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Overview of the contents

1st part Review of the process of learning from data
Mainly based on
• “From observations to hypotheses: Probabilistic

reasoning versus falsificationism and its statistical
variations” (Vulcano 2004, physics/0412148)

• Chapter 1 of “Bayesian reasoning in high energy
physics. Principles and applications” ( CERN Yellow
Report 99-03)

2nd part Review of the probability and ‘direct probability’
problems, including ‘propagation of uncertainties.
Partially covered in
• First 3 sections of Chapter 3 of YR 99-03
• Chapter 4 of YR 99-03
• "Asymmetric uncertainties: sources, treatment and

possible dangers" (physics/0403086)
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Overview of the contents

3th part Probabilistic inference and applications to HEP
Much material and references in my web page. In particular,
I recommend a quite concise review
• "Bayesian inference in processing experimental data:

principles and basic applications", Rep.Progr.Phys. 66
(2003)1383 [physics/0304102]

For a more extensive treatment:,
• “Bayesian reasoning in data analysis – A critical

introduction”, World Scientific Publishing, 2003
(CERN Yellow Report 99-03 updated and ≈ doubled in
contents)
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Summary of first three lectures

The main goal of the first three lectures was to try to convince
you that we can base our probabilistic reasoning, that shall
include inference, starting from the following scheme:

• Probability means how much we believe something
• Probability values obey the following basic rules

1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. P (A ∪ B) = P (A) + P (B) [ if P (A ∩ B) = ∅ ]

4. P (A ∩ B) = P (A |B) · P (B) = P (B |A) · P (A) ,

• All the rest by logic
→ And, please, be coherent!
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Direct probability problems

Then we have made some examples of how to propagate the
uncertainty on some events to the uncertainty of logically
connected events, that might also be associated to uncertain
numbers.

In particular, we have have started from the ‘trivial’
Bernoulli process and arrived to the following scheme:

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)
Pascal
(trial of

k-th success)
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This lecture

Today
• Go on with the direct probability and, in particular discuss in

detail the “propagation of uncertainty” physicists are mostly
concerned with.

• Tackle the inverse probability problem (“the essential
problem of the the experimental method” — sorry for
quoting this sentence the n-th time)
⇒ Probabilistic Inference
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Poisson distribution

One of the best known distributions by physicist.

For a while, just take the mathematical approach to the Poisson
distribution:

f(x | Pλ) =
λx

x!
e−λ

{

0 < λ < ∞
x = 0, 1, . . . ,∞ .

Reminding also the well known property

Bn,p −−−−−−−−−→
n → ∞
p → 0

(np = λ)

Pλ .
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Poisson process

0 t
Let us consider some phenomena that might happen at a give
instant, such that

• Probability of 1 count in ∆T is proportional to ∆T , with ∆T
‘small’.

p = P (“1 count in ∆T ′′) = r ∆T

where r is the intensity of the process’
• P (≥ 2 counts) � P (1count) (OK if ∆T is small enough)
• What happens in one interval does not depend on other

intervals (if disjoints)

Let us divide a finite interval T in n small intervals,
i.e. T = n∆T , and ∆T = T/n.
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Poisson process → Poisson distribution

0 t
Considering the possible occurrence of a count in each small
interval ∆T an independent Bernoulli trial, of probability

p = r ∆T = r T/n

If we are interested in the number of counts in T, independently
from the order: → Binomial : Bn,p

But n → ∞ and p → 0 ⇒ Bn,p → Pλ where λ = np = r T

⇒ λ depends only on the intensity of the process and on the
finite time of observation.
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Poisson process → waiting time

0 t
Another interesting problem: how long do we have to wait for the
first count? (Starting from any arbitrary time)

Problem analogous to the Geometric, but now it makes no
sense to ask at which small interval the counts will occur!

Let us restart from the Geometric and calculate P (X > x):

P (X > x) =
∑

i>x

f(i | Gp) = (1 − p)x

(The count will not occur in the first x trials).
In the domain of time, using p = r t/n and then making the limit:

P (T > t) = (1 − p)n = (1 − r t/n)n −−−→
n→∞

e−r t
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Poisson process → Exponential distribution

Knowing P (T > t) we get easily the cumulative F (t):

F (t) = P (T ≤ t) = 1 − P (T > t) = 1 − e−r t .

F (t) is now a continuous function!

In some region of t there is a concentration of probability more
than in other regions.
→ This leads us to define a probability density function (pdf)

for continuous variables:
f(t) = d F (x)

d t .

• In this case f(t) = r e−r t = 1
τ e−t/τ

→ Exponential distribution (τ = 1/r): E[T ] = σ(T ) = τ .
(⇒ Properties of pdf assumed to be well known.)
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Geometric ↔ Exponential

Geometric Exponential
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Exponential is just the limit to the continuum of the Geometric.
‘No memory‘ property for both: Assuming a success (or a count)
has not happened until a certain trial (or time), the distributions
restart from there. No need to know the instant of particle
creation to measure ‘life time’ (→ the “1033 year old” proton!).
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Distributions derived from the Bernoulli process

Bernoulli

Geometric Binomial
(trial of (# of successes

1st success) in ind. n trials)
Pascal
(trial of

k-th success)

Exponential Gamma Poisson
(time 1st count) (time k-th count) (# counts in T )
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Exponential Gamma Poisson
(time 1st count) (time k-th count) (# counts in T )
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Note

Though we could not go through all technical details, it is
important to remark that all these distributions are obtained
assuming that each ‘act of observation’, that can be
asymptotically associated to a single point, is an independent
Bernoulli trial of constant probability p (that might tend to zero).
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Important properties of probability distributions

E(·) is a linear operator:

E(aX + b) = a E(X) + b .

Transformation properties of variance and standard deviation:

Var(aX + b) = a2 Var(X) ,

σ(aX + b) = |a|σ(X) .

Obviously, I have to assume that most of the basic formalism is
well known, e.g. that P (a ≤ X ≤ b) =

∫ b
a f(x) dx, etc.
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From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.
Number of successes X ∼ Bn,p, with p.
We might be interested to the relative frequency of successes,
i.e. fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn?

f(fn) can be obtained from f(x).

E(fn) ≡ 1

n
E(X | Bn,p) =

np

n
= p

σ(fn) ≡ 1

n
σ(X | Bn,p) =

√

p (1 − p)√
n

−−−→
n→∞

0
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0

We expect p, with uncertainty that decreases with √
n:

→ Bernoulli’s theorem, the most known, misunderstood and
misused probability theory theorem.

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.16/42



From probability to future frequencies

Let us think to n independent Bernoulli trials that
have to be made.
Number of successes X ∼ Bn,p, with p.
We might be interested to the relative frequency of successes,
i.e. fn = X/n: fn = 0, 1/n, 2/n, . . . , 1

What do we expect for fn? f(fn) can be obtained from f(x).

E(fn) ≡ 1

n
E(X | Bn,p) =

np

n
= p

σ(fn) ≡ 1

n
σ(X | Bn,p) =

√

p (1 − p)√
n

−−−→
n→∞

0

In particular, it justifies the increased probability of neither ’late
numbers’ at lotto, nor frequency based definition of probability
(Circular: cannot define probability from probability theorem!)
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Propagation of uncertainties

All we have seen so far in this short review of ‘direct probability’
is how to ‘propagate probability’ to logically connected events or
variables.

⇒ Therefore, the famous problem of propagation of uncertainty
is straightforward in a probabilistic approach: just use probability
theory.
[Note that in the frequency based approach one does something
similar, but in a ‘strange’ way, because one is not allowed to use
probability for physical quantities, but only for estimators.]
The general problem:

f(x1, x2, . . . , xn) −−−−−−−−−−−−−→
Yj=Yj(X1,X2,...,Xn)

f(y1, y2, . . . , ym) .

This calculation can be quite challenging, but it can be easily
performed by Monte Carlo techniques.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .
The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.
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General solution for discrete variables

Y = Y (X), where Y () stands for the mathematical function
relating X and Y .
The probability of a given Y = y is equal to the sum of the
probability of each X such that Y (X = x) = y.
The extension to many variables is straightforward:
for ex., given two input quantities X1 and X2, with their
probability function f(x1, x2), and two output quantities Y1 and
Y2:

f(y1, y2) =
∑

x1, x2
{

Y1(x1, x2) = y1

Y2(x1, x2) = y2 .

f(x1, x2)

(For each point {y1, y2} sum up the probability of all points in
the {X1,X2} space that satisfy the constrain.)
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General solution for continuous variable
Just extend to the continuum the previous formula:

• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2) dx1dx2 .
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Zoom
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General solution for continuous variable
Just extend to the continuum the previous formula:

• replace sums by integrals
• replace constrains by suitable Dirac δ():

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2) dx1dx2 .

E(Y ) = E(X1) + E(X2)

σ2(Y ) = σ2(X1) + σ2(X2)

mode(Y ) ↔ mode(Xi)
median(Y ) ↔ median(Xi)

?

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.21/42



Monte Carlo implementation of the general formula

f(y1, y2) =

∫

δ(y1−Y1(x1, x2)) δ(y2−Y2(x1, y2)) f(x1, x2) dx1dx2 .

Monte Carlo implementation of the general formula
• Extract a point {x1, x2} according to f(x1, x2)

• Fill a table (or scatter plot) with the entry
y1 = Y1(x1, x2)

y2 = Y2(x1, x2)

• Do it many times; then from the relative frequencies in each
2-D bin we can estimate the probability in each bin:
f(y1, y2)∆y1∆y2, and hence f(y1, y2). (→ examples in R)
(But we still have to learn how to estimates probabilities
from observed frequencies – No, is not just the reverse of
Bernoulli theorem, but another, important theorem!)
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Expected value and variance of a linear combination

Why E(Y ) = E(X1) + E(X2) and σ2(Y ) = σ2(X1) + σ2(X2),
but no similar rule for mode (‘point of maximum belief‘) or
median (‘fifty-fifty point‘)?

It can be extended to several output quantities: Yj =
∑

i cjiXi:

E(Yj) =
∑

i

cj i E(Xi)

V Y = C V XCT ,

where V is the symbol for covariance matrix and C is the m× n
matrix of coefficients cji.
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where V is the symbol for covariance matrix and C is the m× n
matrix of coefficients cji.
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Expected value and variance of a linear combination

Why E(Y ) = E(X1) + E(X2) and σ2(Y ) = σ2(X1) + σ2(X2),
but no similar rule for mode (‘point of maximum belief‘) or
median (‘fifty-fifty point‘)?

• no ‘deep’ reason: just math,
and this the main reason that makes expected value and
variance so convenient.

• General property:
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!
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No equivalent rule for the most probable values!

But there is nothing similar for the most probable values

0.5 + 0.5 = 1 only for nice symmetric distributions

0.5 + 0.5 = 0.45 in our ‘asymmetric’ example!
Not just an odd academic example:

• asymmetric uncertainties occur often in HEP
every time you read ‘best value’ +∆+

−∆−

!

→ asymmetric χ2 or log-likelihoods
→ asymmetry in – well treated! – uncertainty propagations
→ systematics (often related to non linear propagation)

And remember that standard methods (χ2 or ML fits) provide
something equivalent to ‘most probable values’, not to E( )!

(As we shall see.)
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Propagating ‘confidence intervals’?

What should we do of the +∆+

−∆−

when we need to propagate
somebody else’s uncertainty in our evaluations?

Important to know what these ∆+ and ∆− mean and how they
have been evaluated.
For the moment let us be fair and assume that +∆+

−∆−

give a
confidence interval that it can be somehow translated in a
probabilistic interval, for example with 68% probability (this is
often the case, if the χ2 is parabolic or just a bit skewed)
Let us reproduce the situation with our asymmetric triangular,
and see what happens with the prescriptions to handle ∆+ and
∆− in ‘error propagations.’

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.25/42



Propagating ‘confidence intervals’?

What should we do of the +∆+

−∆−

when we need to propagate
somebody else’s uncertainty in our evaluations?
Important to know what these ∆+ and ∆− mean and how they
have been evaluated.

For the moment let us be fair and assume that +∆+

−∆−

give a
confidence interval that it can be somehow translated in a
probabilistic interval, for example with 68% probability (this is
often the case, if the χ2 is parabolic or just a bit skewed)
Let us reproduce the situation with our asymmetric triangular,
and see what happens with the prescriptions to handle ∆+ and
∆− in ‘error propagations.’

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.25/42



Propagating ‘confidence intervals’?

What should we do of the +∆+

−∆−

when we need to propagate
somebody else’s uncertainty in our evaluations?
Important to know what these ∆+ and ∆− mean and how they
have been evaluated.
For the moment let us be fair and assume that +∆+

−∆−

give a
confidence interval that it can be somehow translated in a
probabilistic interval, for example with 68% probability (this is
often the case, if the χ2 is parabolic or just a bit skewed)

Let us reproduce the situation with our asymmetric triangular,
and see what happens with the prescriptions to handle ∆+ and
∆− in ‘error propagations.’

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.25/42



Propagating ‘confidence intervals’?

What should we do of the +∆+

−∆−

when we need to propagate
somebody else’s uncertainty in our evaluations?
Important to know what these ∆+ and ∆− mean and how they
have been evaluated.
For the moment let us be fair and assume that +∆+

−∆−

give a
confidence interval that it can be somehow translated in a
probabilistic interval, for example with 68% probability (this is
often the case, if the χ2 is parabolic or just a bit skewed)
Let us reproduce the situation with our asymmetric triangular,
and see what happens with the prescriptions to handle ∆+ and
∆− in ‘error propagations.’

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.25/42



Asymmetric uncertainties: CAVEAT!

68.3% confidence interval:

Xi = 0.5+0.22
−0.66

In principle no problem expressing our
uncertainty this way. The question is to
be aware of what it means and what to
do with it. −1.0 −0.5 0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8
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Imagine are interested in Y = X1 + X2. What will be the 68%
confidence interval for Y ?
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In principle no problem expressing our
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Imagine are interested in Y = X1 + X2. What will be the 68%
confidence interval for Y ?
Some prescriptions you might know:

• quadratic combination of ∆+ and ∆−: Y = 1.00+0.31
−0.93

• linear combination of ∆+ and ∆−: Y = 1.00+0.44
−1.31

→ But we know in this case the exact result:
E(Y ) = 0.34; σ(Y ) = 0.59; mode(Y ) = 0.45.
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About the propagation of the most probable values

Xi = 0.5+0.22
−0.66 ≈ OK

(in principle!)
But
Y = 1.00+0.31

−0.93

Y = 1.00+0.44
−1.31

are inconsistent with what
we know about Xi!

‘Best estimates’ do not propagate in a simple way – not even in
a simple sum – if the associate uncertainty is asymmetric!
This kind of prescriptions produce a bias in the final result!
Always report expected value and standard deviation (and more
detailed information if the final pdf is not simply a Gaussian)
My impression: a kind religious respect for the ‘best estimate’!
(though sometimes they do not deserve much respect. . . )
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If we really have to give only two numbers. . .

. . . they should be, anyway,
• Expected value
• Standard deviation

Because this is what we need in simple propagations, using the
well known formula of propagation, while – let’s repeat it – no
general combination formula exists for other summaries.

There is also another property that make E( ) and σ very
convenient:

The Central Limit Theorem
⇒ Result of combination is approximately Gaussian under

hypotheses that ‘often’ hold (but always check!)
[But you can imagine that in other approaches where the expected value of a
physics quantity is an absurd concept, there might be some problems. And
this explains the ‘prescriptions’ that surrogate the luck of theoretical guidance!]
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Central Limit Theorem

Given Y =
∑n

i=1 ciXi

• E(Y ) =
∑

i=1 ci E(Xi) is a very general property.
• σ2(Y ) =

∑

i=1 c2
i σ

2(Xi) assumes independence of Xi.
But nothing yet about f(y)
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Central Limit Theorem

Given Y =
∑n

i=1 ciXi

• E(Y ) =
∑

i=1 ci E(Xi) is a very general property.
• σ2(Y ) =

∑

i=1 c2
i σ

2(Xi) assumes independence of Xi.
But nothing yet about f(y)

Central Limit Theorem:

n → ∞ =⇒ Y ∼ N





n
∑

i=1

ci E(Xi),

(

n
∑

i=1

c2
i σ2

i

) 1

2



 .

if c2
i σ2

i <<
∑n

i=1 c2
i σ2

i for all Xi not described by a Gaussian!

(i.e. a single non-Gaussian variable has not to dominate the un-

certainty about Y .) → Slides
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Applications of Central Limit Theorem

Distribution of a sample average

Xn =

n
∑

i=1

1

n
Xi,

It is just a linear combination with ci = 1/n. Then,

E[Xn] =

n
∑

i=1

1

n
E[Xi] = E[X],

σ2(Xn) =
n
∑

i=1

(

1

n

)2

σ2 =
σ2

n
,

σ(Xn) =
σ√
n

,

C.L.T. → Xn ∼ N (E[Xn], σ(Xn)),
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Applications of Central Limit Theorem

Normal approximation of the binomial and of the Poisson
distribution.
These properties can be easily understood from the
reproductive property‘ of these two distribution under the sum.

• Binomial: if we have many independent binomial Xi, all with
the same p, but different ni, then

∑

i Xi is still binomial, with
the same p and with n =

∑

i ni.
→ no formal proof required: just think each Binomial as ni

Bernoulli trials!
• Poisson: if we have many independent Poisson Xi, each

with λi, then
∑

i Xi is still Poisson, with λ =
∑

i λi.
→ no formal proof required: just think each Poisson as a
Poisson process over the same measurement time T , but
with different intensities ri.
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Applications of Central Limit Theorem

Distributions of errors:
Often the overall measurement error e is the sum of many
independent contributions (often each ei is Gaussian-like).
→ e =

∑

i ei → N ()
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Applications of Central Limit Theorem

CAVEAT Although convergence is rather fast in the cases of
practical interest, the theorem speaks of n → ∞. As an example
of very slow convergence, let us imagine 109 independent
variables described by a Poisson distribution of λi = 10−9.

Sometimes the conditions of the theorem are not satisfied.
• A single component dominates the fluctuation (a typical

case is the well-known Landau ionization distribution).
• The condition of independence is lost if systematic errors

affect a set of measurements, or if there is coherent noise.
• Tails of the distributions do exist and they are not always

Gaussian! Moreover, random variables might take values
several standard deviations away from the mean. And
fluctuations show up without notice!
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Approximate propagations

Thanks to the properties of linear combination and of Central
Limit Theorem, in many routine cases we do need to calculate
somehow f(y), but we just need expected values, variances and
correlations coefficients.











E(Xi)

σ(Xi)

ρ(Xi,Xi′)

−−−−−−−−−−−−−−−−−−−−−→
Yj=cj0+cj1X1+cj2X2+···+cjnXn











E(Yj)

σ(Yj)

ρ(Yj , Yj′)

.

But do not forget that they are all
approximations!
(Even the covariance matrix, usually considered a tool for

experts!)
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.

Formulae extended to general Yj = Yj(X) linearizing around
E(Xi)

cj0 →
∑

i

Yj(E[Xi]); cji →
∂Yj

∂Xi

∣

∣

∣

∣E(X)

.

Then apply, as for linear combinations,

V X = C V XCT .
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(Even the covariance matrix, usually considered a tool for
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Inference

Inference

⇒ How do we learn from data
in a probabilistic framework?
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From causes to effects and back

Our original problem:

C1 C2 C3 C4

E1 E2 E3 E4

Causes

Effects

Our conditional view of probabilistic causation
P (Ei |Cj)

Our conditional view of probabilistic inference
P (Cj |Ei)

The fourth basic rule of probability:
P (Cj , Ei) = P (Ei |Cj)P (Cj) = P (Cj |Ei)P (Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”
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Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”

It follows
P (Hj |Ei) =

P (Ei |Hj)

P (Ei)
P (Hj)

Got ‘after’ Calculated ‘before’

(where ‘before’ and ‘after’ refer to the knowledge that Ei is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses Hj and
effects Ei, and rewrite it this way:

P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

“The condition on Ei changes in percentage the probability of
Hj as the probability of Ei is changed in percentage by the
condition Hj .”

It follows
P (Hj |Ei) =

P (Ei |Hj)

P (Ei)
P (Hj)

”post illa observationes” “ante illa observationes”

(Gauss)
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The six box problem

H0 H1 H2 H3 H4 H5

Let us choose randomly one of the boxes.

We are in a state of
uncertainty concerning several events, the most important of
which correspond to the following questions:
(a) Which box have we chosen, H0, H1, . . . , H5?
(b) If we extract randomly a ball from the chosen box, will we

observe a white (EW ≡ E1) or black (EB ≡ E2) ball?
In general, we are uncertain about all the combinations
of Ei and Hj : E1 ∩ H0, E1 ∩ H1, . . . , E2 ∩ H5, and these 12
constituents are not equiprobable.

Our certainty: ∪5
j=0 Hj = Ω

∪2
i=1 Ei = Ω .
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The toy inferential experiment

The aim of the experiment will be to guess the content of the box
without looking inside it, only extracting a ball, record its color
and reintroducing in the box

This toy experiment is conceptually very close to what we do in
Physics

• try to guess what we cannot see (the electron mass, a
branching ratio, etc)

• from what we can see (somehow) with our senses.
The rule of the game is that we are not allowed to watch inside
the box! (As we cannot open and electron and read its
properties, like we read the ethernet number of a PC)
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)

P (Ei | I) P (Hj | I)
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• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Our prior belief about Hj
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)

P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei under a well defined hypothesis Hj

It corresponds to the ‘response of the apparatus in
measurements.
→ likelihood (traditional, rather confusing name!)
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)

P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2
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Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)

P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

Probability of Ei taking account all possible Hj

→ How much we are confident that Ei will occur.
Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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But we have learned how P (Ei | I) is related to the other
two ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)

P (Ei | I) P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) = 1/2

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

But we have learned how P (Ei | I) is related to the other
two ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
‘decomposition law’: P (Ei | I) =

∑

j P (Ei |Hj , I) · P (Hj | I)

(→ Easy to check that it gives P (Ei | I) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:
P (Hj |Ei, I) = P (Ei |Hj , I)·P (Hj | I)

P

j
P (Ei |Hj , I)·P (Hj | I)

• P (Hj | I) = 1/6

• P (Ei | I) =
∑

j P (Ei |Hj , I) · P (Hj | I)

• P (Ei |Hj , I) :

P (E1 |Hj , I) = j/5

P (E2 |Hj , I) = (5 − j)/5

We are ready!
−→ Slides
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First extraction

After first extraction (and reintroduction) of the ball:
• P (Hj) changes
• P (Ej) for next extraction changes

Note: The box is exactly in the same status as before

Where is probability?
→ Certainly not in the box!
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Bayes theorem
The formulae used to infer Hi and
to predict E

(2)
j are related to the name of Bayes

[And this is a pity with all respect to the English. . . :-)
It would even been ‘better’ “Laplace theorem” – and perhaps I wouldn’t be here
to convince you that it is the right tool to make inference . . . ]

Neglecting the background state of information I :
P (Hj |Ei)

P (Hj)
=

P (Ei |Hj)

P (Ei)

P (Hj |Ei) =
P (Ei |Hj)

P (Ei)
P (Hj)

P (Hj |Ei) =
P (Ei |Hj) · P (Hj)

∑

j P (Ei |Hj) · P (Hj)

P (Hj |Ei) ∝ P (Ei |Hj) · P (Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:
Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P (Hj |E(1), E(2)) ∝ P (E(2) |Hj , E
(1)) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (Hj |E(1))

∝ P (E(2) |Hj) · P (E(1) |Hj) · P0(Hj)

∝ P (E(1), E(1) |Hj) · P0(Hj)

P (Hj |data) ∝ P (data |Hj) · P0(Hj)
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Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:
Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Learning from data using probability theory
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Exercises and discussions

• Continue with six box problem [→ AJP 67 (1999) 1260]
→ Slides

• Home work 1: AIDS problem → P (HIV |Pos) ?

P (Pos |HIV) = 100%

P (Pos |HIV) = 0.2%

P (Neg |HIV) = 99.8%

• Home work 2: Particle identification:
A particle detector has a µ identification efficiency of 95%, and a
probability of identifying a π as a µ of 2%. If a particle is identified as a
µ, then a trigger is fired. Knowing that the particle beam is a mixture of
90% π and 10% µ, what is the probability that a trigger is really fired by
a µ? What is the signal-to-noise (S/N ) ratio?

G. D’Agostini, CERN Academic Training 21-25 February 2005 – p.41/42



End of lecture

End of lecture 4
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