next up previous contents
Next: Further HEP applications Up: Solution to some problems Previous: AIDS test   Contents

Gold/silver ring problem

The three-box problem (Section [*]) seems to be intuitive for some, but not for everybody. Let us label the three boxes: $ A$, Golden-Golden; $ B$, Golden-Silver; $ C$, Silver-Silver. The initial probability (i.e. before having checked the first ring) of having chosen the box $ A$, $ B$, or $ C$ is, by symmetry, $ P_\circ(A)=P_\circ(B)=P_\circ(C) = 1/3$.

This probability is updated after the event $ E=$`the first ring extracted is golden' by Bayes' theorem:

$\displaystyle P(A\,\vert\,E)$ $\displaystyle =$ $\displaystyle \frac{P(E\,\vert\,A)\cdot P_\circ(A)}
{P(E\,\vert\,A)\cdot P_\circ(A)+P(E\,\vert\,B)\cdot P_\circ(B)+
P(E\,\vert\,C)\cdot P_\circ(C)}
= 2/3$  
$\displaystyle P(B\,\vert\,E)$ $\displaystyle =$ $\displaystyle \frac{P(E\,\vert\,B)\cdot P_\circ(B)}
{P(E\,\vert\,A)\cdot P_\circ(A)+P(E\,\vert\,B)\cdot P_\circ(B)+
P(E\,\vert\,C)\cdot P_\circ(C)} = 1/3$  
$\displaystyle P(C\,\vert\,E)$ $\displaystyle =$ $\displaystyle \frac{P(E\,\vert\,C)\cdot P_\circ(C)}
{P(E\,\vert\,A)\cdot P_\circ(A)+P(E\,\vert\,B)\cdot P_\circ(B)
+P(E\,\vert\,C)\cdot P_\circ(C)} =0\, ,$  

where $ P(E\,\vert\,A)$, $ P(E\,\vert\,B)$ and $ P(E\,\vert\,C)$ are, respectively, 1, 1/2 and 0.

Finally, calling $ F=$`the next ring will be golden if I extract it from the same box', we have, using the probability rules:

$\displaystyle P(F\,\vert\,E)$ $\displaystyle =$ $\displaystyle P(F\vert A,E)\cdot P(A\vert E) + P(F\vert B,E)\cdot P(B\vert E)+P(F\vert C,E)\cdot P(C\vert E)$  
  $\displaystyle =$ $\displaystyle 1 \times 2/3 + 0 \times 1/3 + 0 \times 0 = 2/3\, .$  


next up previous contents
Next: Further HEP applications Up: Solution to some problems Previous: AIDS test   Contents
Giulio D'Agostini 2003-05-15