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Propagation on uncertainties: rewriting the expressions of

the linear combinations
Let’s take linear combination Y of n input variables X :

Yk =
∑

i

cki Xi
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Propagation on uncertainties: rewriting the expressions of

the linear combinations
Let’s take linear combination Y of n input variables X :

Yk =
∑

i

cki Xi

The coefficients cki have the trivial interpretation of partial
derivarives, that is

cki =
∂Yk

∂Xi

Yk =
∑

i

(

∂Yk

∂Xi

)

Xi

This observation suggest that we can make use of the results
obtained for linear combinations if we linearize the generic
functions [Note: Yk() stands for the k-th function. ]

Yk = Yk(X )
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Linearization

Some premizes:

◮ it is important to understand around which point we have to
make the linear expansion;

◮ the probability mass of the Xi has to concentrate in the region
in which the linearization is reasonable.
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Linearization

Some premizes:

◮ it is important to understand around which point we have to
make the linear expansion;

◮ the probability mass of the Xi has to concentrate in the region
in which the linearization is reasonable.

. . . and a caveat

◮ if a variable Xi has some probability, although very little, to
assume values outside the linearizazzion region, and the
functions Yk can be highly not linear, the effects can be not
negligeable!
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Linearization

Some premizes:

◮ it is important to understand around which point we have to
make the linear expansion;

◮ the probability mass of the Xi has to concentrate in the region
in which the linearization is reasonable.

. . . and a caveat

◮ if a variable Xi has some probability, although very little, to
assume values outside the linearizazzion region, and the
functions Yk can be highly not linear, the effects can be not
negligeable!

We start making the expansion around the expected values of the
Xi . It will be clear why this is the correct choice.
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Linearization around the expected values

Yk = YK (E(X )) +
∑

i

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· (Xi − E(Xi )) + . . .
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Linearization around the expected values

Yk = YK (E(X )) +
∑

i

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· (Xi − E(Xi )) + . . .

1. Expected values (neglecting hereafter higher order terms)

E(Yk) = YK (E(X )) + 0

because
◮ Yk (E(X )) is just a number;

◮ E[Xi − E(Xi )] = 0.
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Linearization around the expected values

Yk = YK (E(X )) +
∑

i

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· (Xi − E(Xi )) + . . .

1. Expected values (neglecting hereafter higher order terms)

E(Yk) = YK (E(X )) + 0

because
◮ Yk (E(X )) is just a number;

◮ E[Xi − E(Xi )] = 0.

2. A conventient way to rewrite Yk

Yk =
∑

i

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· Xi + Y
(0)
k ,

with Y
(0)
k including all terms non depending on Xi , and then

irrelevant for variances and covariances of the Yk
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Linearization around the expected values

We have then reduced the problem to (approximatley) a linear
combination

Yk =
n
∑

i=1

cki Xi + ck0

with

cki =
∂Yk

∂Xi

∣

∣

∣

∣

E(X )

ck0 = Y
(0)
k = YK (E(X )) +

n
∑

i=1

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· E(Xi )
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Linearization around the expected values

We have then reduced the problem to (approximatley) a linear
combination

Yk =
n
∑

i=1

cki Xi + ck0

with

cki =
∂Yk

∂Xi
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∣

∣

∣

E(X )

ck0 = Y
(0)
k = YK (E(X )) +

n
∑

i=1

∂Yk

∂Xi

∣

∣

∣

∣

E(X )

· E(Xi )

⇒ We apply the rule of expected value of linear combinations, in
particular,

Var(Yk) =
n
∑

i=1

c2ki Var(Xi )
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Linearization
exercise: measuring an A4 paper

Imagine we have measured the two sides of an A4 paper, obtaining

a = 29.73± 0.03 cm

b = 21.45± 0.04 cm .

Evaluate (expected values, standard uncertainty and correlation)
◮ perimeter, p = 2 a+ 2 b;
◮ Area, A = a b;
◮ diagonal, d =

√
a2 + b2.
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Linearization
exercise: measuring an A4 paper

Imagine we have measured the two sides of an A4 paper, obtaining

a = 29.73± 0.03 cm

b = 21.45± 0.04 cm .

Evaluate (expected values, standard uncertainty and correlation)
◮ perimeter, p = 2 a+ 2 b;
◮ Area, A = a b;
◮ diagonal, d =

√
a2 + b2.

Matching the general notation:
◮ X = {a, b}, Y = {p,A, d}
◮ E[a] = 29.73 cm; σ(a) = 0.03 cm; Var(a) = (0.03 cm)2; etc. . .
◮ ∂Y1/∂X1 = ∂p/∂a = 2; ∂Y1/∂X2 = ∂p/∂b = 2;
◮ ∂Y2/∂X1|E(X ) = ∂A/∂a|E(X ) = b|E(X ) = 21.45 cm

◮ ∂Y2/∂X2|E(X ) = ∂A/∂b|E(X ) = a|E(X ) = 29.73 cm;
◮ etc. etc, . . .
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Monomial forms

In Physics we often deal with expressions of the kind a = F/m,
n = RT/PV , etc.,
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Monomial forms

In Physics we often deal with expressions of the kind a = F/m,
n = RT/PV , etc., i.e.

Y = X
α1
1 · Xα2

2 · . . . · Xαi

i · . . . · Xαn
n

(neglecting an irrelevant numerical factor).
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Monomial forms
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Y = X
α1
1 · Xα2
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i · . . . · Xαn
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(neglecting an irrelevant numerical factor).

Non-linear tranformations

◮ linearization formulae should be used with care

◮ . . . and possibly avoided!
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Monomial forms

In Physics we often deal with expressions of the kind a = F/m,
n = RT/PV , etc., i.e.

Y = X
α1
1 · Xα2

2 · . . . · Xαi

i · . . . · Xαn
n

(neglecting an irrelevant numerical factor).

Non-linear tranformations

◮ linearization formulae should be used with care

◮ . . . and possibly avoided!

◮ But, nevertheless, when used correctly they offer useful
insights in the dependence of the final result on the input

quantities in terms of relative uncertainties.
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Linearization of monomial forms
The coefficients of the linear expansion around the expected values
acquire a very simple and useful form

Y = X
α1
1 · Xα2

2 · . . . · Xαi

i · . . . · Xαn
n
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Linearization of monomial forms
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Linearization of monomial forms
The coefficients of the linear expansion around the expected values
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n
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Linearization of monomial forms
The coefficients of the linear expansion around the expected values
acquire a very simple and useful form

Y = X
α1
1 · Xα2

2 · . . . · Xαi

i · . . . · Xαn
n

∂Y

∂Xi

= αi · Xα1
1 · Xα2

2 · . . . · Xαi−1
i · . . . · Xαn

n

=
αi

Xi

· Xα1
1 · Xα2

2 · . . . · Xαi

i · . . . · Xαn
n

= αi ·
Y
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In the case of several Y ’s the elements cki of the tranformation
matrix C are therefore

Yk = X
αk 1
1 · Xαk 2

2 · . . . · Xαk i

i · . . . · Xαk n
n
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Linearization of monomial forms
The coefficients of the linear expansion around the expected values
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=
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i · . . . · Xαn
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Y
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In the case of several Y ’s the elements cki of the tranformation
matrix C are therefore

Yk = X
αk 1
1 · Xαk 2

2 · . . . · Xαk i

i · . . . · Xαk n
n

cki =
∂Yk

∂Xi

∣

∣

∣

∣

E(X )

= αk i ·
YK

Xi

∣

∣

∣

∣

E(X )
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables

In the case of a single Y and independent X , we get

σ2(Y ) ≈
∑

i

α2
i

(

Y

Xi

∣

∣

∣

∣

E(X )

)2

σ2(Xi )
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables

In the case of a single Y and independent X , we get
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables

In the case of a single Y and independent X , we get
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables

In the case of a single Y and independent X , we get
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Linearization of monomial forms: single Y

Special subcase: variance from independent variables

In the case of a single Y and independent X , we get
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, [−→
∑

ij

ρij αi αj ri rj ]

having indicated with r the relative (standard) uncertainties
σ()/|E ()|.
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Linearization of monomial expressions of independent

variables
Exercise

Imagine we want to measure g with a pendulum:

T = 2π

√

l

g

from which it follows

g = (2π)2 l T−2

Q.: How precisely we have to measure l and T if we require they
contribute equally to rg , that we want to keep ≤ 1%?
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Linearization of monomial expressions of independent

variables
Exercise

Imagine we want to measure g with a pendulum:

T = 2π

√

l

g

from which it follows

g = (2π)2 l T−2

Q.: How precisely we have to measure l and T if we require they
contribute equally to rg , that we want to keep ≤ 1%?
Try. . .

© GdA, RM23-07 25/01/23 10/12



Linearization of monomial expressions of independent

variables
Exercise – solution

If the determinations of l and T are independent, then, in
percentages (p):

p2g = p2l + 4 p2T
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Linearization of monomial expressions of independent

variables
Exercise – solution

If the determinations of l and T are independent, then, in
percentages (p):

p2g = p2l + 4 p2T

◮ Requirements

pg ≤ 1
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Linearization of monomial expressions of independent

variables
Exercise – solution

If the determinations of l and T are independent, then, in
percentages (p):

p2g = p2l + 4 p2T

◮ Requirements

pg ≤ 1

pl = 2pT ≤ 1/
√
2 = 0.71
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Linearization of monomial expressions of independent

variables
Exercise – solution

If the determinations of l and T are independent, then, in
percentages (p):

p2g = p2l + 4 p2T

◮ Requirements

pg ≤ 1

pl = 2pT ≤ 1/
√
2 = 0.71

pT ≤ 1/(2
√
2) = 0.35
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Last remarks on linearization

◮ Linerization formulae rely on the fact that the trasformations
are ‘enough’ linear in the regions where the probability mass
of the input quantities are concentrated (around their
expected values).

◮ Always check by Monte Carlo!
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