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Overview of the contents

1st part Review of the process of learning from data
Mainly based on
• “From observations to hypotheses: Probabilistic

reasoning versus falsificationism and its statistical
variations” (Vulcano 2004, physics/0412148)

• Chapter 1 of “Bayesian reasoning in high energy
physics. Principles and applications” ( CERN Yellow
Report 99-03)

2nd part Review of the probability and ‘direct probability’
problems, including ‘propagation of uncertainties.
Partially covered in
• First 3 sections of Chapter 3 of YR 99-03
• Chapter 4 of YR 99-03
• "Asymmetric uncertainties: sources, treatment and

possible dangers" (physics/0403086)
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Overview of the contents

3th part Probabilistic inference and applications to HEP
Much material and references in my web page. In particular,
I recommend a quite concise review
• "Bayesian inference in processing experimental data:

principles and basic applications", Rep.Progr.Phys. 66
(2003)1383 [physics/0304102]

For a more extensive treatment:,
• “Bayesian reasoning in data analysis – A critical

introduction”, World Scientific Publishing, 2003
(CERN Yellow Report 99-03 updated and ≈ doubled in
contents)
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Summary of 2nd lecture

• ‘Conventional’ statistics rejects the natural concept of
probability of causes, of hypotheses, etc.
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first principles; therefore their ‘prescriptions’ and their
implementation are largely arbitrary (that is not the same as
‘subjective’!)
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• We have then reviewed the basic question of uncertainty
and, indeed, how the human mind forms naturally its degree
of belief on future events both from ‘combinatoric’
evaluations and from relative frequencies of observations,

• though in the latter case we tend to ‘filter’ the process of
transferring the past to the future.

• But the assessment of beliefs in the inferential problem
belongs to neither of the above two kinds of reasoning, but it
is a problem of ‘probability inversion’ that needs formal logic

• Sources of uncertainty in measurements and ‘standard’
methods to handle ‘statistical’ and ‘systematic’ errors.

• Meaning of µ = x± σ/
√

n, naive probability inversions and
the dog-hunter analogy.
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Summary of 2nd lecture

• Sources of uncertainty in measurements and ‘standard’
methods to handle ‘statistical’ and ‘systematic’ errors.

• Meaning of µ = x± σ/
√

n, naive probability inversions and
the dog-hunter analogy.

• FORWARD TO THE PAST: restart from reviewing the very
concept of probability: not bound to the text book
‘definitions’ of probability

• → Intrinsic subjective nature of probability
• and importance of the state of information in the evaluations

of probability: ‘P (E)’ −→ P (E | I) −→ P (E | I(t))
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◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%
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to what they refer and how the number has been evaluated.
◦ P (rain tomorrow) = 68%

◦ P (Juventus will win Italian champion league) = 68%

◦ P (91.1855 ≤ mZ/GeV ≤ 91.1897) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

They all convey unambiguously the same confidence on
something

• I can agree or disagree, but at least I know what this person
has in mind (and this does not happens with the “C.L.’s”)

• If a person has these beliefs and he/she has the chance to
win a rich prize bound to one of these events, he/she has no
reason to chose an event instead than the others.
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Unifying role of subjective probability

• Wide range of applicability
• Probability statements all have the same meaning no matter

to what they refer and how the number has been evaluated.
◦ P (rain tomorrow) = 68%

◦ P (Juventus will win Italian champion league) = 68%

◦ P (91.1855 ≤ mZ/GeV ≤ 91.1897) = 68%

◦ P (free neutron decays before 17 s) = 68%

◦ P (White ball from a box with 68W+32B) = 68%

• probability not bound to a single evaluation rule
• In particular, combinatorial and frequency based ‘definitions’

are easily recovered as evaluation rules
under well defined hypotheses.

• Keep separate concept from evaluation rule
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From the concept of probability to the probability theory

Ok, it looks nice, . . . but “how do we deal with ‘numbers’?”
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box. In
which we have to insert some numbers.
◦ Is there a very general rule ?

Coherent bet (de Finetti, Ramsey - ’Dutch book
argument’)
It is well understood that bet odds can express confidence†
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box. In
which we have to insert some numbers.
◦ Is there a very general rule ?

Coherent bet → A bet acceptable in both directions:
◦ You state your confidence fixing the bet odds
◦ . . . but somebody else chooses the direction of the bet
◦ best way to honestly assess beliefs.
→ see later for details, examples, objections, etc
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box. In
which we have to insert some numbers.
◦ Is there a very general rule ?

Lindley’s ‘calibration’ against ‘standards’
→ analogy to measures (we need to measure ’befiefs’)
⇒ reference probabilities provided by simple cases in which

equiprobability applies (coins, dice, turning wheels,. . . ).
• Example: You are offered to options to receive a price: a) if

E happens, b) if a coin will show head. Etc. . . .
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box. In
which we have to insert some numbers.
◦ Is there a very general rule ?

Lindley’s ‘calibration’ against ‘standards’
→ Rational under everedays expressions like “there are 90

possibilities in 100” to state beliefs in situations in which the
real possibilities are indeed only 2 (e.g. dead or alive)

• Example: a question to a student that has to pass an exam:
a) normal test; b) pass it is a uniform random x will be ≤ 0.8.
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From the concept of probability to the probability theory

• Formal structure: we need a mathematical structure in order
to ‘propagate’ probability values to other, logically
connected events:
◦ basic rules
◦ logic (mathematics)

• Assess probability: The formal structure is an empty box. In
which we have to insert some numbers.
◦ Is there a very general rule ?

Lindley’s ‘calibration’ against ‘standards’
• Also based on coherence, but it avoids the ‘repulsion’ of

several person when they are asked to think directly in
terms of bet (it is proved that many person have reluctance
to bet money).
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Basic rules of probability

They all lead to

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

where
• Ω stands for ‘tautology’ (a proposition that is certainly true
→ referring to an event that is certainly true) and ∅ = Ω.

• A ∩B is true only when both A and B are true (logical AND)
(shorthands ‘A,B’ or AB often used→ logical product)

• A ∪B is true when at least one of the two propositions is
true (logical OR)
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Basic rules of probability

Remember that probability is always conditional probability!

1. 0 ≤ P (A | I) ≤ 1

2. P (Ω | I) = 1

3. P (A ∪B | I) = P (A | I) + P (B | I) [ if P (A ∩B | I) = ∅ ]

4. P (A ∩B | I) = P (A |B, I) · P (B | I) = P (B |A, I) · P (A | I)

I is the background condition (related to information I)
→ usually implicit (we only care on ‘re-conditioning’)
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Meaning of the basic rules

Have we recovered the famous axioms?

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)
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Meaning of the basic rules

More or less yes, at least formally

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)
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Meaning of the basic rules

More or less yes, at least formally

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the axiomatic approach
◦ ‘probability’ is just a real number that satisfies 1-3
◦ rule 4 comes straight from the definition of conditional

probability as

P (A |B) =
P (A ∩B)

P (B)
[ if P (B) > 0 ]
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Meaning of the basic rules

More or less yes, at least formally

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the subjective approach
◦ the intuitive meaning of ‘probability’ is recovered
◦ rules 1-4 derive from more basic assumptions (e.g. the

coherent bet)
◦ P (A |B) = P (A ∩B)/P (B) does not define P (A |B)

→ conditional probability is an intuitive concept!
(Remember Schrödinger quote)
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Meaning of the basic rules

More or less yes, at least formally

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]

4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A)

• In the subjective approach
◦ the intuitive meaning of ‘probability’ is recovered
◦ rules 1-4 derive from more basic assumptions (e.g. the

coherent bet)
◦ P (A |B) = P (A ∩B)/P (B) does not define P (A |B)

→ conditional probability is an intuitive concept!
⇒ As we actually use it! →
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About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]
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About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]

In the subjective approach the meaning is clear:
• Depending on the information we have, we can assess any

of the three probabilities that enter the formula: P (H),
P (E |H) or P (E ∩H).

• But, once two of the three have been assessed, the third
one is constraint!
(otherwise, one can prove it is possible to imagine a set of
bets, such that one certainly gains or loses – incoherent)

• 4 is more general than 4.a, valid also if P (H) = 0
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About the ‘conditional probability formula’

4. P (E ∩H) = P (E |H) · P (H) = P (H |E) · P (E)

4a. P (E |H) =
P (E ∩H)

P (H)
[P (H) > 0]

What is the chance that a 550 GeV Higgs is detected by
ATLAS?
• H = “Higgs mass 550 GeV”
• E = “Decay products observed in ATLAS”
⇒ P (E |H) is a routine task: → set MH = 550 GeV in the

physics generator→ run the events through the full
simulation chain→ run analysis program→ estimate
P (E |H) from percentage of reconstructed events.

• None would use definition 4a [ what is P (E ∩H)? ]
• Note: P (E |H) is meaningful even if P (H) = 0 (why not?).
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Some comments about subjective probability and bets

I imagine many objections, e.g.
• In physics there is no room for beliefs
• ’Subjective’ is ‘arbitrary’
• With whom should I bet
• Subjective probability is not suited for scientific research
→ “I want to be objective”

• Physical probabilities do not depend on our beliefs
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Beliefs in physics?

A colleague, once: “I do not believe something. I assess it. This
is not matter fir religion!”

I hope at least he believes what he assesses. Otherwise I don’t
know what to do of his assessments.

Anyhow, and apart from the jokes, Science is nothing but a
collection of rational beliefs based in experimental evidences
and theoretical speculations.

The statistician Don Berry has amused himself by counting how
many times Stephen Hawking uses ‘belief’, ‘to believe’, or
synonyms, in his ‘A brief history of time’. The book could have
been entitled ‘A brief history of beliefs’, concludes Berry.
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Physics: a network of beliefs

Peter Galison (How Experiments End): “Experiments begin and
end in a matrix of beliefs. . . . beliefs in instrument type, in
programs of experiment enquiry, in the trained, individual
judgments about every local behavior of pieces of apparatus.”
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Physics: a network of beliefs

Peter Galison (How Experiments End): “Experiments begin and
end in a matrix of beliefs. . . . beliefs in instrument type, in
programs of experiment enquiry, in the trained, individual
judgments about every local behavior of pieces of apparatus.”

“Taken out of time there is no
sense to the judgment that An-
derson’s track 75 is a posi-
tive electron; its textbook re-
production has been denuded
of the prior experience that
made Anderson confident in
the cloud chamber, the mag-
net, the optics, and the pho-
tography.”
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Beliefs in physics

Pure observation does not create, or increase, knowledge
without personal inputs which are needed to elaborate the
information.

There is nothing really objective in physics, if by objective we
mean that something follows necessarily from observation, like
the proof of a theorem.

Nevertheless, physics is objective, or at least that part of it that
is at present well established, if we mean by ‘objective’, that a
rational individual cannot avoid believing it.

This is the reason why we can talk in a relaxed way about beliefs
in physics without even remotely thinking that it is at the same
level as the stock exchange, or betting on football scores
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A solid core surrounded by fuzzy borders

The reason the ‘perceived objectivity’ in physics is that, after
centuries of experimentation, theoretical work and successful
predictions, there is such a consistent network of beliefs, it has
acquired the status of an objective construction:

→ one cannot mistrust one of the elements of the network
without contradicting many others.
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The reason the ‘perceived objectivity’ in physics is that, after
centuries of experimentation, theoretical work and successful
predictions, there is such a consistent network of beliefs, it has
acquired the status of an objective construction:
→ one cannot mistrust one of the elements of the network

without contradicting many others.
Around this solid core of objective knowledge there are fuzzy
borders which correspond to areas of present investigations,
where the level of intersubjectivity is still very low.

Nevertheless, when one proposes a new theory or model, one
has to check immediately whether it contradicts some
well-established beliefs.

A classical check of new models: “Does it influence g − 2?”
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Before speaking about objectivity

My preferred motto on this matter:

“no one should be allowed to speak
about objectivity unless he/she has had
10–20 years working experience in
frontier science, economics, or any other
applied field”
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Objectivity?

What is objective – I believe – is that the external world does
exist.

But Science – that means “to know” – is entirely inside our brain,
and their there is plenty of room for divergences.

Fortunately, when rational people, sharing the same scientific
education have a lot of solid experimental information, they tend
to reach an agreement, at least in the general aspects:

subjectivity −→ inter-subjectivity [= objectivity]

Ask practical questions and evaluate the probability in specific
cases, instead of seeking refuge in abstract questions

→ Probability is objective as long as I am not asked to evaluate it
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An ‘objective’ evaluation of probability

Q. What is the probability that a molecule of nitrogen at room
temperature has a velocity between 400 and 500 m/s?

A. Easy! Take the Maxwell distribution formula from a textbook,
calculate an integral and get a number.

Q. I give you a vessel containing nitrogen and a detector
capable of measuring the speed of a single molecule and
you set up the apparatus (or you let a person you trust do
it). Now, what is the probability that the first molecule that
hits the detector has a velocity between 400 and 500 m/s?

A. Uhm. . .
→ study the problem carefully and perform preliminary
measurements and checks (Where did I buy the gas? How
am I sure about temperature? etc.).
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What about probabilistic laws of physics?

Quantum mechanics? Hidden quantities? Statistical mechanic?
Personally very pragmatical, not engaged approach, but there
are around people claiming that subjective probability clarifies
QM interpretation (see e.g. Christopher A. Fuchs in quant-ph,
and cited work).
• Probability deals with probability that an event may happen,

given a certain state of information
• It does not matter if the fundamental laws are ‘intrinsically

probabilistic’ or probability is just due to our ignorance.
• Extending Hume’s statement:

“Though there be no such thing as Chance in the world; our
ignorance of the real cause of any event has the same
influence on the understanding, and begets a like species of
belief or opinion” → “Even if there were ...”

• If P (E1) > P (E2), I believe E1 more than E2. That’s all.
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Physical probability?

If we pay attention, we see that it is just
‘a number you get from a model’.

It does not necessarily convey the confidence on the occurrence
of a physical event E.
• In fact, it is correct to say P (E |Modelθ → p) = p,

but our confidence on E relies on our confidence on the
model and on its parameters θ!
If we are really interested in evaluating our confidence about
the occurrence of E, we have to take into account of all
models and the possible values of their parameters
Anyhow, this ‘physical probability’ p can be easily
incorporated in the probabilistic framework, including our
uncertainty about it

⇒ Don’t worry: we lose nothing of what we really need!
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Subjective 6= arbitrary

Crucial role of the coherent bet
• You say that this coin has 70% to show head?

No problem with me: you place 70e on head, I 30e on tail
and who wins take 100e
⇒ If OK with you, let’s start.

• You say that this coin has 30% to show head?
⇒ Just reverse the bet
(Like sharing goods, e.g. a cake with a child)

⇒ Take into account all available information in the most
“objective way”
(Even that someone has a different opinion!)

⇒ It might seem paradoxically, but the ‘subjectivist’ is much
more ‘objective’ than those who blindly use so-called
objective methods.
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A good example of arbitrariness

What is really arbitrary is to DEFINE ‘confidence level’ the result
of an ad-hoc prescription, especially when one is perfectly
aware (experts are) that this number does not represent “how
much one is confident of a given statement, in the sense of ‘how
much one believes it’ ”

While “not experts”, i.e. the large majority of those who use
those prescriptions, are influenced by the name and naively use
the prescriptions to get an idea of how much they should be
confident, i.e. to believe, something⇒ very unpleasant effects!
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What is really arbitrary is to DEFINE ‘confidence level’ the result
of an ad-hoc prescription, especially when one is perfectly
aware (experts are) that this number does not represent “how
much one is confident of a given statement, in the sense of ‘how
much one believes it’ ”

While “not experts”, i.e. the large majority of those who use
those prescriptions, are influenced by the name and naively use
the prescriptions to get an idea of how much they should be
confident, i.e. to believe, something⇒ very unpleasant effects!

(→ The little story of the baptized savage†)
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With whom should I bet?

Coherent bet
• Operational, although hypothetical — not the only one
◦ ‘poisonous’: “lethal if ingested”
◦ Electric field: Force on a probing charge

• → Oblige people to make honest assessments
◦ Given the result x±∆x, with ∆x = 1σ and Gaussian

model
→ experimenter should be ready to place or accept a 2:1

bet on the true value inside the interval
◦ If he/she feels hem/her-self ready black to place, but not

to accept the bet: → incoherent
→ uncertainty overestimated
→ cheating the scientific community
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Our re-starting point

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪B) = P (A) + P (B) [ if P (A ∩B) = ∅ ]
4. P (A ∩B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic (and good sense)

+ extension to continuity
+ some convenient quantities to summarize the uncertainty
+ some computational ‘tricks’ to overcome mathematical

difficulties
→ And possibly remember the coherent bet!
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Events and sets

Convenient event↔ set analogy:

Symbol
event set E

certain sample space Ω

impossible empty ∅
implication inclusion E1 ⊆ E2

opposite complementary E (E ∪E = Ω)
(complementary)
logical product intersection E1 ∩ E2

logical sum union E1 ∪ E2

incompatible disjoint E1 ∩ E2 = ∅

complete class finite partition
{

Ei ∩ Ej = ∅ ∀ i 6= j

∪iEi = Ω
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Rules of probability

• P (
⋃n

i=1
Ei) =

∑n
i=1

P (Ei) if Ei ∩Ej = ∅ ∀i 6= j

(just an extension of the basic rule 3).
• P (E) = 1− P (E)

• P (A ∪B) = P (A) + P (B)− P (A ∩B) (generalization of ‘3’)
• P (E) = P (E ∩H) + P (E ∩H)

→ Extension to complete class of events:

P (E) = P

(

n
⋃

i=1

(E ∩Hi)

)

=

n
∑

i=1

P (E ∩Hi)

and, applying ’4’

P (E) =
∑

i P (Hi) · P (E |Hi)

(‘decomposition law’) H2

Hi

Hn

E =         (E   Hi)
n

EH1

i=1→ weighted average of P (E |Hi)
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• P (A ∪B) = P (A) + P (B)− P (A ∩B) (generalization of ‘3’)
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P (E) = P

(

n
⋃

i=1

(E ∩Hi)

)

=

n
∑

i=1

P (E ∩Hi)

and, applying ’4’

P (E) =
∑

i P (Hi) · P (E |Hi)

(‘decomposition law’) H2

Hi

Hn

E =         (E   Hi)
n

EH1

i=1→ basis of ‘marginalization’
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Recovering the combinatorial evaluation formula

p =
# favorable cases

# possible equiprobable cases

Given the ‘elementary’, equiprobable n events ei forming a
complete class, i.e. ∪iei = Ω,
we are interested in P (E), where E = “∪ m elementary events”

P (ei) = p0

P (∪iei) =
∑

i

P (ei) = np0 = 1

→ p0 =
1

n

→ P (E) =
∑

ei⊂E

P (ei) = mp0 =
m

n
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Independence

We remind that two events are called independent if

P (E ∩H) = P (E)P (H) .

This is equivalent to saying that
• P (E |H) = P (E) and
• P (H |E) = P (H),

i.e. the knowledge that one event has occurred does not change
the probability of the other.

If P (E |H) 6= P (E), then the events
E and H are correlated. In particular:
• if P (E |H) > P (E) then E and H are positively correlated;
• if P (E |H) < P (E) then E and H are negatively correlated.

[ By the way, P (E ∩H | I) = P (E | I)P (H | I) , and so on. ]
→ comment on definition Vs use of ‘independence’
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.
Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).
Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’,

i.e.

A number respect to which we are in
condition of uncertainty
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.
Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).
Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’, i.e.

A number respect to which we are in
condition of uncertainty

• The first number rolling a die
• The temperature at the Geneva airport tomorrow at 7:00 am
• The integrated luminosity provided by LHC in 2008
• The number of signatures of the first LHC physics paper
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Uncertain numbers

We are often uncertain in numbers and, consistently, we
quantify of belief with probability.
Uncertain number is the more general term for random variable,
though the adjective random is more committing, since it rely on
the concept of randomness (see von Mises).
Nevertheless, I often use the name ‘random variable’, just to
mean ’uncertain number’, i.e.

A number respect to which we are in
condition of uncertainty

• No need that the numbers can be framed in a von Mises’
collective

• But it must be a well defined number (any uncertainty on its
definition will increase our uncertainty about it)
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From events to uncertain numbers

E

1

0
X(E)

P X(E)

Uncertain numbers are associated to events
• Rolling one die: X = 4↔ ‘face marked with 4’

(note: no intrinsic order in the numbers associated a die)
→ P (X = 4) = P (‘face marked with 4’)
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From events to uncertain numbers

E

1

0
X(E)

P X(E)

Uncertain numbers are associated to events

Event→ number: univocal, but not bi-univocal
• Rolling two dice, with X ‘sum of results’
→ P (X = 4) =

∑

P (‘events giving 4’)
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Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .

f(x), being a probability, must satisfy the fol-
lowing properties:

0 ≤ f(xi) ≤ 1 ,

P (X = xi ∪ X = xj) = f(xi) + f(xj) ,
∑

i

f(xi) = 1 .

Cumulative function (defined for all x)
F (xk) ≡ P (X ≤ xk) =

∑

xi≤xk

f(xi) .

[ F (−∞) = 0; F (+∞) = 1;
F (xi)− F (xi−1) = f(xi);
limε→0 F (x + ε) = F (x) ]

0 1 2 3

2/8

f(x)

x 0 1 2 3

f(z)

z

4 8/

1/8

1/2

1

0

...........

1 2 3 x

F(x)

1

0 1 2 3 z

F(z)

4 8/

2/8

1/2

1/8

...........

................

f(1)

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.32/51



Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .

f(x), being a probability, must satisfy the fol-
lowing properties:

0 ≤ f(xi) ≤ 1 ,

P (X = xi ∪ X = xj) = f(xi) + f(xj) ,
∑

i

f(xi) = 1 .

Cumulative function (defined for all x)
F (xk) ≡ P (X ≤ xk) =

∑

xi≤xk

f(xi) .

[ F (−∞) = 0; F (+∞) = 1;
F (xi)− F (xi−1) = f(xi);
limε→0 F (x + ε) = F (x) ]

0 1 2 3

2/8

f(x)

x 0 1 2 3

f(z)

z

4 8/

1/8

1/2

1

0

...........

1 2 3 x

F(x)

1

0 1 2 3 z

F(z)

4 8/

2/8

1/2

1/8

...........

................

f(1)

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.32/51



Probability function (discrete numbers)

To each possible value of X we associate a
degree of belief:

f(x) = P (X = x) .

f(x), being a probability, must satisfy the fol-
lowing properties:

0 ≤ f(xi) ≤ 1 ,

P (X = xi ∪ X = xj) = f(xi) + f(xj) ,
∑

i

f(xi) = 1 .

Cumulative function (defined for all x)
F (xk) ≡ P (X ≤ xk) =

∑

xi≤xk

f(xi) .

[ F (−∞) = 0; F (+∞) = 1;
F (xi)− F (xi−1) = f(xi);
limε→0 F (x + ε) = F (x) ]

0 1 2 3

2/8

f(x)

x 0 1 2 3

f(z)

z

4 8/

1/8

1/2

1

0

...........

1 2 3 x

F(x)

1

0 1 2 3 z

F(z)

4 8/

2/8

1/2

1/8

...........

................

f(1)

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.32/51



Some simple examples

• Discrete uniform, well known→ f(x) = 1/n (1 ≤ X ≤ n)

• Bernoulli process
◦ X : 0, 1 (failure/success)

f(0) = 1− p

f(1) = p
◦ it seems of practical irrelevance,
→ but of primary importance

• The drunk man problem
◦ Eight keys
◦ After each trial he ‘loses memory’
◦ We watch him and – cynically – bet on the attempt on

which he will succeed:
◦ X = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . . ?
→ On which number would you bet?
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Propagating probability values

We cannot say any number at random,
“because All attempts are equally likely”

→ ‘half true’, i.e. wrong. . .
• what is constant is P (Ei |

⋃

j<i Ej) = p,
where Ei → X = i.

⇒ Beliefs are framed in a network!
• Once we assess something, we are implicitly making an

infinity of assessments concerning logically connected
events!

• We only need to make them explicit, using logic (trivial in
principle, though it can be sometimes hard)
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Building up f(x) of the drunk man problem

P (Ei |
⋃

j<i Ej) = p, with p = 1/8:

f(1) = P (E1) = p

f(2) = P (E2 |E1) · P (E1) = (1− p) p

f(3) = P (E3 |E1 ∩E1) · P (E2 |E1) · P (E1) = (1− p)2 p

f(x) = p (1− p)x−1
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f(2) = P (E2 |E1) · P (E1) = (1− p) p

f(3) = P (E3 |E1 ∩E1) · P (E2 |E1) · P (E1) = (1− p)2 p

f(x) = p (1− p)x−1

Beliefs decrease geometrically
⇒ Geometric distribution
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f(3) = P (E3 |E1 ∩E1) · P (E2 |E1) · P (E1) = (1− p)2 p

f(x) = p (1− p)x−1

p = 1/2→ tossing a coin
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f(2) = P (E2 |E1) · P (E1) = (1− p) p

f(3) = P (E3 |E1 ∩E1) · P (E2 |E1) · P (E1) = (1− p)2 p

f(x) = p (1− p)x−1

p = 1/18→ a particular number
at the Italian lotto (p = 5/90)
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P (Ei |
⋃

j<i Ej) = p, with p = 1/8:

f(1) = P (E1) = p

f(2) = P (E2 |E1) · P (E1) = (1− p) p

f(3) = P (E3 |E1 ∩E1) · P (E2 |E1) · P (E1) = (1− p)2 p

f(x) = p (1− p)x−1

Most probable value does not
depend on p.
Not a suitable indicator to state
our expectation
The same is true for the range
of possibilities: X : 1, 2, . . . ,∞
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Prevision and prevision uncertainty

More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Variance(X) =
∑

x

(x− E[X])2 f(x) −→ σ2(X)→ σ =
√

σ
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E[X] = 1/p

σ(X) =
√

1− p/p

p = 1/8:

E[X] = 8

σ(X) = 7.5
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Prevision and prevision uncertainty

More suitable quantity two summarize in two numbers the our
probabilistic ‘expectation’ and its uncertainty:

E[X] =
∑

x

x f(x)

Variance(X) =
∑

x

(x− E[X])2 f(x) −→ σ2(X)→ σ =
√

σ

E[X] = 1/p

σ(X) =
√

1− p/p −−−→
p→0

1/p

→ rare events might happen at
any moment!
(Though they have ‘zero’ proba-
bility to happen at any given mo-
ment!) 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
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Expected value and ‘standard uncertainty’

The detail on the uncertainty is provided by f(x).
• E[X] and σ(X) are just convenient summaries.
• In the general case they do not convey a precise confidence

that X will occur in the range E[X]± σ(X), though this
probability is rather ‘high’ for typical f(x) of interest.

• Another location summary (that statisticians like much) is
given by the median, while the ’quantiles’ provide (left open)
intervals in which the variable is expected to fall with some
probability (typically 10%, 20%, etc.).

• Anyway, it is important to prepared to f(x) of any kind,
because – fortunately! – nature is not boring. . .

• In particular, f(x) might be asymmetric or, ‘multinomial’, i.e.
with more than one local maximum.
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Probability distributions and ‘statistical’ distributions

It is important to stress the difference between
• Probability distribution
◦ To each possible outcome we associate how much we

are confident on it:

x←→ f(x)
• Statistical distribution
◦ To each observed outcome we associated its (relative)

frequency
x←→ fx

(e.g. an histogram of experimental observations)
Summaries (‘mean’, variance, ’σ’, ’skewness’, etc) have
similar names and analogous definitions, but conceptual
different meaning.
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A histogram is not, usually, a probability distribution

In particular a histogram of
experimental data is not a
probability distribution (un-
less one reshuffles those
events, and extracts one of
them at random).
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x

(x− x)2 fx

→ Just a rough empirical de-
scription of the shape
⇒ center of mass and mo-
mentum of inertia!
(Famous ‘n/(n − 1)’ correc-
tion: interference descriptive
↔ inferential statistics.)
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)
Pascal
(trial of

k-th success)

(Binomial well known. We shall not use the Pascal)
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End of lecture

End of lecture 3
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Notes

The following slides should be reached
by hyper-links, clicking on words with the
symbol †
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Determinism/indeterminism

Pragmatically, as far as uncertainty and inference matter,
it doesn’t really matter.

“Though there be no such thing as Chance in the world; our
ignorance of the real cause of any event has the same influence
on the understanding, and begets a like species of belief or
opinion” (Hume)

Go Back
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Processo di Biscardi

A single quote gives an idea of the talk show:

“Please, don’t speak more than two
or three at the same time!”

Go Back
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Hume’s view about ‘combinatoric evaluation’

“There is certainly a probability, which arises from a superiority
of chances on any side; and according as this superiority
increases, and surpasses the opposite chances, the probability
receives a proportionable increase, and begets still a higher
degree of belief or assent to that side, in which we discover the
superiority.”
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Hume’s view about ‘combinatoric evaluation’

“There is certainly a probability, which arises from a superiority
of chances on any side; and according as this superiority
increases, and surpasses the opposite chances, the probability
receives a proportionable increase, and begets still a higher
degree of belief or assent to that side, in which we discover the
superiority. If a dye were marked with one figure or number of
spots on four sides, and with another figure or number of spots
on the two remaining sides, it would be more probable, that the
former would turn up than the latter; though, if it had a thousand
sides marked in the same manner, and only one side different,
the probability would be much higher, and our belief or
expectation of the event more steady and secure.” (David Hume)

Go Back
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Hume’s view about ‘frequency based evaluation’

“Being determined by custom to transfer the past to the future, in
all our inferences; where the past has been entirely regular and
uniform, we expect the event with the greatest assurance, and
leave no room for any contrary supposition.”
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Hume’s view about ‘frequency based evaluation’

“Being determined by custom to transfer the past to the future, in
all our inferences; where the past has been entirely regular and
uniform, we expect the event with the greatest assurance, and
leave no room for any contrary supposition. But where different
effects have been found to follow from causes, which are to
appearance exactly similar, all these various effects must occur to
the mind in transferring the past to the future, and enter into our
consideration, when we determine the probability of the event.”

Though we give the preference to that which has been found
most usual, and believe that this effect will exist, we must not
overlook the other effects, but must assign to each of them a
particular weight and authority, in proportion as we have found it
to be more or less frequent.” (David Hume)

Go Back
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effects have been found to follow from causes, which are to
appearance exactly similar, all these various effects must occur to
the mind in transferring the past to the future, and enter into our
consideration, when we determine the probability of the event.”
Though we give the preference to that which has been found
most usual, and believe that this effect will exist, we must not
overlook the other effects, but must assign to each of them a
particular weight and authority, in proportion as we have found it
to be more or less frequent.” (David Hume)
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)
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“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
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Bet odds to express confidence

“The best way to explain it is, I’ll bet you
fifty to one that you don’t find anything”
(Feynman)

“It is a bet of 11,000 to 1 that the error on
this result (the mass of Saturn) is not
1/100th of its value” (Laplace)
→ 99.99% confidence on the result
⇒ Is a 95% C.L. upper/lower limit a ‘19 to 1 bet’?
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Batpizing prescriptions

A missionary converts the savage Agu-bu Bu-gu and while he
baptizes him, pouring some water on his head, gives him a
cristiam name: “From now you no longer Agu-bu Bu-gu. Now
you Antonio”.

Then he explains him how to be a good christian to gain the
Heaven, respecting the Ten Commandaments and the various
precepts, including “no meet on Friday” [the story is a bit old].

After several weeks, a Friday the missionary finds the converted
savage eating a lamb. “Antonio, my friend, why are you not
observing the Friday precept?”. “No problem father. I poured
water over lamb’s head and told: you no longer lamb, now you
fish ”.
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