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Abstract
This contribution to the debateon confidencelimits focusesmostly on the
caseof measurementswith ‘openlikelihood’, in thesensethat it is definedin
the text. I will show that, thougha prior-freeassessmentof confidenceis, in
general,not possible,still a searchresultcanbereportedin a mostlyunbiased
andefficientway, whichsatisfiessomedesideratawhichI believearesharedby
thepeopleinterestedin thesubject.Thesimplercaseof ‘closedlikelihood’ will
alsobetreated,andI will discusswhy auniformprior onasensiblequantityis
averyreasonablechoicefor mostapplications.In bothcases,I think thatmuch
clarity will beachieved if we remove from scientificparlancethemisleading
expressions‘confidenceintervals’ and‘confidencelevels’.

“You see,aquestionhasarisen,
aboutwhichwecannotcometo anagreement,

probablybecausewehave readtoomany books”
(Brecht’sGalileo)1

1 INTR ODUCTION

The bloomingof paperson ‘limits’ in the pastcoupleof years[1–11] and a workshop[12] entirely
dedicatedto thesubjectarestriking indicatorsof thelevel of theproblem.It is difficult not to agreethat
at the root of the problemis the standardphysicist’s educationin statistics,basedon the collectionof
frequentisticprescriptions,giventhe lofty nameof ‘classicalstatisticaltheory’ by the their supporters,
‘frequentisticadhoc-eries’2 by their opponents.In fact,while in routinemeasurementscharacterisedby
a narrow likelihood ‘correct numbers’areobtainedby frequentisticprescriptions(thoughthe intuitive
interpretationthatphysicistsattributeto themis thatof probabilisticstatements3 abouttruevalues[15]),

1“SehenSie,es ist eineFrageenstanden,̈uber die wir unsnicht einig werdenkönnen,wahrscheinlich, weil wir zu viele
Büchergelesenhaben.” (BertoltBrecht,LebendesGalilei).

2For example,even Sir RonaldFisherusedto refer to Neyman’s statisticalconfidencemethodas“that technologicaland
commercialapparatuswhich is known asanacceptanceprocedure”[13]. In my opinion,theterm‘classical’ is misleading,as
aretheresultsof thesemethods.Thenamegivestheimpressionof beinganalogousto ‘classicalphysics’,whichwasdeveloped
by our ‘classicals’,andthatstill holdsfor ordinaryproblems.Instead,theclassicalsof probabilitytheory, like Laplace,Gauss,
Bayes,Bernoulli andPoisson,hadanapproachto theproblemmoresimilar to whatwe would call nowadays‘Bayesian’(for
anhistoricalaccountseeRef.[14]).

3It is a matterof fact [15] that confidencelevels are intuitively thoughtof (andusually taught)by the large majority of
physicistsasdegreesof belief on true values,althoughthe expression‘degreeof belief’ is avoided,because“beliefs arenot
scientific”. Even bookswhich do insiston statingthat probabilitystatementsarenot referredto truevalues(“true valuesare
constantsof unknown value”) have a hardtime explainingthe realmeaningof the result,i.e. somethingwhich mapsinto the
humanmind’s perceptionof uncertainevents. So, they areforcedto useambiguoussentenceswhich remainstampedin the
memoryof the readermuchmorethanthe frequentistically-correcttwistedreasoningthat they try to explain. For examplea
classicalparticlephysicsstatisticsbook[16] speaksabout“the faith weattachto this statement”,asif ‘faith’ wasnot thesame
asdegreeof belief. Anotherone[17] introducestheargumentby sayingthat“we wantto find therange. . .whichcontainsthe
truevalue

���
with probability � ”, thoughrationalpeopleareata lossin trying to convincethemselvesthattheproposition“the

rangecontains
� �

with probability � ” doesnot imply “
� �

is in thatrangewith probability � ”.



they fail in “dif ficult cases:smallor unobservedsignal,backgroundlarger thansignal,backgroundnot
well known,andmeasurementsnearaphysicalboundary”[12].

It is interestingto notethatmany of theabove-citedpapersonlimits havebeenwrittenin thewake
of anarticle [2] which waspromptlyadoptedby thePDG[4] asthe longedfor ultimatesolutionto the
problem,whichcouldfinally “removeanoriginalmotivationfor thedescriptionof Bayesianintervalsby
thePDG” [2]. However, althoughRef. [2], thanksto theauthorityof thePDG,hasbeenwidely usedby
many experimentalteamsto publishlimits, evenby peoplewho did not understandthemethodor were
scepticalaboutit,4 thatarticlehastriggereda debatebetweenthosewho simply objectto theapproach
(e.g. Ref. [5]), thosewho proposeotherprescriptions(many of theseauthorsdo it with the explicit
purposeof “avoidingBayesiancontaminations”[11] or of “giving astrongcontributionto rid physicsof
Bayesianintrusions”5 [6]), andthosewhojustproposeto changeradicallythepath[7,10].

The presentcontribution to the debate,basedon Refs.[7, 8, 10,15, 19,20], is in the framework
of whathasbeeninitially thephysicists’approachto probability,6 andwhich I maintain[15] is still the
intuitive reasoningof the large majority of physicists,despitethe ‘frequentisticintrusion’ in the form
of standardstatisticalcoursesin thephysicscurriculum. I will show by examplesthatanasepticprior-
free assessmentof ‘confidence’is a contradictionin termsand,consequently, that the solutionto the
problemof assessing‘objective’ confidencelimits doesnotexist. Finally, I will show how it is possible,
nevertheless,to presentsearchresultsin anobjective (in thesensethis committingword is commonly
perceived)andoptimalway which satisfiesthedesiderataexpressedin Section2 section.The priceto
pay is to remove the expression‘confidencelimit’ from our parlanceandtalk, instead,of ‘sensitivity
bound’to meanaprior-freeresult.Instead,theexpression‘probabilisticbound’shouldbeusedto assess
how muchwe arereally confident, i.e. how muchwe believe, that the quantityof interestis above or
below thebound,underclearlystatedprior assumptions.

Thepresentpaperfocusesmostlyon the‘dif ficult cases’[12], which will beclassifiedas‘frontier
measurements’[22], characterizedby an‘openlikelihood’, aswill bebetterspecifiedin Section7, where
this situationwill becomparedto the easiercaseof ‘close likelihood’. It will beshown why thereare
goodreasonsto presentroutinelytheexperimentaloutcomein two differentwaysfor thetwo cases.

2 DESIDERATA FOR AN OPTIMAL PRESENTATION OF SEARCH RESULTS

Let usspecifyanoptimalpresentationof asearchresultin termsof somedesiredproperties.� Theway of reportingthe resultshouldnot dependon whetherthe experimentalteamis moreor
lessconvincedto have foundthesignallookedfor.� Thereportshouldallow aneasy, consistentandefficient combinationof all piecesof information
which couldcomefrom several experiments,searchchannelsandrunningperiods. By efficient
I meanthe following: if many independentdatasetseachprovide a little evidencein favour of
the searched-forsignal,the combinationof all datashouldenhancethat hypothesis;if, instead,
the indicationsprovided by the differentdataare incoherent,their combinationshouldresult in
strongerconstraintson the intensityof the postulatedprocess(a highermass,a lower coupling,
etc.).� Even resultscomingfrom low sensitivity (and/orvery noisy) datasetscould be includedin the
combination,without them spoiling the quality of the result obtainableby the cleanand high-

4This non-scientificpracticehasbeenwell expressedby a colleague:“At leastwe have a rule, no matterif goodor bad,
to whichwe canadhere.Someof thelimits have changed?You know, it is like whengovernmentschangetherulesof social
games:somewin, somelose.” Whenpeopleaskme why I disagreewith Ref. [2], I just encouragethemto readthe paper
carefully, insteadof simplypickinganumberfrom atable.

5SeeRef. [18] to get an ideaof the present‘Bayesianintrusion’ in the sciences,especiallyin thosedisciplinesin which
frequentisticmethodsarose.

6Insightful historicalremarksaboutthe correlationphysicists-‘Bayesians’ (in themodernsense)canbe found in the first
two sectionsof Chapter10 of Jaynes’book[21]. For amoreextensiveaccountof theoriginalapproachof Laplace,Gaussand
otherphysicistsandmathematicians,seeRef. [14].
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sensitivity datasetsalone.If thepoor-qualitydatacarrytheslightestpieceof evidence,this infor-
mationshouldplay thecorrectroleof slightly increasingtheglobalevidence.� The presentationof the result(andits meaning)shouldnot dependon the particularapplication
(Higgssearch,scaleof contact-interaction,protondecay, etc.).� Theresultshouldbestatedin suchaway thatit cannotbemisleading.This requiresthatit should
easilymapinto thenaturalcategoriesdevelopedby thehumanmind for uncertainevents.� Uncertaintiesdueto systematiceffectsof uncertainsizeshouldbeincludedin aconsistentand(at
leastconceptually)simpleway.� Subjective contributionsof the personswho provide the resultsshouldbe kept at a minimum.
Thesecontributionscannotvanish,in thesensethatwehavealwaysto rely onthe“understanding,
criticalanalysisandintegrity” [23] of theexperimentersbut atleastthedependenceonthebelieved
valuesof thequantityshouldbeminimal.� Theresultshouldsummarizecompletelytheexperiment,andno extra piecesof information(lu-
minosity, cross-sections,efficiencies,expectednumberof backgroundevents,observednumberof
events)shouldberequiredfor furtheranalyses.7� Theresultshouldbereadyto beturnedinto probabilisticstatements,neededto form one’sopinion
aboutthequantityof interestor to takedecisions.� Theresultshouldnot leadto paradoxicalconclusions.

3 ASSESSINGTHE DEGREE OF CONFIDENCE

As Barlow says[24], “Most statisticscoursesglossover thedefinitionof what is meantby probability,
with atbestashortmumbleto theeffectthatthereis nouniversalagreement.Theimplicationis thatsuch
detailsareirrelevanciesof concernonly to long-hairedphilosophers,andneednottroubleushard-headed
scientists.This is short-sighted;uncertaintyaboutwhatwe really meanwhenwe calculateprobabilities
leadsto confusionandbodging,particularly on the subjectof confidencelevels. . . .Sloppy thinking
and confusedargumentsin this areaarisemainly from changingone’s definition of ‘probability’ in
midstream,or, indeed,of not defining it clearly at all.” Ask your colleagueshow they perceive the
statement“95% confidencelevel lower boundof 77.5GeV/��� is obtainedfor themassof theStandard
Model Higgsboson”[3]. I conductedanextensivepoll in July 1998,personallyandby electronicmail.
The result [15] is that for the large majority of peoplethe above statementmeansthat “assumingthe
Higgsbosonexists,we are95%confidentthat theHiggsmassis above that limit, i.e. theHiggsboson
has95%chance(or probability)of beingontheupperside,and5%chanceof beingonthelowerside,”8,
which is notwhattheoperationaldefinitionof thatlimit implies[3]. Therefore,following thesuggestion
of Barlow [24], let us “take a look at what we meanby the term ‘probability’ (andconfidence)before
discussingthe seriousbusinessof confidencelevels.” I will do this with someexamples,referringto
Refs.[19,20] for moreextensivediscussionsandfurtherexamples.

7For example,duringthework for Ref.[8], wewereunableto useonly the‘results’,andhadto restarttheanalysisfrom the
detailedpiecesof information,whicharenotalwaysasdetailedasonewouldneed.For this reasonwewerequiteembarrassed
when,finally, wewereunableto useconsistentlytheinformationpublishedby oneof thefour LEPexperiments.

8Actually, therewerethosewho refusedto answerthequestionbecause“it is going to be difficult to answer”,andthose
who insistedon repeatingthe frequentisticlessonon lower limits, but without beingableto provide a convincing statement
understandableto ascientificjournalistor to agovernmentauthority– thesewerethetermsof thequestion– aboutthedegree
of confidencethattheHiggsis heavier thanthestatedlimit. I would like to reportthelatestreply to thepoll, whicharrived just
thedaybeforethis workshop:“I apologizeI nevergot aroundto answeringyourmail, which I supposeyou canrightly regard
asevidencethattheclassicalproceduresarenot trivial!”
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Fig. 1: A box haswith certaintyoneof thesesix black andwhite ball compositions.The contentof the box is
inferredby extractingat randomaball from theboxthenreturningit to thebox. How confidentareyou initially of
eachcomposition?How doesyour confidencechangeafter theobservationof 1, 5 and8 consecutive extractions
of a blackball?

31 Variations over a problem to Newton

It seems9 that IsaacNewton wasaskedto solve thefollowing problem.A mancondemnedto deathhas
anopportunityof having his life savedandto befreed,dependingon theoutcomeof anuncertainevent.
Themancanchoosebetweenthreeoptions:a) roll 6 dice,andbe free if hegets‘6’ with oneandonly
onedie ( 	 ); b) roll 12 dice,andbefreedif hegets‘6’ with exactly 2 dice;c) roll 18 dice,andbefreed
if hegets‘6’ in exactly 3 dice. Clearly, hewill choosetheeventaboutwhich he is more confident(we
couldalsosaytheevent which heconsidersmore probable; the event mostlikely to happen; theevent
which hebelievesmostly; andsoon). Most likely thecondemnedmanis not ableto solve theproblem,
but hecertainlywill understandNewton’ssuggestionto choose	 , which giveshim thehighestchance
to survive. He will alsounderstandthestatementthat 	 is aboutsix timesmorelikely than 
 andthirty
timesmorelikely than � . ThecondemnedwouldperhapsaskNewton to givehim someideahow likely
theevent 	 is. A goodanswerwould beto makea comparisonwith a box containing1000balls,94 of
whicharewhite. Heshouldbesoconfidentof surviving asof extractingawhite ball from thebox;10 i.e.
9.4%confidentof beingfreedand90.6%confidentof dying: not really anenviablesituation,but better
thanchoosing� , correspondingto only 3 whiteballsin thebox.

Comingbackto theHiggs limit, arewe really honestly95%confidentthat thevalueof its mass
is above the limit as we areconfidentthat a neutralinomassis above its 95% C.L. limit, as a given
branchingratio is below its 95% C.L. limit, etc.,aswe areconfidentof extractinga white ball from a
box whichcontains95whiteand5 blackballs?

Let usimaginenow amorecomplicatedsituation,in whichyou have to makethechoice(imagine
for a momentyou aretheprisoner, just to beemotionallymoreinvolvedin this academicexercise11). A
box containswith certainty5 balls, with a white ball contentrangingfrom 0 to 5, the remainingballs
beingblack (seeFig. 1, andRef. [20] for furthervariationson the problem.). Oneball is extractedat
random,shown to you, and thenreturnedto the box. The ball is black. You get freedif you guess
correctlythecompositionof thebox. Moreover you areallowedto aska question,to which the judges
will replycorrectlyif thequestionis pertinentandsuchthattheiranswerdoesnot indicatewith certainty
theexactcontentof thebox.

Having observeda black ball, the only certaintyis that ��
 is ruled out. As far asthe otherfive
possibilitiesareconcerned,a first ideawouldbeto bemoreconfidentaboutthebox compositionwhich
hasmoreblack balls ( ��� ), sincethis compositiongives the highestchanceof extracting this colour.
Following this reasoning,theconfidencein thevariousbox compositionswouldbeproportionalto their
blackball content.But it is not difficult to understandthatthis solutionis obtainedby assumingthatthe
compositionsareconsidereda priori equallypossible.However, this conditionwasnot statedexplicitly

9My sourceof informationis Ref.[25]. It seemsthatNewtongavethe‘correctanswer’- indeed,in thisstereotypedproblem
thereis thecorrectanswer.

10Thereasonwhy any personis ableto claim to bemoreconfidentof extractinga white ball from thebox thatcontainsthe
largestfractionof white balls,while for theevaluationof theaboveeventsonehasto ‘ask Newton’, doesnot imply adifferent
perceptionof the‘probability’ in thetwo classesof events. It is only becausetheevents � , � and � arecomplex events,the
probabilityof which is evaluatedfrom theprobabilityof theelementaryevents(andeverybodycanfigureout what it means
thatthesix facesof adieareequallylikely) plussomecombinatorics,for whichsomemathematicaleducationis needed.

11BrunodeFinetti usedto saythateitherprobabilityconcernsrealeventsin whichweareinterested,or it is nothing[26].
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in the formulationof theproblem. How wasthebox prepared?You might think of an initial situation
of six boxeseachhaving a differentcomposition.But you might alsothink that theballswerepicked
at randomfrom a largebagcontaininga roughlyequalproportionof white andblackballs. Clearly, the
initial situationchanges.In thesecondcasethecomposition��� is initially sounlikely that,evenafter
having extracteda black ball, it remainsnot very credible. As eloquentlysaidby Poincaŕe [27], “an
effect may be producedby the cause� or by the cause� . The effect hasjust beenobserved. We ask
theprobabilitythat it is dueto thecause� . This is ana posterioriprobabilityof cause.But I couldnot
calculateit, if aconventionmoreor lessjustifieddid not tell mein advancewhatis thepriori probability
for thecause� to comeinto play. I meantheprobabilityof thiseventto someonewhohadnotobserved
theeffect.” Theobservationaloneis notenoughto statehow muchoneis confidentaboutsomething.

The properway to evaluatethe level of confidence,which takesinto account(with the correct
weighting)experimentalevidenceandprior knowledge,is recognizedto beBayes’theorem:12��� ����������� ��� � �����!�#" ��$%� ���&�(' (1)

where� is theobservedevent(blackor white),
� $ � � � � is theinitial (or apriori) probabilityof � � (called

oftensimply‘prior’),
��� �)�*�+��� is thefinal (or ‘posterior’)probability, and

��� �,�+���!� is the‘likelihood’.
The upperplot of Fig. 2 shows the likelihood

���
Black �����!� of observinga black ball assumingeach

possiblecomposition.The secondpair of plots shows the two priors consideredin our problem. The
final probabilitiesareshown next. We seethatthetwo solutionsarequitedifferent,asa consequenceof
differentpriors.Soa goodquestionto askthejudgeswouldbehow thebox wasprepared.If they sayit
wasuniform,betyour life on �)� . If they saythefiveballswereextractedfrom a largebag,beton � � .

Perhapsthejudgesmightbesoclementasto repeattheextraction(andsubsequentreintroduction)
several times.Figure2 showswhathappensif five or heightconsecutive blackballsareobserved. The
evaluationis performedby iteratingEq. (1):�.-/� �)�0�����(� ��� � - �����1�2" �.-%3546� ���&�(7 (2)

If you areconvinced13 that thepreparationprocedureis thebinomialone(largebag),you still consider� 4 morelikely than ��� , evenafterfive consecutive observations.Only aftereightconsecutive extrac-
tionsof ablackball areyoumostlyconfidentabout�)� independentlyof how muchyoubelievein thetwo
preparationprocedures(but, obviously, you might imagine– andperhapsevenbelieve in – morefancy
preparationprocedureswhich still givedifferentresults).After many extractionswe arepracticallysure
of thebox content,aswe shallseein a while, thoughwecanneverbecertain.

Comingbackto thelimits, imaginenow anexperimentoperatedfor a very shorttime at LEP200
andreportingnofour-jet events,nodeuterons,nozirconiumandnoHiggscandidates(andyoumightadd
somethingevenmorefancy, like eventswith 100equallyenergeticphotons,or someorganicmolecule).
How couldthe95%upperlimit to therateof theseeventsbethesame?Whatdoesit meanthatthe95%
upperlimit calculatedautomaticallyshouldgive us thesameconfidencefor all rates,independentlyof
whattheeventsare?

32 Confidenceversusevidence

Thefact that thesame(in a crudestatisticalsense)observationdoesnot leadto thesameassessmentof
confidenceis ratherwell understoodby physicists:a few pairsof photonsclusteringin invariantmass
around135MeV have a high chanceof comingfrom a 8 $ ; moreeventsclusteringbelow 100MeV are
certainlybackground(let usconsiderawell calibrateddetector);apeakin invariantmassin anew energy

12SeeRef.[20] for aderivationof Bayes’theorembasedon theboxproblemwearedealingwith.
13And if you have doubtsaboutthe preparation?The probability rules teachus what to do. Calling 9 (uniform) and� (binomial) the two preparationprocedures,with probabilities :<;!92= and :<;!�>= , we have :<;!?A@ obs=CBD:<;!?E@ obsFG92=/H:<;!92=%IJ:<;!?A@ obsFG�>=KH�:<;!�>=ML
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Fig. 2: Confidencein thebox contentsasa functionof prior andobservation(seetext).
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domainmight be seenasa hint of new physics,anddistinguishedtheoristsconsiderit worth serious
speculation.Thedifferencebetweenthethreecasesis theprior knowledge(or scientificprejudice).Very
oftenwe sharemoreor lessthesameprejudices,andconsequentlywe will all agreeon theconclusions.
But thissituationis rarein frontierscience,andthesameobservationdoesnotproducein all researchers
thesameconfidence.A peakcanbe takenmoreor lessseriouslydependingon whetherit is expected,
it fits well in theoverall theoreticalpicture,anddoesnot contradictotherobservations.Thereforeit is
importantto try to separateexperimentalevidencefrom theassessmentsof confidence.This separation
is donein aclearandunambiguouswayin theBayesianapproach.Let usillustrateit by continuingwith
theboxexample.TakeagainEq.(1). Consideringany two hypotheses��� and �PO , wehavethefollowing
relationbetweenprior andposteriorbettingodds:��� ���Q�+�R���� � O �����TS ��� �,�+���!���� �,�+� O �U VXW Y

Bayesfactor

" ��$%� ���!�� $ � � O � 7 (3)

This way of rewriting the Bayes’s theoremshows how the final oddscanbe factorizedinto prior odds
andexperimentalevidence,thelatterexpressedin termsof theso-calledBayesfactor[28]. The15odds
of our examplearenot independent,andcanbeexpressedwith respectto a referencebox composition
which hasa non-null likelihood. The naturalchoiceto analysethe problemof consecutive black ball
extractionsis Z � � �K[ Black� S ��� Black �+� � ����

Black �+���X� ' (4)

which is, in this particularcase,numericallyidenticalto
���

Black ���)�!� , since
���

Black ���)�\� S ] , and
thenit canbereadfrom thetop plot of Fig. 2. Thefunction

Z
canbeseenasa ‘relativebelief updating

ratio’ [10], in thesensethat it tells ushow thebeliefsmustbechangedafter theobservation,thoughit
cannotdetermineunivocally their values.Notethattheway theupdateis doneis, instead,univocaland
notsubjective,in thesensethatBayes’theoremis basedonlogic, andrationalpeoplecannotdisagree.It
is alsoobviouswhathappenswhenmany consecutivebackballsareobserved. Theiterativeapplication
of Bayes’theorem[Eq. (2)] leadsto thefollowing overall

Z
:Z � �)� [ Black'_^`� S a ��� Black ���)�!����

Black �+���X�cb
- 7 (5)

For large ^ all theoddswith respectto ��� go to zero,i.e.
��� ���Cdfe .

We have now our logical andmathematicalapparatusready. But beforemoving to the problem
of interest,let usmakesomeremarkson terminology, on themeaningof subjectprobability, andon its
interplaywith oddsin bettingandexpectedfrequencies.

33 Confidence,betting oddsand expectedfrequencies

I have usedonpurposeseveralwordsandexpressionsto meanessentiallythesamething: likely, proba-
ble,credible,(moreor less)possible,plausible,believable,andtheirassociatednouns;to bemoreor less
confidentabout,to believe moreor less,to trustmoreor less,something,andtheir associatednouns;to
preferto beton anoutcomeratherthananotherone,to assessbettingodds,andsoon. I couldalsouse
expressionsinvolving expectedfrequenciesof outcomesof apparentlysimilarsituations.Theperception
of probabilitywould remainthesame,andtherewould beno ambiguitiesor paradoxicalconclusions.I
referto Ref. [20] for a moreextended,thoughstill concise,discussionon theterms.I would like only to
sketchheresomeof themainpoints,asa summaryof theprevioussections.� Theso-calledsubjectiveprobabilityis basedontheacknowledgementthattheconceptof probabil-

ity is primitive,i.e. it is meantasthedegreeof beliefdevelopedby thehumanmindin acondition
of uncertainty, nomatterwhatwecall it (confidence,belief,probability,etc)or how weevaluatedit
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(symmetryarguments,pastfrequencies,Bayes’theorem,quantummechanicsformulae[29], etc.).
Somearguethattheuseof beliefsis notscientific.I believe,ontheotherhand,that“it is scientific
only to saywhatis more likely andwhatit is lesslikely” [30].� Theoddsin an‘coherentbet’ (abetsuchthatthepersonwhoassessesits oddshasnopreferencein
eitherdirection)canbeseenasthenormative rule to forcepeopleto assesshonestlytheir degrees
of belief ‘in themostobjectiveway’ (asthisexpressionis usuallyperceived).This is theway that
Laplaceusedto reporthis resultaboutthemassof Saturn:“it is a betof 10,000to 1 thattheerror
of this resultis not1/100thof its values”(quotereportedin Ref. [31]).� Probabilitystatementshave to satisfy the basicrules of probability, usually known as axioms.
Indeed,the basicrulescanbe derived, astheorems,from the operative definition of probability
throughacoherentbet.Theprobabilityrules,basedontheaxiomsandonlogic’s rules,allowsthe
probabilityassessmentsto bepropagatedto logically connectedevents.For example,if oneclaims
to be gQgih confidentabout � , oneshouldfeel also

� ] e%eTjkgigQ��h confidentabout � .� Thesimple,stereotypedcasesof regular diceandurnsof known compositioncanbeconsidered
ascalibrationtoolsto assesstheprobability, in thesensethatall rationalpeoplewill agree.� The probability rules,andin particularBernoulli’s theorem,relatedegreesof belief to expected
frequencies,if weimaginerepeatingtheexperimentmany timesunderexactly thesameconditions
of uncertainty(notnecessarilyunderthesamephysicalconditions).� Finally, Bayes’theoremis thelogical tool to updatethebeliefsin thelight of new information.

As an example,let us imaginethe event � , which is considered95% probable(and,necessarily, the
oppositeevent � is 5% probable).This belief canbeexpressedin many differentways,all containing
thesamedegreeof uncertainty:� I am95%confidentabout � and5%confidentabout� .� Givena box containing95 white and5 blackballs, I amasconfidentthat � will happen,asthat

thecolourof theball will bewhite. I amasconfidentabout� asof extractingablackball.� I amreadyto placea 19:1bet14 on � , or a 1:19on � .� Consideringa large number ^ of events � � , even relatedto differentphenomenologyandeach
having 95% probability, I am highly confident15 that the relative frequency of the eventswhich
will happenwill be very closeto 95%(the exact assessmentof my confidencecanbeevaluated
usingthebinomialdistribution). If ^ is very large,I ampracticallysurethattherelative frequency
will be equalto 95%, but I am never certain,unlesŝ is ‘infinite’, but this is no longera real
problem,in thesenseof thecommentin footnote11(“In thelongrunweareall dead”[32]).

Is this how ourconfidencelimits from particlesearchesareperceived?Are we really 5% confidentthat
the quantityof interestis on the 5% sideof the limit? Isn’t it strangethatout of the several thousand
limits from searchespublishedin recentdecadesnothinghasever shown up on the 5% side? In my
opinion,themostembarrassingsituationcomesfrom theHiggsbosonsector. A 95%C.L. upperlimit is
obtainedfrom radiative corrections,while a 95%C.L. limit comesfrom directsearch.Both resultsare
presentedwith thesameexpressions,only ‘upper’ beingreplacedby ‘lower’. But their interpretationis
completelydifferent. In the first caseit is easyto show [34] that, usingthe almostparabolicresultof
the lm� fit in npo �&qEr � anduniform prior in nso �&qAr � , we canreally talk about‘95% confidencethat the
massis below the limit’, or that ‘the Higgs masshasequalchanceof beingon eithersideof thevalue

14SeeRef.[20] for commentsondecisionproblemsinvolving subjectively-relevantamountsof money.
15It is in my opinion very importantto understandthe distinctionbetweenthe useof this frequency-basedexpressionof

probability and frequentisticapproach(seecommentsin Refs. [20] and [19]) or frequentisticcoverage(seeSection8.6 of
Ref.[19]). I amprettysurethatmostphysicistswhodeclareto befrequentistdosoonthebasisof educationalconditioningand
becausethey areaccustomedto assessingbeliefs(scientificopinion,or whatever) in termsof expectedfrequencies.Thecrucial
point which makesthedistinctionis it to askoneselfif it is sensibleto speakaboutprobabilityof truevalues,probabilityof
theories,andso on. Thereis alsoa classof sophisticatedpeoplewho think thereareseveralprobabilities.For commentson
this latterattitude,seeSection8.1of Ref. [19].
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of minimum l � ’, andsoon, in thesensedescribedin this section.This is not true in thesecondcase.
Who is really 5% confidentthat the massis below the limit? How canwe be 95% confidentthat the
massis above thelimit without anupperbound?Non-misleadinglevelsof confidenceon thestatementqErutvqw$

canbeassessedonly by usingtheinformationcomingfrom precisionmeasurement,which
rulesout very large(andalsovery small)valuesof theHiggsmass(seeRefs.[8,33,34]. For example,
whenwe say[34] that the medianof the Higgs massp.d.f. is 150GeV, we meanthat, to bestof our
knowledge,we regardthe two events

qAryx ]{z e and
qAr|t ]{z e asequallylikely, like the two faces

of a regularcoin. Following Laplace,we couldstateour confidenceclaimingthat‘is a betof 1 to 1 thatqEr
is below 150GeV’.

4 INFERRING THE INTENSITY OF POISSONPROCESSESAT THE LIMIT OF THE DE-
TECTOR SENSITIVITY AND IN THE PRESENCEOF BACKGROUND

As a masterexampleof frontier measurement,let ustakethesamecasestudyasin Ref. [10]. We shall
focus thenon the inferenceof the rate of gravitational wave (g.w.) burstsmeasuredby coincidence
analysisof g.w. antennae.

41 Modelling the inferential process

Moving from theboxexampleto themoreinterestingphysicscaseof g.w. burstis quitestraightforward.
Thesix hypotheses��� , playing therole of causes,arenow replacedby theinfinite valuesof therate } .
Thetwo possibleoutcomesblackandwhite now becomethenumberof candidateevents( ^5~ ). Thereis
alsoanextra ingredientwhich comesinto play: a candidateeventcouldcomefrom backgroundrather
thanfrom g.w.’s (like ablackball thatcouldbeextractedby a judge-conjurerfrom hispocketratherthan
from thebox.. . ). Clearly, if we understandwell theexperimentalapparatus,we musthave someideaof
thebackgroundrate }c� . Otherwise,it is betterto studyfurther theperformancesof thedetector, before
trying to infer anything. Anyhow, unavoidableresidualuncertaintyon } � canbe handledconsistently
(seelater).Let ussummarizeour ingredientsin termsof Bayesianinference.� Thephysicalquantityof interest,andwith respectto which we arein thestateof greatestuncer-

tainty, is theg.w. burstrate } .� We arerathersureabouttheexpectedrateof backgroundevents }{� (but not aboutthenumberof
eventsdueto backgroundwhichwill actuallybeobserved).� Whatis certain16 is thenumber̂ ~ of coincidenceswhichhave beenobserved.� For a givenhypothesis} thenumberof coincidenceeventswhichcanbeobservedin theobserva-
tion time � is describedby a Poissonprocesshaving an intensitywhich is thesumof thatdueto
backgroundandthatdueto signal.Thereforethelikelihood is��� ^5~m��}�'_}{�1� SD� � ^5~(��}�'_}{�&� S��

3`�����i���G�_� ��� }���}c������� -��^5~_� 7 (6)

Bayes’ theoremappliedto probability functionsand probability densityfunctions(we usethe same
symbolfor both),written in termsof theuncertainquantitiesof interest,is

� � }���^5~_'X}{���2� � � ^5~(��}�'_}{�&�2" � $%� }��(7 (7)

At thispoint, it is now clearthatif we wantto assessour confidencewe needto choosesomeprior. We
shallcomebackto thispoint later. Let usseefirst, following theboxproblem,how it is possibleto make
a prior-freepresentationof theresult.

16Obviously theproblemcanbecomplicatedat will, consideringfor examplethat � � wascommunicatedto us in a way, or
by somebody, which/whois not 100%reliable. A probabilistictheorycanincludethis possibility, but this goesbeyond the
purposeof thispaper. Seee.g.Ref. [35] for furtherinformationon probabilisticnetworks.
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42 Prior -freepresentationof the experimentalevidence

Also in thecontinuouscasewe canfactorizetheprior oddsandexperimentalevidence,andthenarrive
atan

Z
-functionsimilar to Eq. (4): Z � } [ ^ ~ 'X} � � S � � ^5~(��}�'_}{�&�� � ^5~(��} S e�'_}{�G� 7 (8)

Thefunction

Z
hasnice intuitive interpretationswhich canbehighlightedby rewriting the

Z
-function

in thefollowing way[seeEq.(7)]:Z � } [ ^5~�'_}{��� S � � ^ ~ ��}�'_} � �� � ^5~(��} S e�'X}c�&� S �
� }���^ ~ 'X} � �� $%� }�� � � � } S eT��^ ~ '_} � �� $%� } S e�� 7 (9)Z

hastheprobabilisticinterpretationof ‘relativebeliefupdatingratio’, or thegeometricalinterpretation
of ‘shapedistortionfunction’ of the probability densityfunction.

Z
goesto 1 for }�d e , i.e. in the

asymptoticregion in which theexperimentalsensitivity is lost. As long asit is 1, theshapeof thep.d.f.
(andthereforetherelativeprobabilitiesin thatregion)remainsunchanged.In contrast,in thelimit

Z dfe
(for large } ) thefinal p.d.f. vanishes,i.e. thebeliefsgo to zerono matterhow strongthey werebefore.
For thePoissonprocesswe areconsidering,therelative

Z
-functionbecomesZ � } [ ^ ~ 'X} � '��T� S �

3��%�A� ] � }}{�c�
-6� ' (10)

with the condition } � t e if ^ ~ t e . The case} � S ^ ~ S e yields

Z � }�� S � 3�� , obtainablestarting
directly from Eq. (8) andEq. (6). Also thecase}c�2df� hasto beevaluateddirectly from thedefinition
of

Z
andfrom the likelihood, yielding

Z S ]�� } . Finally, thecase}{� S e and ^5~ t e makes} S e
impossible,thus making the likelihood closedalso on the left side (seeSection7). In this casethe
discovery is certain,thoughtheexactvalueof } canbestill ratheruncertain.Note,finally, thatif ^5~ S e
the

Z
-functiondoesnot dependon }{� , which might seema bit surprisingat a first sight (I confessthat

havebeenpuzzledfor yearsaboutthis resultwhichwasformally correct,thoughnot intuitivelyobvious.
PiaAstonehasfinally shown at thisworkshopthatthingsmustgo logically this way[36].)

A numericalexamplewill illustratethenicefeaturesof the

Z
-function. Consider� asunit time

(e.g.onemonth),abackgroundrate }{� suchthat }{�K�C� S ] , andthefollowinghypotheticalobservations:^5~ S e ; ^5~ S ] ; ^`~ S z . Theresulting

Z
-functionsareshown in Fig. 3. Theabscissahasbeendrawn in

alog scaleto makeit clearthatseveralordersof magnitudeareinvolved.Thesecurvestransmittheresult
of theexperimentimmediatelyandintuitively. Whatever one’s beliefson } werebeforethedata,these
curvesshow how onemustchangethem. The beliefsonehadfor ratesfar above 20 events/monthare
killed by theexperimentalresult.If onebelievedstronglythattheratehadto bebelow 0.1events/month,
the dataareirrelevant. The casein which no candidateeventshave beenobservedgivesthe strongest
constrainton therate.Thecaseof five candidateeventsover anexpectedbackgroundof oneproducesa
peakof

Z
which corroboratesthebeliefsaround4 events/monthonly if thereweresizableprior beliefs

in thatregion (thequestionof whetherdog.w. burstsexist at all is discussedin Ref. [10]).

Moreover therearesomecomputationaladvantagesin reportingthe

Z
-functionasa resultof a

searchexperiment:Thecomparisonbetweendifferentresultsgivenby the

Z
-functioncanbeperceived

betterthan if theseresultswerepresentedin termsof absolutelikelihood. Since

Z
differs from the

likelihoodonly by a factor, it canbeuseddirectly in Bayes’theorem,whichdoesnotdependonconstant
factors,whenever probabilisticconsiderationsareneeded: The combinationof different independent
resultsonthesamequantity } canbedonestraightforwardlyby multiplying individual

Z
functions;note

thata very noisyand/orlow-sensitivity datasetresultsin

Z S ] in theregion wherethegooddatasets
yield an

Z
-valuevaryingfrom 1 to 0,andthenit doesnotaffecttheresult.Onedoesnotneedto decidea

priori if onewantsto makea‘discovery’ or an‘upperlimit’ analysis:the

Z
-functionrepresentsthemost

unbiasedwayof presentingtheresultsandeveryonecandraw theirown conclusions.
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Fig. 3: Relative belief updatingratio   ’s for thePoissonintensityparameter¡ , in unitsof eventspermontheval-
uatedfrom an expectedrateof backgroundevents ¡+¢¤£¦¥ event/monthandthe following numbersof observed
events:0 (continuous);1 (dashed);5 (dotted).

Finally, uncertaintyduesystematiceffects(expectedbackground,efficiency, cross-section,etc.)
canbetakeninto accountin thelikelihoodusingthelawsof probability[10] (seealsoRef.[37]).

5 SOME EXAMPLES OF

Z
-FUNCTION BASED ON REAL DATA

Thecasestudydescribedtill now is basedon a toy modelsimulation.To seehow theproposedmethod
providestheexperimentalevidencein a clearway we show in Figs. 4 and5

Z
-functionsbasedon real

data. The first is a reanalysisof Higgs searchdataat LEP [8]; the secondcomesfrom the searchfor
contactinteractionsatHERA madeby ZEUS[38]. Theextensionof Eq. (8) to themostgeneralcaseisZ �1§ [ data� S � � data� § �� � data� § ins� ' (11)

where
§

ins standsfor theasymptoticinsensitivity value(0 or � , dependingon thephysicscase)of the
genericquantity

§
. Figures4 and5 show clearlywhat is goingon, namelywhich valuesarepractically

ruledout andwhichonesareinaccessibleto theexperiment.Thesameis truefor theresultof aneutrino
oscillationexperimentreportedtwo-dimensional

Z
-function[39] (seealsoRef.[9]).

6 SENSITIVITY BOUND VERSUSPROBABILISTIC BOUND

At this point, it is ratherevident from Figs. 3, 4 and5 how we cansummarizetheresultwith a single
numberwhich givesanideaof anupperor lowerbound.In fact,althoughthe

Z
-functionrepresentsthe

mostcompleteandunbiasedwayof reportingtheresult,it mightalsobeconvenientto expresswith just
onenumbertheresultof a searchwhich is consideredby theresearchersto beunfruitful. This number
canbeany valuechosenby conventionin theregion where

Z
hasa transitionfrom 1 to 0. This value

would thendelimit (althoughroughly) the region of the valuesof the quantitywhich aredefinitively
excludedfrom the region in which the experimentcansaynothing. The meaningof this boundis not
thatof a probabilisticlimit, but of a wall17 which separatestheregion in which we are,andwherewe
seenothing,from thetheregionwecannotsee.We maytakeastheconventionalpositionof thewall the
point where

Z � }�¨Q� equals
z e%h ,

z h or
] h of the insensitivity plateau.What is importantis not to call

17In mostcasesit is not a sharpsolid wall. A hedgemight bemorerealistic,andindeedmorepoetic: “Semprecaro mi fu
quell’ermocolle,/ E questasiepe,chedatantaparte/ Dell’ultimo orizzonteil guardoesclude”(GiacomoLeopardi,L’Infinito).
Theexactpositionof thehedgedoesn’t really matter, if we think thaton theothersideof thehedgethereareinfinite ordersof
magnitudeto whichweareblind.

11



ℜ

Fig. 4:   -function reportingresultson Higgs direct searchfrom the reanalysisof Ref. [8]. A, D andO stand
for ALEPH, DELPHI andOPAL. Their combinedresultis indicatedby LEP© . The full combination(LEPª ) was
obtainedby assumingfor L3 a behaviour equalto theaverageof theothersexperiments.
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thisvalueaboundatagivenprobabilitylevel (or atagivenconfidencelevel – theperceptionof theresult
by theuserwill be thesame![15]). A possibleunambiguousname,correspondingto whatthis number
indeedis, couldbe ‘standardsensitivity bound’. As theconventionallevel, our suggestionis to chooseZ S e�7¯e z [10].

Notethatit doesnotmakemuchsenseto givethestandardsensitivity boundwith many significant
digits. The reasonbecomesclearby observingFigs.3–5, in particularFig. 5. I don’t think that there
will be a singlephysicistwho, judging from the figure, believes that thereis a substantialdifference
concerningthe scaleof a postulatedcontactinteractionfor ° S � ] and ° S j ] . Similarly, looking
at Fig. 3, the observationof 0 events,insteadof 1 or 2, shouldnot producea significantmodification
of our opinion aboutg.w. burst rates. What really mattersis the orderof magnitudeof the boundor,
dependingontheproblem,theorderof magnitudeof thedifferencebetweentheboundandthekinematic
threshold(seediscussionin Sections9.1.4and9.3.5of Ref. [19]). I have the impressionthatoftenthe
determinationof a limit is consideredasimportantasthe determinationof the valueof a quantity. A
limit shouldbeconsideredon thesamefootingasanuncertainty, not asa truevalue.We can,at leastin
principle,improveourmeasurementsandincreasetheaccuracy onthetruevalue.This reasoningcannot
beappliedto bounds.SometimesI have thefeelingthatwhensometalk abouta ‘95% confidencelimit’,
they think asif they were‘95% confidentaboutthe limit’. It seemsto methat for this reasonsomeare
disappointedto seeupperlimits ontheHiggsmassfluctuating,in contrastto lowerlimits whicharemore
stableandin constantincreasewith theincreasingavailableenergy. In fact,assaidabove,thesetwo95%
C.L. limits don’t have the samemeaning. It is quite well understoodby expertsthat lower 95% C.L.
limits arein practice± ] e%e%h probabilitylimits, andthey areusedin theoreticalspeculationsascertainty
bounds(seee.g.Ref. [33]).

I can imaginethat at this point therearestill thosewho would like to give limits which sound
probabilistical. I hopethat I have convinced them about the crucial role of prior, and that it is not
scientific to give a confidencelevel which is not a ‘level of confidence’. In Ref. [10] you will find a
long discussionaboutrole andquantitativeeffect of priors,aboutthe implicationsof uniform prior and
so-calledJeffreys’ prior, andaboutmorerealisticpriorsof experts. There,it hasalsobeenshown that
(somewhat similar to of what wassaid in the previous section)it is possibleto choosea prior which
providespracticallythe sameprobabilisticresultacceptableto all thosewho sharea similar scientific
prejudice.Thisscientificprejudiceis thatof the‘positiveattitudeof physicists’[19], accordingto which
rationalandresponsiblepeoplewho have planned,financedandrun anexperiment,considerthey have
somereasonablechanceto observe something.18 It is interestingthat, no matterhow this ‘positive
attitude’is reasonablymodelled,thefinal p.d.f. is, for thecaseof g.w. bursts(

§
ins S e ), very similar to

thatobtainedby a uniform distribution. Therefore,a uniform prior couldbeusedto provide somekind
of conventionalprobabilisticupperlimits, which couldlook acceptableto all thosewho sharethatkind
of positive attitude. But, certainly, it is not possibleto pretendthat theseprobabilisticconclusionscan
besharedby everyone.Notethat,however, this ideacannotbeappliedin a straightforwardway in case§

ins S � , ascanbeeasilyunderstood.In this caseonecanwork ona sensibleconjugatevariable(see
next section)whichhastheasymptoticinsensitivity limit at0, ashappens,for example,with °�²�³ � in the
caseof asearchfor contactinteraction,asinitially proposedin Refs.[42,43] andstill currentlydone(see
e.g. Ref. [38]). Ref. [42] containsalsothe basicideaof usinga sensitivity bound,thoughformulated
differentlyin termsof ‘resolutionpowercut-off ’.

18In somecasesresearchersareawareof havingvery little chanceof observinganything,but they pursuetheresearchto refine
instrumentationandanalysistoolsin view of somepositive resultsin thefuture.A typicalcaseis gravitationalwavesearch.In
this caseit is not scientificallycorrectto provide probabilisticupperlimits from thecurrentdetectors,andthehonestway to
provide theresultis thatdescribedhere[40]. However, somecouldbetemptedto useafrequentisticprocedurewhichprovided
an ‘objective’ upperlimit ‘guaranteed’to have a 95% coverage.This behaviour is irresponsiblesincetheseresearchersare
practicallysurethatthetruevalueis below thelimit. Loredoshowsin Section3.2of Ref. [41] aninstructive real-live example
of a 90%C.I. which certainlydoesnot containthe truevalue(thewebsite [41] containsseveraldirectcomparisonsbetween
frequentisticversusBayesianresults.).
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7 OPEN VERSUSCLOSED LIKELIHOOD

Although theextendeddiscussionon priorshasbeenaddressedelsewhere[10], Figs. 3, 4 and5 show
clearly the reasonthat frontier measurementsare crucially dependenton priors: the likelihood only
vanisheson oneside(let us call thesemeasurements‘open likelihood’). In othercasesthe likelihood
goesto zeroin bothsides(closedlikelihood). Normalroutinemeasurementsbelongto thesecondclass,
andusuallythey arecharacterizedby anarrow likelihood,meaninghighprecision.Mostparticlephysics
measurementsbelongto the classof closedpriors. I am quite convincedthat the two classesshould
be treatedroutinely differently. This doesnot meanrecovering frequentistic‘flip-flop’ (seeRef. [2]
andreferencestherein),but recognizingthequalitative,not just quantitative,differencebetweenthetwo
cases,andtreatingthemdifferently.

Whenthelikelihood is closed,thesensitivity on thechoiceof prior is muchreduced,anda prob-
abilistic resultcanbeeasilygiven.Thesubcasebetterunderstoodis whenthelikelihood is very narrow.
Any reasonableprior whichmodelstheknowledgeof theexpertinterestedin theinferenceis practically
constantin thenarrow rangearoundthemaximumof the likelihood. Therefore,we get thesameresult
obtainedby a uniform prior. However, whenthe likelihood is not so narrow, therecouldstill besome
dependenceonthemetricused.Again,thisproblemhasnosolutionif oneconsidersinferenceasamath-
ematicalgame[22]. Thingsarelessproblematicif oneusesphysicsintuition andexperience.Theidea
is to usea uniform prior on the quantitywhich is ‘naturally measured’by theexperiment.This might
look like an arbitraryconcept,but is in fact an idea to which experiencedphysicistsareaccustomed.
For example,we saythat ‘a trackingdevise measures

] ²�´ ’, ‘radiative correctionsmeasuren�µ%¶ �&qEr � ’,
‘a neutrinomassexperimentis sensitive to · � ’, andso on. We canseethat our intuitive ideaof ‘the
quantityreallymeasured’is relatedto thequantitywhich hasa lineardependenceon theobservation(s).
Whenthis is thecase,random(Brownian)effectsoccurringduringtheprocessof measurementtendto
producea roughlyGaussiandistributionof observations.In otherwords,we aredealingwith a roughly
Gaussianlikelihood.So,awayto statethenaturalmeasuredquantityis to referto thequantityfor which
thelikelihoodis roughlyGaussian.This is thereasonwhy we areuseddo least-squarefits choosingthe
variablein which the l � is parabolic(i.e. thelikelihoodis normal)andtheninterprettheresultasproba-
bility of thetruevalue.In conclusion,having to give a suggestion,I would recommendcontinuingwith
thetraditionof consideringnaturalthequantitywhich givesa roughlynormallikelihood. For example,
thiswastheoriginalmotivationto propose°+²�³C� to reportcompositenessresults[42].

This uniform-prior/Gaussian-likelihoodduality goesbackto Gausshimself [44]. In fact, hede-
rivedhis famousdistributionto solve aninferentialproblemusingwhatwe call nowadaystheBayesian
approach.Indeed,heassumeda uniform prior for the true value(asLaplacedid) andsearchedfor the
analyticalform of the likelihood suchasto give a posteriorp.d.f. with mostprobable19 valueequalto
thearithmeticaverageof theobservation.Theresultingfunctionwas. . . theGaussian.

Whenthereis not anagreementaboutthenaturalquantityonecanmakea sensitivity analysisof
theresult,asin theexerciseof Fig. 6, basedon Ref. [34]. If onechoosesa prior flat in · r , ratherthan
in n�µ%¶ � · r � , the p.d.f.’s givenby the continuouscurveschangeinto the dashedones. Expectedvalue
andstandarddeviation of the distributions (last digits in parentheses)changeasfollows. For

�&¸�¹ � Se�7¯e�º%»%e�¼ �¾½ z � , q r S e*7 ] e �&¿ � TeV becomes
q r S e*7 ] ¼ �&À � TeV, while for

�¾¸�¹ � S e�7¯e�º ¿%¿ e �¾½ z �qEr S e�7 ] º �&½ � TeV becomes
qEr S e�7 ]{z �&¿ � TeV. Although this is just an academicexercise,since

it is ratherwell acceptedthat radiative correctionsmeasuren�µ%¶ �&qAr � , Fig. 6 andtheabove digits show
that theresultis indeedratherstable: e*7 ]{z �&À �>±Áe*7 ] e �&¿ � and e*7 ]{z �&¿ ��±Âe�7 ] º �&½ � , thoughperhapssome
numerologically-orientedcolleaguewoulddisagree.

If acaseis reallycontroversial,onecanstill show thelikelihood.But it is importantto understand
thata likelihoodis notyet theprobabilisticresultwephysicistswant.If only thelikelihoodis published,

19Note thatalsospeakingaboutthemostprobablevalueis closeto our intuition, althoughall valueshave zeroprobability.
Seecommentsin Section4.1.2of Ref.[19].
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Fig.6: Sensitivity analysisexercisefrom theindirectHiggsmassdeterminationof Ref.[34]. Solid linesanddashed
linesareobtainedwith priorsuniformin Ä�ÅcÆÈÇ!ÉËÊCÌ and ÉËÊ , respectively.

therisk it is toohighthatit will consideredanywayandsomehow asaprobabilisticresult,ashappensnow
in practice.For this reason,I think that,at leastin therathersimplecaseof closedlikelihood,thosewho
performthe researchshouldtaketheir responsibilityandassessexpectedvalueandstandarddeviation
thatthey reallybelieve,plusotherinformationin thecaseof astronglynon-Gaussiandistribution[8,34,
37]. I do not think that, in mostapplications,this subjective ingredientis morerelevant thanthemany
othersubjective choicesmadeduringtheexperimentalactivity andthatwe have acceptanyhow. In my
opinion,adheringstrictly to the point of view that oneshouldrefrain totally from giving probabilistic
resultsbecauseof theidealisticprincipleof avoidingthecontributionof personalpriorswill haltresearch.
We alwaysrely onsomebodyelse’s priorsandconsultexperts.Only a perfectidiot hasno prior, andhe
is not thebestpersonto consult.

8 OVERALL CONSISTENCY OF DATA

Oneof the reasonsfor confusionwith confidencelevels is that the symbol ‘C.L.’ is not only usedin
conjunctionwith confidenceintervals,but alsoassociatedwith resultsof a fits, in thesenseof statistical
significance(seee.g. Ref. [4]). As I have commentedelsewhere[15, 19], the problemcomingfrom
the misinterpretationof confidencelevels aremuchmoresevere than thanwhat happensconsidering
confidenceintervals probabilisticintervals. Sentenceslike “since the fit to the datayields a 1% C.L.,
thetheoryhasa 1% chanceof beingcorrect”areratherfrequent.HereI would like only to touchsome
pointswhich I considerimportant.

Takethe l � , certainlythemostusedtestvariablein particlephysics.As mostpeopleknow from
thetheory, andsomefrom having hadbadexperiencesin practice,the lm� is not whatstatisticianscall a
‘sufficient statistics’.This is thereasonwhy, if we seea discrepancy in thedata,but the l � doesn’t say
so,otherpiecesof magicaretried, like changingtheregion in which the l � is applied,or usinga ‘run
test’,Kolmogorov test,andsoon20 (but, “if I have to draw conclusionsfrom atestwith aRussianname,
it is betterI redotheexperiments”,somebodyoncesaid).My recommendationis to givealwaysalook at
thedata,sincetheeye of theexpert is in mostsimple(i.e. low-dimensional)casesbetterthatautomatic
tests(it is alsonot amysterythattestsaredonewith thehopethey will prove whatonesees.. . ).

I think that l � , asothervariables,canbeusedcumgranosalis21 to spota possibleproblemof the
experiment,or hintsof new physics,which onecertainlyhasto investigate.What is importantis to be
carefulbeforedrawing conclusionsonly from thecruderesultof thetest.I alsofind it importantto start
calling thingsby their namein ourcommunitytoo andcall ‘P-value’ thenumberresultingfrom thetest,

20Everybodyhasexperiencedendlessdiscussionson whatI call all-togetherÍKÎ -ology, to decideif thereis someeffect.
21SeeSection8.8of Ref. [19] for adiscussionaboutwhy frequentistictests‘often work’.
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asis currentlydonein modernbooksof statistics(seee.g. [45]). It is recognizedby statisticiansthat
P-valuesalsotendto bemisunderstood[18,46], but at leastthey havea moreprecisemeaning[47] than
ourubiquitousC.L.’s.

Thenext stepis whatto dowhen,nomatterhow, onehasstrongdoubtsaboutsomeanomaly. Good
experimentalistsknow their job well: checkeverythingpossible,calibratethecomponents,makespecial
runsandMonteCarlostudies,or evenrepeattheexperiment,if possible.It is alsowell understoodthat
it is not easyto decidewhento stopmakingstudiesandapplyingcorrections.Therisk to influencinga
resultis alwayspresent.I don’t think thereis any generaladvicethat thatcanbegiven. Goodresults
comefrom well-trained(prior knowledge!)honestphysicists(andwhoarenot particularlyunlucky. . . ).

A differentproblemis whatto dowhenwehaveto usesomeoneelse’sresults,aboutwhichwedo
nothave insideknowledge,for examplewhenwemakeglobalfits. Also in thiscaseI mistrustautomatic
prescriptions[4]. In my opinion, whenthe datapointsappearsomewhat inconsistentwith eachother
(no matterhow onehasformed this opinion) onehasto try to modelone’s scepticism. Also in this
case,theBayesianapproachoffersvalid help[48,49]. In fact,sinceonecanassignprobabilityto every
pieceof informationwhich is not consideredcertain, it is possibleto build a so-calledprobabilistic
network[35], or Bayesiannetwork,to modeltheproblemandfind themostlikely solution,givenwell-
statedassumptions.A first applicationof this reasoningin particlephysicsdata(thoughtheproblemwas
too trivial to build upa probabilisticnetworkrepresentation)is givenin Ref. [50], basedonanimproved
versionof Ref. [49].

9 CONCLUSION

So, what is the problem? In my opinion the root of the problemis the frequentisticintrusioninto the
naturalapproachinitially followedby ‘classical’physicistsandmathematicians(Laplace,Gauss,etc.) to
solve inferentialproblems.As a consequence,we have beentaughtto makeinferencesusingstatistical
methodswhich werenot conceivedfor thatpurpose,asinsightfully illustratedby a professionalstatis-
tician at the workshop[51]. It is a matterof fact that the resultsof thesemethodsarenever intuitive
(thoughwe force the ‘correct’ interpretationusingout intuition [15]), andfail any time theproblemis
not trivial. Theproblemof the limits in ‘dif ficult cases’is particularlyevident,becausethesemethods
fail [52]. But I would like to rememberthatalsoin simplerroutineproblems,like uncertaintypropaga-
tion andtreatmentof systematiceffects,conventionalstatisticsdo not provide consistentmethods,but
only a prescriptionwhich wearesupposedto obey.

What is the solution? As well expressedin Ref. [53], sometimeswe cannotsolve a problem
becausewe arenot ableto makea realchange,andwe aretrappedin a kind of logical mazemadeby
many solutions,which arenot thesolution.Ref. [53] talksexplicitly of non-solutionsforminga kind of
groupstructure.We rotateinsidethegroup,but we cannotsolve theproblemuntil we breakout of the
group.I considerthemany attemptsto solve theproblemof theconfidencelimit insidethefrequentistic
framework asjust someof thepossiblegrouprotations.Thereforetheonly possiblesolutionI seeis to
get rid of frequentisticintrusionin thenaturalphysicist’sprobabilisticreasoning.This way out, which
takesusbackthe‘classicals’,is offeredby thestatisticaltheorycalledBayesian,a badnamethatgives
the impressionof a religioussectto which we have to becomeconverted(but physicistswill never be
Bayesian,asthey arenotFermianor Einsteinian[15] – why shouldthey beNeymanianor Fisherian?).I
considerthenameBayesianto betemporaryandjust in contrastto ‘conventional’.

I imagine,andhaveexperienced,muchresistanceto thischangedueto educational,psychological
and cultural reasons(not forgetting the sociologicalones,usually the hardestonesto remove). For
example,agoodculturalreasonis thatweconsider, in goodfaith,astatisticaltheoryonthesamefooting
asa physicaltheory. We areusedto a well-establishedphysicaltheorybeingbetterthanthe previous
one. This is not the caseof the so-calledclassicalstatisticaltheory, and this is the reasonwhy an
increasingnumberof statisticiansandscientists [18] have restartedfrom the basicideasof 200 years
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ago,complementedwith modernideasandcomputingcapability[21,26,31,35,41,54]. Also in physics
thingsaremoving, andtherearemany now whooscillatebetweenthetwo approaches,sayingthatboth
have goodandbadfeatures.ThereasonI amratherradicalis becauseI do not think we, asphysicists,
shouldcareonly aboutnumbers,but alsoabouttheirmeaning:25 is not approximatively equalto 26, if
25 is amassin kilogrammesand26a lengthin metres.In theBayesianapproachI amconfidentof what
numbersmeanateverystep,andhow to gofurther.

I alsounderstandthatsometimesthingsarenotsoobviousor sohighly intersubjective,asananti-
Bayesianjoke says: “there is oneobvious possibleway to do things,it’ s just that they can’t agreeon
it.” I don’t considerthis a problem. In general,it is just dueto our humanconditionwhenfacedwith
the unknown andto the fact that (fortunately!) we do not have an identicalstatusof information. But
sometimesthereasonis moretrivial, thatis we havenot workedtogetherenoughoncommonproblems.
Anyway, given the choicebetweena setof prescriptionswhich givesan exact (‘objective’) valueof
somethingwhichhasnomeaning,andaframework whichgivesaroughvalueof somethingwhichhasa
precisemeaning,I havenodoubtwhich to choose.

Coming,finally, to the specifictopic of the workshop,thingsbecomequiteeasy, oncewe have
understoodwhy anobjectiveinferencecannotexist,but an‘objective’ (i.e. logical)inferentialframework
does.� In thecaseof openlikelihood,priorsbecomecrucial. The likelihood (or the

Z
-function)should

alwaysbe reported,anda non-probabilisticsensitivity boundshouldbe given to summarizethe
negative searchwith just a number. A conventionalprobabilisticresultcanbe providedusinga
uniform prior in themostnaturalquantity. Reportingtheresultswith the

Z
-functionsatisfiesthe

desiderataexpressedin thispaper.� In thecaseof closedlikelihood,auniformprior in thenaturalquantityprovidesprobabilisticresults
whichcanbeeasilysharedby theexpertsof thefield.

As a final remark,I would like to recommendcalling thingsby their name,if this namehasa precise
meaning.In particular:sensitivity boundif it is just a sensitivity bound,without probabilisticmeaning;
andsuchandsuchpercentprobabilisticlimit, if it really expressestheconfidenceof theperson(s)who
assessesit. As a consequence,I would proposenot to talk any longerabout‘confidenceinterval’ and
‘confidencelevel’, and to abandonthe abbreviation ‘C.L.’. So, althoughit might look paradoxical,I
think thatthesolutionto theproblemof confidencelimits beginswith removing theexpressionitself.
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