution of uncertainty propagation

The most general problem:

f (x1, x2, . . . , xn) −−−−−−−−−−−−→
Yj=Yj (X1,X2,...,Xn)

f (y1, y2, . . . , ym) .

The ‘minimal’ solution: linear combinations, i.e.







E(Xi )
σ(Xi )
ρ(Xi ,Xi ′)

−−−−−−−−−−−−−−−−−−−→
Yj=cj0+cj1X1+cj2X2+···+cjnXn







E(Yj)
σ(Yj)
ρ(Yj ,Yj ′)

But not forgetting the correlations!
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Linear combination of independent variables
Simple, but instructive and important case:
◮ One (output) variable (Y ) depending from many (input)

quantities Xi , i = 1, 2, . . . , n.

Y = c0 + c1X1 + c2X2 + · · ·+ cnXn]

= c0 +
∑

i

ci Xi
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quantities Xi , i = 1, 2, . . . , n.

Y = c0 + c1X1 + c2X2 + · · ·+ cnXn]

= c0 +
∑

i

ci Xi

Very general, well know property

E[Y ] = c0 + c1E[X1] + c2E[X2] + · · ·+ cnE[Xn]

= c0 +
∑

i

ciE[Xi ]

(“the expected value is a linear operator”)
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Linear combination of independent variables
Simple, but instructive and important case:
◮ One (output) variable (Y ) depending from many (input)

quantities Xi , i = 1, 2, . . . , n.

Y = c0 + c1X1 + c2X2 + · · ·+ cnXn]

= c0 +
∑

i

ci Xi

Very general, well know property

E[Y ] = c0 + c1E[X1] + c2E[X2] + · · ·+ cnE[Xn]

= c0 +
∑

i

ciE[Xi ]

(“the expected value is a linear operator”)

Less general (it holds only if Xi are independent) property:

Var[Y ] = c21Var[X1] + c22Var[X2] + · · ·+ c2nE[Xn]

=
∑

i

c2i Var[Xi ]
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Linear combination of independent variables
These two properties (and the extension of the second in the case
of correlated input variable) are the main reason to prefer, as
mostly representative summaries of distributions,
◮ expected value
◮ standard deviation (=

√
Var)

having the same physical dimensions of the variable itself.
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Linear combination of independent variables
These two properties (and the extension of the second in the case
of correlated input variable) are the main reason to prefer, as
mostly representative summaries of distributions,
◮ expected value
◮ standard deviation (=

√
Var)

having the same physical dimensions of the variable itself.

The two numbers to put in the famous bottle. . .

(not by chance we use in QM expectations and variances)

But what is the pdf of Y , f (y)?
In general it is a difficult task (if we want a ‘close form’).
Monte Carlo helps! (kein gedanken Experiment!)
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Linear combination of Gaussian variables

A great, extra simplification occurs when all Xi are described by
normal distributions, also of different µi and σi :
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Linear combination of Gaussian variables

A great, extra simplification occurs when all Xi are described by
normal distributions, also of different µi and σi :

“A linear combinations of Gaussians
is still Gaussian”!
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Central Limit Theorem

Given Y =
∑n

i=1 ciXi
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Central Limit Theorem

Given Y =
∑n

i=1 ciXi

◮ E[Y ] =
∑

i=1 ci E[Xi ] is a very general property.

◮ σ2[Y ] =
∑

i=1 c
2
i σ

2[Xi ] =
∑

i=1 c
2
i σ

2
i

assumes independence of Xi .
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Central Limit Theorem

Given Y =
∑n

i=1 ciXi

◮ E[Y ] =
∑

i=1 ci E[Xi ] is a very general property.

◮ σ2[Y ] =
∑

i=1 c
2
i σ

2[Xi ] =
∑

i=1 c
2
i σ

2
i

assumes independence of Xi .

But nothing yet about f (y)

Central Limit Theorem:

“n → ∞′′ =⇒ Y ∼ N





n
∑

i=1

ci E(Xi ),

(

n
∑

i=1

c2i σ
2
i

) 1
2





if c2i σ
2
i <<

∑n
i=1 c

2
i σ

2
i for all Xi not described by a Gaussian!

(i.e. a single non-Gaussian variable has not to dominate the
uncertainty about Y .)
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Central Limit Theorem: a cartoon ‘proof’
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Central Limit Theorem: another animated demonstration
Starting from the distribution of the product of the outcomes of
two dice

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

0
1

2
3

4

(Unnormalized distribution)

⇒ R script
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Sum of product of outcomes of n pairs of dice

pausa <- function() {

cat ("\n >> press Enter to continue\n")

scan()

}

outcomes <- as.vector(outer(1:6,1:6))

N <- 100

n <- 10000

sx <- rep(0, n)

for(ns in 1:N) {

xi <- sample(outcomes, n, replace=TRUE)

sx <- sx + xi

hist(sx, nc=100, col=’cyan’, xlab=’Sum X’, freq=FALSE,

main=sprintf("ns = %d; mean = %.1f, std = %.1f ",

ns, mean(sx), sd(sx)))

pausa()

}
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