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Abstract

This contrikbution to the debateon confidencelimits focusesmostly on the
caseof measurementsith ‘openlikelihood’, in the sensedhatit is definedin
thetext. | will show that, thougha prior-free assessmertf confidences, in
generalnot possiblestill a searchresultcanbereportedn a mostlyunbiased
andefficientway, whichsatisfiesomedesideratavhich| believearesharedy
thepeoplenterestedn thesubject. Thesimplercaseof ‘closedlikelihood’ will
alsobetreatedand! will discusavhy auniform prior onasensibleguantityis
averyreasonablehoicefor mostapplicationsIn bothcases| think thatmuch
clarity will be achievedif we remove from scientificparlancethe misleading
expressionsconfidencentervals’ and‘confidencdevels’.

“You see,aquestionhasarisen,

aboutwhich we cannotcometo anagreement,
probablybecauseve have readtoo mary books”
(Brechts Galileof!

1 INTRODUCTION

The blooming of paperson ‘limits’ in the pastcoupleof years[li~11] anda workshop[1Z] entirely
dedicatedo the subjectarestriking indicatorsof thelevel of the problem.It is difficult notto agreethat
at the root of the problemis the standardphysicists educationin statistics,basedon the collection of
frequentisticprescriptionsgiventhe lofty nameof ‘classicalstatisticaltheory’ by the their supporters,
‘frequentisticadhoc-erie$ by their opponentsin fact, while in routinemeasurementisharacterisetly
anarrav likelihood ‘correct numbers’are obtainedby frequentisticprescriptiongthoughthe intuitive
interpretatiorthatphysicistsattributeto themis thatof probabilisticstatemenfsabouttrue values[iL5]),

l“SehenSie,esist eine Frageenstandeniiber die wir uns nicht einig werdenkonnen,wahrsdeinlich, weil wir zu viele
Buchergeleserhaben. (Bertolt Brecht,LebendesGalilei).

2For example,even Sir RonaldFisherusedto referto Neymans statisticalconfidencemethodas“that technologicand
commercialapparatusvhichis known asanacceptancerocedure’{13]. In my opinion, theterm‘classical’is misleading as
aretheresultsof thesemethods Thenamegivestheimpressiorof beinganalogouso ‘classicalphysics’ which wasdeveloped
by our ‘classicals’,andthatstill holdsfor ordinaryproblems.Insteadthe classicalof probabilitytheory like Laplace Gauss,
Bayes,BernoulliandPoissonhadan approactto the problemmoresimilar to whatwe would call nowadaysBayesian’ (for
anhistoricalaccountseeRef. [34_'])

%It is a matterof fact [15] that confidencdevels are intuitively thoughtof (and usually taught) by the large majority of
physicistsas degreesof belief on true values,althoughthe expressiondegreeof belief is avoided, becausébeliefs arenot
scientific”. Even bookswhich do insiston statingthat probability statementsre not referredto true values(“true valuesare
constantof unknowvn value”) have a hardtime explainingthe real meaningof the result,i.e. somethingvhich mapsinto the
humanmind’s perceptionof uncertainevents. So, they areforcedto useambiguoussentencesvhich remainstampedn the
memoryof the reademuchmorethanthe frequentistically-corredwistedreasoninghat they try to explain. For examplea
classicaparticlephysicsstatisticshook [i(:i] speaksabout‘the faith we attachto this statement”asif ‘faith’ wasnotthe same
asdegreeof belief. Anotherone[f 4] introduceshe agumentby sayingthat“we wantto find therange. . . which containghe
truevalued, with probability3”, thoughrationalpeopleareatalossin trying to convincethemselesthatthe proposition‘the
rangecontaing, with probability 3” doesnotimply “4, is in thatrangewith probability3”.



they fail in “difficult cases:smallor unobsered signal,backgroundargerthansignal,backgrouncot
well known, andmeasurementseara physicalboundary”[d2].

It is interestingo notethatmary of theabove-citedpapersonlimits have beenwrittenin thewake
of anarticle [2] which waspromptly adoptedby the PDG [4] asthe longedfor ultimatesolutionto the
problem,which couldfinally “remove anoriginal motivationfor thedescriptionof Bayesiarintervalsby
thePDG” [2]. However, althoughRef. [2], thanksto the authorityof the PDG, hasbeenwidely usedby
mary experimentateamsto publishlimits, even by peoplewho did not understandhe methodor were
scepticalaboutit, & that article hastriggereda debatebetweerthosewho simply objectto the approach
(e.g. Ref. [B]), thosewho proposeother prescriptiongmary of theseauthorsdo it with the explicit
purposeof “avoiding Bayesiarcontaminationsi 1] or of “giving astrongcontributionto rid physicsof
Bayesiarintrusions$ [B]), andthosewhojust proposeto changeradically the path[w, id].

The presentcontribution to the debate basedon Refs.[#, 810,15, 19,20, is in the framevork
of whathasbeeninitially the physicists’approactto probability,d andwhich | maintain[iL5] is still the
intuitive reasoningof the large majority of physicists,despitethe ‘frequentisticintrusion’ in the form
of standardstatisticalcoursesn the physicscurriculum. | will shov by examplesthatan asepticprior-
free assessmerdf ‘confidence’is a contradictionin termsand, consequentlythat the solutionto the
problemof assessingpbjective’ confidencdimits doesnotexist. Finally, | will shov how it is possible,
neverthelessto presentearchresultsin an objective (in the sensethis committingword is commonly
perceved) andoptimal way which satisfieghe desiderataxpressedn Section2 section. The price to
pay is to remaove the expression'confidencelimit’ from our parlanceandtalk, instead,of ‘sensitivity
bound’to meana prior-freeresult.Insteadthe expressiorprobabilisticbound’ shouldbe usedto assess
how muchwe arereally confident i.e. how muchwe believe, that the quantity of interestis above or
belov thebound,underclearly statedprior assumptions.

Thepresenpaperfocusesmostlyon the ‘dif ficult cases{i 2], whichwill beclassifiedas‘frontier
measurement$22], characterizetly an‘openlikelihood’, aswill bebetterspecifiedn Section?, where
this situationwill be comparedo the easiercaseof ‘close likelihood'. It will be shovn why thereare
goodreasongo presentoutinelythe experimentabutcomen two differentwaysfor the two cases.

2 DESIDERATA FOR AN OPTIMAL PRESENTATION OF SEARCH RESULTS

Let usspecifyanoptimal presentatiomf a searchresultin termsof somedesiredoroperties.
e Theway of reportingthe resultshouldnot dependon whetherthe experimentalteamis moreor
lesscorvincedto have foundthe signallookedfor.

e Thereportshouldallow aneasy consistenandefficient combinationof all piecesof information
which could comefrom several experiments searchchannelsand running periods. By efficient
I meanthe following: if mary independentatasetseachprovide a little evidencein favour of
the searched-fosignal, the combinationof all datashouldenhancehat hypothesis;f, instead,
the indicationsprovided by the differentdataare incoherenttheir combinationshouldresultin
strongerconstrainton the intensity of the postulatedporocesga highermass,a lower coupling,
etc.).

e Evenresultscomingfrom low sensitvity (and/orvery noisy) datasetscould be includedin the
combination,without them spoiling the quality of the result obtainableby the cleanand high-

“This non-scientificpracticehasbeenwell expressedy a colleague:“At leastwe have a rule, no matterif goodor bad,
to which we canadhere.Someof thelimits have changed?/ou know, it is like whengovernmentchangethe rulesof social
games:somewin, somelose” When peopleask me why | disagreewith Ref. @] | just encouragehemto readthe paper
carefully insteadof simply pickinganumberfrom atable.

5SeeRef. [gé] to getanideaof the presentBayesianintrusion’ in the sciencesgspeciallyin thosedisciplinesin which
frequentistianethodsarose.

SInsightful historicalremarksaboutthe correlationphysicists-'‘Bayesiangin the modernsenseanbe foundin the first
two sectionf Chapterl0 of Jaynesbook[g:fj._ For amoreextensive accountof the original approactof Laplace Gaussand
otherphysicistsandmathematicianseeRef. [14].



sensitvity datasetsalone.If the poorquality datacarrytheslightestpieceof evidence thisinfor-
mationshouldplay the correctrole of slightly increasinghe globalevidence.

e The presentatiorof the result(andits meaning)shouldnot dependon the particularapplication
(Higgssearchscaleof contact-interactiorprotondecayetc.).

e Theresultshouldbestatedn suchaway thatit cannotbe misleading.Thisrequireshatit should
easilymapinto the naturalcatgyoriesdevelopedby the humanmind for uncertainevents.

e Uncertaintieslueto systematieffectsof uncertainsizeshouldbeincludedin aconsistenand(at
leastconceptuallysimpleway.

e Subjectve contributions of the personswho provide the resultsshouldbe kept at a minimum.
Thesecontributionscannotvanish,in thesensehatwe have alwaysto rely onthe “understanding,
critical analysisandintegrity” [23] of theexperimenterdut atleastthedependencenthebelieved
valuesof the quantityshouldbe minimal.

e Theresultshouldsummarizecompletelythe experiment,andno extra piecesof information(lu-
minosity, cross-sectiongfficiencies expectednumberof backgroundvents,obserednumberof
events)shouldberequiredfor furtheranalyseg.

e Theresultshouldbereadyto beturnedinto probabilisticstatementsieededo form one's opinion
aboutthe quantityof interestor to takedecisions.

e Theresultshouldnotleadto paradoxicatonclusions.

3 ASSESSINGTHE DEGREE OF CONFIDENCE

As Barlow says[24], “Most statisticscourseglossover the definition of whatis meantby probability,
with atbesta shortmumbleto theeffectthatthereis nouniversalagreementTheimplicationis thatsuch
detailsareirrelevanciesf concerronly to long-hairedohilosophersandneednottroubleushard-headed
scientists.This is short-sighteduncertaintyaboutwhatwe really meanwhenwe calculateprobabilities
leadsto confusionand bodging, particularly on the subjectof confidencdevels ... Sloppy thinking
and confusedargumentsin this areaarise mainly from changingone’s definition of ‘probability’ in
midstream,or, indeed,of not definingit clearly at all.” Ask your colleagueshow they perceve the
statement95% confidencdevel lower boundof 77.5GeV/c? is obtainedfor the massof the Standard
Model Higgsboson”[d]. | conductedanextensive poll in July 1998, personallyandby electronicmail.
The result[15] is thatfor the large majority of peoplethe abore statemenmeansthat “assumingthe
Higgs bosonexists, we are 95% confidentthat the Higgs massis above thatlimit, i.e. the Higgsboson
has95%chanceor probability)of beingon the upperside,and5% chanceof beingonthelower side’®,
whichis notwhatthe operationatiefinitionof thatlimit implies[d]. Thereforefollowing thesuggestion
of Barlow [24], let us “take a look at what we meanby the term ‘probability’ (and confidence)efore
discussinghe seriousbusinessof confidencdevels’ | will do this with someexamples,referringto
Refs.[19,2(] for moreextensie discussiongindfurtherexamples.

"For example,duringthework for Ref. [H], we wereunableto useonly the ‘results’,andhadto restartheanalysisfrom the
detailedpiecesof information,which arenot alwaysasdetailedasonewould need.For this reasorwe werequite embarrassed
when,finally, we wereunableto useconsistentlytheinformationpublishedby oneof thefour LEP experiments.

8Actually, therewerethosewho refusedto answerthe questionbecauséit is goingto be difficult to answer”,andthose
who insistedon repeatingthe frequentisticlessonon lower limits, but without beingableto provide a corvincing statement
understandabl® a scientificjournalistor to a governmentauthority— thesewerethe termsof the question- aboutthe degree
of confidenceahatthe Higgsis heavier thanthestatedimit. | wouldlike to reportthelatestreply to the poll, whicharrived just
the daybeforethis workshop:“l apologizel never got aroundto answeringyour mail, which | suppose/ou canrightly regard
asevidencethatthe classicabroceduresirenottrivial!”
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Fig. 1: A box haswith certaintyone of thesesix black andwhite ball compositions.The contentof the box is
inferredby extractingatrandomaball from the box thenreturningit to thebox. How confidentareyouinitially of
eachcomposition?How doesyour confidencechangeafterthe obsenationof 1, 5 and8 consecutie extractions
of ablackball?

31 Variations over a problemto Newton

It seemd thatlsaacNewton wasaskedto solve the following problem.A mancondemnedo deathhas
anopportunityof having his life savedandto befreed,dependingn the outcomeof anuncertainevent.
The mancanchoosebetweerthreeoptions: a) roll 6 dice,andbefreeif hegets'6’ with oneandonly

onedie (4); b) roll 12 dice,andbefreedif hegets'6’ with exactly 2 dice; c) roll 18 dice,andbefreed
if hegets'6’ in exactly 3 dice. Clearly, hewill choosethe eventaboutwhich heis more confident(we
could alsosaythe eventwhich he consideramore probable the event mostlikely to happen the event
which he believesmostly andsoon). Most likely the condemnednanis not ableto solve the problem,
but he certainlywill understandNewton’s suggestiorio chooseA, which giveshim the highestchance
to survive. He will alsounderstandhe statementhat A is aboutsix timesmorelikely than B andthirty

timesmorelikely thanC'. Thecondemnedvould perhapsaskNewton to give him someideahow likely

theevent A is. A goodanswemwould beto makea comparisorwith a box containing1000balls, 94 of

which arewnhite. He shouldbe soconfidentof surviving asof extractingawhite ball from theboxdi.e.

9.4%confidentof beingfreedand90.6%confidentof dying: notreally an erviable situation,but better
thanchoosing”, correspondingo only 3 white ballsin thebox.

Comingbackto the Higgslimit, arewe really honestly95% confidentthatthe valueof its mass
is above the limit aswe are confidentthat a neutralinomassis above its 95% C.L. limit, asa given
branchingratio is below its 95% C.L. limit, etc.,aswe are confidentof extractinga white ball from a
boxwhich contains95 white and5 blackballs?

Let usimaginenow amorecomplicatedsituation,in which you have to makethe choice(imagine
for amomentyou arethe prisoner just to be emotionallymoreinvolvedin this academiexercisé?). A
box containswith certainty5 balls, with a white ball contentrangingfrom 0 to 5, the remainingballs
beingblack (seeFig. &, andRef. [20] for furthervariationson the problem.). Oneball is extractedat
random,shown to you, andthenreturnedto the box. The ball is black. You getfreedif you guess
correctlythe compositionof the box. Moreover you areallowedto aska questionto which the judges
will reply correctlyif thequestionis pertinentandsuchthattheiranswerdoesnotindicatewith certainty
the exactcontentof thebox.

Having obsened a black ball, the only certaintyis that Hs is ruled out. As far asthe otherfive
possibilitiesareconcernedafirstideawould be to be moreconfidentaboutthe box compositiorwhich
hasmore black balls (Hy), sincethis compositiongives the highestchanceof extractingthis colour.
Following this reasoningthe confidencen the variousbox compositionsvould be proportionako their
blackball content.But it is not difficult to understandhatthis solutionis obtainedoy assuminghatthe
compositionsaareconsidered priori equallypossible.However, this conditionwasnot statedexplicitly

My sourceof informationis Ref. [25:] It seemghatNewtongavethe‘correctanswer- indeed,jn thisstereotypegroblem
thereis the correctanswer

%Thereasorwhy ary persoris ableto claim to be moreconfidentof extractinga white ball from the box thatcontainsthe
largestfraction of white balls, while for the evaluationof the above eventsonehasto ‘ask Newton’, doesnotimply a different
perceptiorof the ‘probability’ in thetwo classef events. It is only becausg¢he events A, B andC' arecomple events,the
probability of which is evaluatedfrom the probability of the elementaryevents(andeverybodycanfigure out whatit means
thatthesix facesof a die areequallylikely) plussomecombinatoricsfor which somemathematicaéducatioris needed.

"BrunodeFinettiusedto saythateitherprobabilityconcerngealeventsin which we areinterestedor it is nothing[g@].
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in the formulationof the problem. How wasthe box prepared?you might think of aninitial situation
of six boxeseachhaving a differentcomposition.But you might alsothink that the balls were picked
atrandomfrom alarge bagcontaininga roughly equalproportionof white andblackballs. Clearly, the
initial situationchanges.n the secondcasethe compositionHj is initially so unlikely that, evenafter
having extracteda black ball, it remainsnot very credible. As eloquentlysaid by Poincaé [27], “an
effect may be producedby the causea or by the causeb. The effect hasjust beenobsened. We ask
the probabilitythatit is dueto the causez. Thisis ana posterioriprobability of cause But | could not
calculatet, if acornventionmoreor lessjustifieddid nottell mein advancewhatis thepriori probability
for the causez to comeinto play. | meanthe probabilityof this eventto someonewho hadnotobsered
theeffect” Theobsenationaloneis notenougho statehow muchoneis confidentaboutsomething.

The properway to evaluatethe level of confidencewhich takesinto account(with the correct
weighting)experimentakvidenceandprior knowledge,is recognizedo be Bayes'theorem:?

P(H;| E)  P(E| Hy) - Pa(H;), (1)

whereF is theobseredevent(blackor white), P, ( H;) is theinitial (or apriori) probabilityof H; (called
oftensimply‘prior’), P(H; | F) isthefinal (or ‘posterior’) probability, and P(E | H;) is the‘likelihood'.
The upperplot of Fig. 2 shows the likelihood P (Black| H;) of observinga black ball assumingeach
possiblecomposition. The secondpair of plots shavs the two priors consideredn our problem. The
final probabilitiesareshovn next. We seethatthe two solutionsarequitedifferent,asa consequencef
differentpriors. Soa goodquestionto askthejudgeswould be how thebox waspreparedlf they sayit
wasuniform, betyourlife on Hy. If they saythefive ballswereextractedfrom alargebag,beton H;.

Perhapshejudgesmightbe soclementasto repeatheextraction(andsubsequernteintroduction)
severaltimes. Figure2 shovs whathappensf five or heightconsecutie blackballs areobsered. The
evaluationis performedby iteratingEq. (&):

P,(H;|F)x P(E, | H;) - Po—1(H;) . 2

If you arecon/inced}?j thatthe preparatiorprocedurds the binomialone(large bag),you still consider
H; morelikely than Hy, even afterfive consecutie obsenations. Only after eight consecutie extrac-
tionsof ablackball areyoumostlyconfidentaboutH, independentlyf how muchyoubelievein thetwo
preparatiorproceduregbut, obviously, you mightimagine— and perhapsven believe in — morefancgy
preparatiorproceduresvhich still give differentresults).After mary extractionswe arepracticallysure
of thebox contentaswe shallseein awhile, thoughwe cannever be certain.

Comingbackto thelimits, imaginenow an experimentoperatedor avery shorttime at LEP200
andreportingnofour-jet events,no deuteronsno zirconiumandno Higgscandidategandyoumightadd
somethingavenmorefangy, like eventswith 100equallyenegetic photonsor someorganicmolecule).
How couldthe 95% upperlimit to therateof thesesventsbethe sameWhatdoesit meanthatthe 95%
upperlimit calculatedautomaticallyshouldgive usthe sameconfidencdor all rates,independenthyof
whattheeventsare?

32 Confidenceversusevidence

Thefactthatthe same(in a crudestatisticalsensepbsenationdoesnotleadto the sameassessmeraf
confidences ratherwell understoody physicists:a few pairsof photonsclusteringin invariantmass
around135MeV have a high chanceof comingfrom a 7°; moreeventsclusteringbelov 100 MeV are
certainlybackgroundlet usconsideawell calibrateddetector) apeakin invariantmassn anewx enegy

125eeRef. [éQ] for aderivationof Bayes'theorembasedn the box problemwe aredealingwith.

13And if you have doubtsaboutthe preparation? The probability rules teachus what to do. Calling U (uniform) and
B (binomial) the two preparationprocedureswith probabilitiesP(U) and P(B), we have P(H |obg = P(H |obsU) -
P(U) + P(H | obs B) - P(B).
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Fig. 2: Confidencen thebox contentsasa functionof prior andobsenation (seetext).




domainmight be seenas a hint of new physics,anddistinguishedheoristsconsiderit worth serious
speculationThedifferencebetweerthethreecasess theprior knowledge(or scientificprejudice).Very
oftenwe sharemoreor lessthe sameprejudicesandconsequentlyve will all agreeon the conclusions.
But this situationis rarein frontier scienceandthesameobsenationdoesnotproducein all researchers
the sameconfidence.A peakcanbe takenmoreor lessseriouslydependingon whetherit is expected,
it fits well in the overall theoreticalpicture,and doesnot contradictotherobsenations. Thereforeit is
importantto try to separatexperimentalkvidencefrom the assessmentsf confidence This separation
is donein aclearandunambiguousvayin the BayesiarapproachLet usillustrateit by continuingwith
thebox example.TakeagainEg. (L). Consideringary two hypothese$/; andH;, we have thefollowing
relationbetweerprior andposteriorbettingodds

P(H;|E) _ P(E|H) Py(H) (3)
P(H;|E) ~ P(E|H;) Py(H;)

Bayedfactor

This way of rewriting the Bayess theoremshaows how the final oddscanbe factorizedinto prior odds
andexperimentakevidence the latterexpressedn termsof the so-calledBayesfactor[28]. The15odds
of our examplearenot independentand canbe expressedvith respecto a referencebox composition
which hasa non-nulllikelihood. The naturalchoiceto analysethe problemof consecuiie black ball
extractionsis P(Black| H,)

R(H;; Black) = P (Black| Ho) 4)
whichis, in this particularcase numericallyidenticalto P(Black| H;), since P(Black| Hy) = 1, and
thenit canbereadfrom thetop plot of Fig. 2. Thefunction R canbe seenasa ‘relative belief updating
ratio’ [10], in the sensehatit tells us how the beliefsmustbe changedafter the obsenation, thoughit
cannotdetermineunivocally their values.Note thatthe way the updateis doneis, instead univocaland
notsubjectve,in thesensahatBayes'theoremis basednlogic, andrationalpeoplecannotdisagreelt
is alsoolbviouswhathappensvhenmary consecutre backballsareobsened. Theiterative application
of Bayes’theoreniEq. (2)] leadsto thefollowing overall R:

(5)

R(H;; Black n) = [P(Black| Hz)]n

P(Black| Ho)

For largen all theoddswith respecto H, goto zero,i.e. P(Hy — 0.

We have now our logical andmathematicahpparatuseady But beforemoving to the problem
of interestlet us makesomeremarkson terminology on the meaningof subjectprobability, andon its
interplaywith oddsin bettingandexpectedrequencies.

33 Confidence betting oddsand expectedfrequencies

I have usedon purposesereralwordsandexpressionso meanessentiallythe samething: likely, proba-
ble, credible,(moreor less)possible plausible believable,andtheir associatedouns;to bemoreor less
confidentabout,to believe moreor less,to trustmoreor less,somethingandtheir associatethouns;to
preferto beton anoutcomeratherthananotherone,to assesdettingodds,andsoon. | couldalsouse
expressionsnvolving expectedrequencie®f outcomef apparentlysimilar situations.Theperception
of probabilitywould remainthe same andtherewould be no ambiguitiesor paradoxicatonclusions|
referto Ref. [20] for amoreextendedthoughstill concisediscussioron theterms.l would like only to
sketchheresomeof the mainpoints,asa summaryof the previoussections.

e Theso-calledsubjectveprobabilityis basedntheacknavledgementhattheconcepof probabil-
ity is primitive, i.e. it is meantasthe degreeof belief developedby the humanmindin acondition
of uncertaintynomatterwhatwe call it (confidencebelief, probability, etc)or how we evaluatedt
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(symmetryargumentspastfrequenciesBayes’theoremguantunmechanicgormulae[2d], etc.).
Someamuethattheuseof beliefsis notscientific.| believe,ontheotherhand that“it is scientific
only to saywhatis more likely andwhatit is lesslikely” [30].

e Theoddsin an‘coherentet’ (abetsuchthatthe persorwho assessedss oddshasno preferencén
eitherdirection)canbe seemasthe normatve rule to force peopleto assesfionestlytheir degrees
of belief‘in themostobjectve way’ (asthis expressionis usuallyperceved). Thisis theway that
Laplaceusedto reporthis resultaboutthe massof Saturn:“it is abetof 10,000to 1 thattheerror
of this resultis not 1/100thof its values”(quotereportedn Ref. [81]).

e Probability statementdave to satisfy the basicrules of probability, usually known as axioms.
Indeed,the basicrulescanbe derived, astheoremsfrom the operatve definition of probability
througha coherenbet. The probabilityrules,basednthe axiomsandonlogic’srules,allowsthe
probabilityassessments be propagatedo logically connecteavents.For example,if oneclaims
to be zz% confidentaboutk, oneshouldfeel also(100 — zz)% confidentaboutF.

e Thesimple,stereotypedasef regular dice andurnsof known compositioncanbe considered
ascalibrationtoolsto assesghe probability, in the sensehatall rationalpeoplewill agree.

e The probabilityrules,andin particularBernoulli's theorem relatedegreesof belief to expected
frequenciesif weimaginerepeatinghe experimentmary timesunderexactly thesameconditions
of uncertainty(notnecessarilyinderthe samephysicalconditions).

¢ Finally, Bayes’'theoremis thelogicaltool to updatethe beliefsin thelight of new information.

As anexample, let usimaginethe event E, which is considered5% probable(and, necessarilythe
oppositeevent £ is 5% probable). This belief canbe expressedn mary differentways,all containing
thesamedegreeof uncertainty.

e | am95%confidentaboutF and5% confidentaboutF.

¢ Givenabox containing95 white and5 black balls,| amasconfidentthat £/ will happenasthat
the colourof theball will bewhite. | amasconfidentaboutZ asof extractinga blackball.

e | amreadyto placea19:1bet*on 2, oral:190on F.

e Consideringa large numbern of events F;, even relatedto differentphenomenologyndeach
having 95% probability, | am highly confidentd that the relative frequeng of the eventswhich
will happerwill be very closeto 95% (the exact assessmerdf my confidencecanbe evaluated
usingthe binomialdistribution). If » is verylarge,| ampracticallysurethattherelative frequeng
will be equalto 95%, but | am never certain,unlessn is ‘infinite’, but this is no longera real
problem,in thesenseof thecommentn footnotell (“In thelong runwe areall dead”[32]).

Is this how our confidencdimits from particlesearchesareperceved? Are we really 5% confidentthat
the quantity of interestis on the 5% side of thelimit? Isn't it strangethatout of the several thousand
limits from searchepublishedin recentdecadesiothing hasever shavn up on the 5% side? In my
opinion,themostembarrassingituationcomesfrom the Higgsbosonsector A 95%C.L. upperlimit is
obtainedfrom radiative correctionswhile a95% C.L. limit comesfrom directsearch.Both resultsare
presentedvith the sameexpressionspnly ‘upper’ beingreplacedoy ‘lower’. But their interpretatioris
completelydifferent. In the first caseit is easyto shav [34] that, usingthe almostparabolicresultof
the x?2 fit in In(Mg) anduniform prior in In (M), we canreally talk about‘95% confidencethatthe
massis below thelimit’, or that‘the Higgs masshasequalchanceof beingon eithersideof the value

14SeeRef. [éQ] for commentndecisionproblemsinvolving subjectvely-relezantamountsof money.

1t is in my opinion very importantto understandhe distinction betweenthe useof this frequeng-basedexpressionof
probability and frequentisticapproach(seecommentsin Refs. [:_ZQ'] and[19]) or frequentisticcoverage(seeSection8.6 of
Ref.[19]). | amprettysurethatmostphysicistavho declareto befrequentisdo soonthebasisof educationatonditioningand
becausehey areaccustometb assessingeliefs(scientificopinion,or whateser) in termsof expectedrequenciesThecrucial
point which makesthe distinctionis it to askoneselfif it is sensibleto speakaboutprobability of true values,probability of
theoriesandsoon. Thereis alsoa classof sophisticategheoplewho think thereare several probabilities. For commentson
thislatterattitude,seeSection8.1 of Ref. [gé].



of minimum x?’, andsoon, in the sensedescribedn this section. This is not truein the secondcase.
Who is really 5% confidentthat the massis belov the limit? How canwe be 95% confidentthatthe
massis above thelimit without an upperbound?Non-misleadindevelsof confidenceon the statement
My > M, canbeassessednly by usingthe informationcomingfrom precisionmeasurementyhich
rulesout very large (andalsovery small) valuesof the Higgs mass(seeRefs.[8,33,34]. For example,
whenwe say[34] thatthe medianof the Higgs massp.d.f. is 150GeV, we meanthat, to bestof our
knowledge,we regardthe two events My < 150 and My > 150 asequallylikely, like thetwo faces
of aregular coin. Following Laplace we could stateour confidenceclaimingthat‘is abetof 1 to 1 that
My is belov 150GeV'.

4 INFERRING THE INTENSITY OF POISSONPROCESSESAT THE LIMIT OF THE DE-
TECTOR SENSITIVITY AND IN THE PRESENCEOF BACKGROUND

As a masterexampleof frontier measurementet ustakethe samecasestudyasin Ref. [i0]. We shalll
focusthenon the inferenceof the rate of gravitational wave (g.w.) burstsmeasuredy coincidence
analysisof g.w. antennae.

41 Modelling the inferential process

Moving from the box exampleto the moreinterestingphysicscaseof g.w. burstis quite straightforward.
The six hypothesed{;, playingtherole of causesarenow replacedy theinfinite valuesof therater.
Thetwo possibleoutcomedblackandwhite now becomethe numberof candidatesvents(n.). Thereis
alsoan extra ingredientwhich comesinto play: a candidatesvent could comefrom backgroundather
thanfrom g.w’s (like ablackball thatcould be extractedby ajudge-conjurefrom his pocketratherthan
fromthebox...). Clearly, if we understanavell the experimentabpparatusywe musthave someideaof
thebackgroundater,. Otherwise|t is betterto studyfurtherthe performancesf the detectoy before
trying to infer arything. Anyhow, unavoidableresidualuncertaintyon r, canbe handledconsistently
(seelater). Let ussummarizeour ingredientsn termsof Bayesiarinference.

e Thephysicalquantityof interest,andwith respecto which we arein the stateof greatesuncer
tainty, is theg.w. burstrater.

e We arerathersureaboutthe expectedrate of backgroundeventsr; (but not aboutthe numberof
eventsdueto backgroundvhichwill actuallybeobsenred).

e Whatis certairtdis thenumbern,. of coincidencesvhich have beenobsered.

e For agivenhypothesis thenumberof coincidenceaventswhich canbe obseredin the obsena-
tion time T is describedy a Poissorprocesshaving anintensitywhich is the sumof thatdueto
backgroundandthatdueto signal. Thereforethelikelihoodis

—(r+rp) T e
Plnc|r,s) = fne | r,ry) = T A HIDT ©)

Bayes’ theoremappliedto probability functionsand probability density functions (we use the same
symbolfor both),writtenin termsof the uncertainquantitiesof interest,is

f(r|n67rb)0<f(nc|r7rb)'fo(r)- (7)

At this point, it is now clearthatif we wantto assessur confidenceve needto choosesomeprior. We
shallcomebackto this pointlater. Let usseefirst, following thebox problemhow it is possibleto make
aprior-freepresentatiomf theresult.

180hviously the problemcanbe complicatedat will, consideringor examplethatn. wascommunicatedo usin away, or
by somebodywhich/whois not 100%reliable. A probabilistictheory caninclude this possibility, but this goesbeyond the
purposeof this paper Seee.g. Ref. [35] for furtherinformationon probabilisticnetworks.



42 Prior-freepresentationof the experimental evidence

Also in the continuouscasewe canfactorizethe prior oddsandexperimentalkvidence,andthenarrive
atanR-functionsimilarto Eq. (4):

f(ne|r,m)
R(r;ne,ry) = —————. 8
( b) f(nc|r:07rb) ( )
Thefunction R hasnice intuitive interpretationsvhich canbe highlightedby rewriting the R-function
in thefollowing way [seeEq. (7)]:

] _ flnc|r, ) |?”Lcﬂ°b f(r=0]ncry)
R(’“’”“’"b)‘f<nc|r=o,m>‘ / fr=0) ®)

R hasthe probabilisticinterpretatiorof ‘relative beliefupdatingratio', or thegeometricalnterpretation
of ‘shapedistortionfunction’ of the probability densityfunction. R goesto 1 for » — 0, i.e. in the
asymptotiaegion in which the experimentalsensitvity is lost. As long asit is 1, theshapeof thep.d.f.
(andthereforgherelative probabilitiesn thatregion) remainsunchangedin contrastjn thelimit R — 0
(for large r) thefinal p.d.f. vanishesij.e. the beliefsgo to zerono matterhow strongthey werebefore.
For the Poissorprocesave areconsideringtherelative R-functionbecomes

R(r;ne,ry,T) = e T <1 + r%) ’ , (20)

with the conditionr, > 0 if n. > 0. Thecaser, = n. = 0 yieldsR(r) = e ", obtainablestarting
directlyfrom Eq. (8) andEq. (6). Alsothecaser, — oo hasto beevaluateddirectly from thedefinition
of R andfrom thelikelihood, yielding R = 1 Vr. Finally, thecaser, = 0 andn. > 0 makesr = 0
impossible,thus making the likelihood closedalso on the left side (seeSectioni). In this casethe
discoveryis certain,thoughthe exactvalueof  canbestill ratheruncertain Note, finally, thatif n. = 0
the R-functiondoesnot dependon r, which might seema bit surprisingat a first sight (I confesshat
have beenpuzzledfor yearsaboutthis resultwhich wasformally correct,thoughnotintuitively obvious.
PiaAstonehasfinally shavn at this workshopthatthingsmustgo logically this way [36].)

A numericalexamplewill illustratethe nice featuresof the R-function. Consider!” asunit time
(e.g.onemonth),abackgroundater; suchthatr, x 7" = 1, andthefollowing hypotheticabbsenations:
n. = 0; n. = 1; n. = 5. TheresultingR-functionsareshovnin Fig. 3. Theabscissdasbeendravn in
alog scaleto makeit clearthatseveralordersof magnitudeareinvolved. Thesecurvestransmittheresult
of the experimentimmediatelyandintuitively. Whatever one’s beliefson » werebeforethe data,these
curvesshav how onemustchangethem. The beliefsonehadfor ratesfar above 20 events/monthare
killed by theexperimentaresult.If onebelievedstronglythattheratehadto bebelov 0.1 events/month,
the dataareirrelevant. The casein which no candidateaventshave beenobsenred givesthe strongest
constrainbntherate. The caseof five candidateeventsover an expectedbackgroundf oneproducesa
peakof R which corroborateshe beliefsaround4 events/monttonly if thereweresizableprior beliefs
in thatregion (the questionof whetherdo g.w. burstsexist at all is discussedn Ref. [1]).

Moreover thereare somecomputationabdwantagesn reportingthe R-functionasa resultof a
searchexperiment: The comparisorbetweerdifferentresultsgiven by the R-functioncanbe perceved
betterthanif theseresultswere presentedn termsof absolutelikelihood. SinceR differs from the
likelihoodonly by afactor, it canbeuseddirectlyin Bayes’'theoremwhichdoesnotdependn constant
factors,whenever probabilisticconsiderationsire needed: The combinationof differentindependent
resultsonthesamequantityr canbedonestraightforwardlyby multiplying individual R functions;note
thata very noisy and/orlow-sensitvity datasetresultsin ® = 1 in theregion wherethe gooddatasets
yield an’R-valuevaryingfrom 1 to 0, andthenit doesnotaffecttheresult. Onedoesnotneedto decidea
priori if onewantsto makea ‘discovery’ or an‘upperlimit’ analysis:ithe R-functionrepresentthemost
unbiasedvay of presentingheresultsandeveryonecandraw theirown conclusions.
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Fig. 3: Relative belief updatingratio R’s for the Poissornintensityparameter, in units of eventsper montheval-

uatedfrom an expectedrate of backgroundeventsr, = 1 event/monthandthe following numbersof obsered
events:0 (continuous)l (dashed)5 (dotted).

Finally, uncertaintydue systematiceffects (expectedbackgroundgfficiengy, cross-sectionetc.)
canbetakeninto accouniin thelikelihood usingthe laws of probability[1(] (seealsoRef.[37]).

5 SOME EXAMPLES OF R-FUNCTION BASED ON REAL DATA

The casestudydescribedill now is basedon atoy modelsimulation. To seehow the proposednethod
providesthe experimentalevidencein a clearway we shav in Figs. 4 andg R-functionsbasedon real
data. Thefirst is a reanalysisof Higgs searchdataat LEP [§]; the secondcomesfrom the searchfor
contactinteractionsat HERA madeby ZEUS[38]. Theextensionof Eq. (§) to themostgeneraktaseis

f(datd] 1)
R(p;datg = ————,
(1492 = F{datdl uing
whereyj,g standsfor the asymptotidnsensitvity value(0 or oo, dependingon the physicscase)of the
genericquantity .. Figures4 andg shaw clearlywhatis going on, namelywhich valuesarepractically
ruledoutandwhich onesareinaccessibléo the experiment.The sameis truefor theresultof aneutrino
oscillationexperimentreportedwo-dimensionaR -function [8Y] (seealsoRef. [8]).

(11)

6 SENSITIVITY BOUND VERSUSPROBABILISTIC BOUND

At this point, it is ratherevidentfrom Figs. 8, 4 and5 how we cansummarizethe resultwith a single
numbermwhich givesanideaof anupperor lower bound.In fact, althoughthe R-functionrepresentshe
mostcompleteandunbiasedvay of reportingthe result,it mightalsobe cornvenientto expresswith just
onenumbertheresultof a searchwhichis consideredy the researchert be unfruitful. This number
canbe ary valuechoserby corventionin the region whereR hasatransitionfrom 1 to 0. Thisvalue
would thendelimit (althoughroughly) the region of the valuesof the quantity which are definitively

excludedfrom the region in which the experimentcan say nothing. The meaningof this boundis not
that of a probabilisticlimit, but of a wallt* which separateshe region in which we are,andwherewe

seenothing,from thetheregion we cannotsee.We maytakeasthe corventionalpositionof thewall the
pointwhereR (r;,) equalss0%, 5% or 1% of theinsensitvity plateau.Whatis importantis not to call

YIn mostcasest is nota sharpsolid wall. A hedgemight be morerealistic,andindeedmorepoetic: “Sempre caro mi fu
quell'ermocolle,/ E questasiepe chedatantaparte/ Dell’'ultimo orizzontel guardoesclude”(GiacomolLeopardi,L’Infinito).
Theexactpositionof thehedgedoesnt really matter if we think thaton the othersideof the hedgethereareinfinite ordersof
magnitudeto which we areblind.

11
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thisvalueaboundatagivenprobabilitylevel (or atagivenconfidencéevel —theperceptiorof theresult
by the userwill bethe samel![15]). A possibleunambiguousiame correspondingo whatthis number
indeedis, couldbe ‘standardsensitvity bound’. As the corventionallevel, our suggestioris to choose
R = 0.05 [Ld].

Notethatit doesnotmakemuchsensdo give thestandardgensitvity boundwith mary significant
digits. The reasonbecomeslearby observingFigs. 3-8, in particularFig. 5. | don't think thatthere
will be a single physicistwho, judging from the figure, believesthat thereis a substantiadifference
concerningthe scaleof a postulatedcontactinteractionfor ¢ = +1 ande = —1. Similarly, looking
at Fig. 3, the obsenation of 0 events,insteadof 1 or 2, shouldnot producea significantmodification
of our opinion aboutg.w. burstrates. What really mattersis the orderof magnitudeof the boundor,
dependingnthe problem theorderof magnitudeof thedifferencebetweertheboundandthekinematic
threshold(seediscussiorin Sections9.1.4and9.3.50f Ref.[19]). | have theimpressiorthatoftenthe
determinatiorof a limit is consideredasimportantasthe determinatiorof the valueof a quantity A
limit shouldbe considerean the samefooting asanuncertaintynot asa truevalue.We can,at leastin
principle,improve our measurementndincreasaheaccurayg onthetruevalue.Thisreasoningzannot
beappliedto bounds.Sometimed have thefeelingthatwhensometalk abouta ‘95% confidencdimit’,
they think asif they were'95% confidentaboutthe limit’. 1t seemgo methatfor this reasorsomeare
disappointedo seeupperimits ontheHiggsmasdluctuating,in contrasto lowerlimits whicharemore
stableandin constanincreaseavith theincreasingavailableenegy. In fact,assaidabore, thesetwo 95%
C.L. limits don't have the samemeaning. It is quite well understoody expertsthat lower 95% C.L.
limits arein practicex 100% probabilitylimits, andthey areusedn theoreticakpeculationascertainty
bounds(seee.g. Ref.[33)).

I canimaginethat at this point thereare still thosewho would like to give limits which sound
probabilistical. | hopethat| have corvincedthem aboutthe crucial role of prior, andthatit is not
scientificto give a confidenceevel which is not a ‘level of confidence’. In Ref. [10] you will find a
long discussioraboutrole andquantitative effect of priors,aboutthe implicationsof uniform prior and
so-calledJefreys’ prior, andaboutmorerealisticpriors of experts. There,it hasalsobeenshawn that
(someavhat similar to of whatwassaidin the previous section)it is possibleto choosea prior which
provides practicallythe sameprobabilisticresultacceptabldéo all thosewho sharea similar scientific
prejudice.This scientificprejudiceis thatof the ‘positive attitudeof physicists[d9], accordingto which
rationalandresponsiblgeoplewho have plannedfinancedandrun an experiment,considerthey have
somereasonablehanceto obsene somethingid It is interestingthat, no matter how this ‘positive
attitude’is reasonablynodelled thefinal p.d.f. is, for the caseof g.w. bursts(ujg = 0), very similarto
thatobtainedby a uniform distribution. Therefore a uniform prior couldbe usedto provide somekind
of corventionalprobabilisticupperlimits, which couldlook acceptabléo all thosewho sharethatkind
of positive attitude. But, certainly it is not possibleto pretendthattheseprobabilisticconclusionscan
be sharedby everyone.Note that, however, this ideacannotbe appliedin a straightforwardvay in case
Hins = oo, ascanbe easilyunderstoodIn this caseonecanwork on a sensibleconjugatevariable(see
next section)which hasthe asymptotidnsensitvity limit at0, ashappensfor example,with ¢/A? in the
caseof asearctfor contactinteraction asinitially proposedn Refs.[42,43] andstill currentlydone(see
e.g. Ref.[38]). Ref.[42] containsalsothe basicideaof usinga sensitvity bound,thoughformulated
differentlyin termsof ‘resolutionpower cut-off’.

181n somecasesesearcherareawareof having very little chanceof observinganything, butthey pursueheresearctio refine
instrumentatiomndanalysistoolsin view of somepositive resultsin thefuture. A typical cases gravitationalwave searchlin
this caseit is not scientifically correctto provide probabilisticupperlimits from the currentdetectorsandthe honestway to
provide theresultis thatdescribedhere[40]. However, somecouldbe temptedo useafrequentistiqorocedurevhich provided
an ‘objective’ upperlimit ‘guaranteedto have a 95% coverage. This behaviour is irresponsiblesincetheseresearcherare
practicallysurethatthetrue valueis belov thelimit. Loredoshowsin Section3.2 of Ref.[41] aninstructive real-live example
of a90% C.I. which certainlydoesnot containthe true value (the web site []4]_}] containsseveral directcomparisondetween
frequentisticversusBayesiarresults.).
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7 OPENVERSUSCLOSED LIKELIHOOD

Although the extendeddiscussioron priors hasbeenaddresseelsavhere[iL(], Figs. 3, 4 and& shav
clearly the reasonthat frontier measurementare crucially dependenon priors: the likelihood only
vanisheson oneside (let us call thesemeasurement®pen likelihood’). In othercaseghe likelihood
goesto zeroin bothsides(closedliikelihood). Normalroutinemeasurementselongto the seconctlass,
andusuallythey arecharacterizethy a narraw likelihood, meaninghigh precision.Most particlephysics
measurementbBelongto the classof closedpriors. | am quite corvincedthat the two classesshould
be treatedroutinely differently. This doesnot meanrecovering frequentistic'flip-flop’ (seeRef. [2]

andreferencesherein),but recognizingthe qualitative, not just quantitatve, differencebetweerthetwo

casesandtreatingthemdifferently.

Whenthelikelihood is closed the sensitvity on thechoiceof prior is muchreducedanda prob-
abilistic resultcanbe easilygiven. Thesubcasdetterunderstoods whenthelikelihood is very narrow.
Any reasonablgrior which modelstheknowledgeof the expertinterestedn theinferenceis practically
constanin the narrav rangearoundthe maximumof the likelihood. Therefore we getthe sameresult
obtainedby a uniform prior. However, whenthe likelihood is not so narraw, therecould still be some
dependencenthemetricused.Again,this problemhasno solutionif oneconsidersnferenceasamath-
ematicalgame[22]. Thingsarelessproblematidf oneusesphysicsintuition andexperience. Theidea
is to usea uniform prior on the quantitywhich is ‘naturally measuredby the experiment. This might
look like an arbitrary concept,but is in fact anideato which experiencedphysicistsare accustomed.
For example,we saythat‘a trackingdevise measured /p’, ‘radiative correctionameasurdog(Mpr)’,
‘a neutrinomassexperimentis sensitve to m?’, andsoon. We canseethat our intuitive ideaof ‘the
guantityreally measuredis relatedto the quantitywhich hasalineardependencen the obsenation(s).
Whenthis is the case random(Brownian) effectsoccurringduringthe procesof measuremertendto
producearoughly Gaussiardistribution of obsenations.In otherwords,we aredealingwith aroughly
Gaussiatikelihood. So,away to statethe naturalmeasuredjuantityis to referto the quantityfor which
thelikelihoodis roughly GaussianThis is the reasorwhy we areuseddo least-squaréits choosingthe
variablein whichthe x? is parabolic(i.e. thelikelihoodis normal)andtheninterprettheresultasproba-
bility of thetruevalue.In conclusionhaving to give a suggestion| would recommendaontinuingwith
thetradition of consideringnaturalthe quantitywhich givesa roughly normallikelihood. For example,
this wasthe original motivationto proposer/ A? to reportcompositenesesults[4Z].

This uniform-prior/Gaussian-li&lihoodduality goesbackto Gausshimself[44]. In fact, he de-
rived his famousdistributionto solve aninferentialproblemusingwhatwe call nowadayshe Bayesian
approach.Indeed,he assumed uniform prior for the true value (asLaplacedid) andsearchedor the
analyticalform of the likelinood suchasto give a posteriorp.d.f. with mostprobablé? valueequalto
thearithmeticaverageof the obsenation. Theresultingfunctionwas. . . the Gaussian.

Whenthereis not anagreemenéaboutthe naturalguantityonecanmakea sensitvity analysisof
theresult,asin the exerciseof Fig. B, basedon Ref.[34]. If onechoosesa prior flatin m, ratherthan
in log(mg), the p.d.fis given by the continuouscurves changeinto the dashednes. Expectedvalue
andstandardeviation of the distributions (last digits in parentheses)hangeasfollows. For (Aa) =
0.02804(65), Mz = 0.10(7) TeV becomesMy = 0.14(9) TeV, while for (Aa) = 0.02770(65)
My = 0.12(6) TeV becomesMy = 0.15(7) TeV. Althoughthis is just an academicexercise,since
it is ratherwell acceptedhatradiative correctionsmeasuréog (M), Fig. § andthe above digits shov
thatthe resultis indeedratherstable:0.15(9) ~ 0.10(7) and0.15(7) ~ 0.12(6), thoughperhapsome
numerologically-orientedolleaguevould disagree.

If acaseis really controversial,onecanstill shav thelikelihood. Butit isimportantto understand
thatalikelihoodis notyetthe probabilisticresultwe physicistsvant. If only thelikelihoodis published,

9Note thatalsospeakingaboutthe mostprobablevalueis closeto our intuition, althoughall valueshave zeroprobability
Seecommentsn Section4.1.20f Ref.[19].
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Fig. 6: Sensitvity analysisexercisefrom theindirectHiggsmassdeterminatiorof Ref.[34]. Solidlinesanddashed
linesareobtainedwith priorsuniformin log(my) andmgr, respectiely.

therisk it istoohighthatit will considereérnywayandsomehev asaprobabilisticresult,ashappensiow
in practice.For thisreason) think that,atleastin therathersimplecaseof closedlikelihood,thosewho
performthe researckshouldtaketheir responsibilityand asses&xpectedvalue and standarddeviation
thatthey really believe, plusotherinformationin the caseof a stronglynon-Gaussiadistribution [§,34,
37]. | do notthink that,in mostapplicationsthis subjectve ingredientis morerelevantthanthe mary
othersubjectve choicesmadeduring the experimentalactvity andthatwe have acceptaryhow. In my
opinion, adheringstrictly to the point of view that oneshouldrefrain totally from giving probabilistic
resultsbecausef theidealisticprincipleof avoiding thecontribution of personapriorswill haltresearch.
We alwaysrely on somebodyelses priorsandconsultexperts.Only a perfectidiot hasno prior, andhe
is notthe bestpersorno consult.

8 OVERALL CONSISTENCY OF DATA

One of the reasondor confusionwith confidencdevelsis thatthe symbol‘C.L." is not only usedin
conjunctionwith confidencentervals,but alsoassociateavith resultsof afits, in the senseof statistical
significance(seee.g. Ref. [4]). As | have commentecelsavhere[l5,19], the problemcomingfrom
the misinterpretatiorof confidencelevels are much more severe than thanwhat happensconsidering
confidencentervals probabilisticintervals. Sentencesike “since the fit to the datayieldsa 1% C.L.,
thetheoryhasa 1% chanceof beingcorrect”areratherfrequent.Herel would like only to touchsome
pointswhich | considerimportant.

Takethe x?, certainlythe mostusedtestvariablein particlephysics.As mostpeopleknow from
thetheory andsomefrom having hadbadexperiencesn practice the x? is notwhatstatisticiansall a
‘sufficient statistics’. This is the reasorwhy, if we seea discrepang in thedata,but the x* doesnt say
so, otherpiecesof magicaretried, like changingthe region in which the x? is applied,or usinga ‘run
test’, Kolmogoro test,andsoor?d (but, “if | have to draw conclusiongrom atestwith a Russiamame,
it is betterl redothe experiments” somebodyncesaid). My recommendatiois to give alwaysalook at
the data,sincethe eye of the expertis in mostsimple(i.e. low-dimensionalcasedbetterthatautomatic
tests(it is alsonotamysterythattestsaredonewith thehopethey will prove whatonesees..).

| think thaty?, asothervariablescanbe usedcumgranosalis’ to spota possibleproblemof the
experiment,or hintsof new physics,which onecertainlyhasto investigate.Whatis importantis to be
carefulbeforedrawing conclusionnly from the cruderesultof thetest.l alsofind it importantto start
callingthingsby their namein our communitytoo andcall ‘P-value’the numbermesultingfrom thetest,

2"Everybodyhasa<perien_ct_a\dandIes:v.:iiscussiona;)n whatl call all-togethery?-ology, to decideif thereis someeffect.
2lgeeSection8.8of Ref. [19] for adiscussioraboutwhy frequentistidests'often work’.

15



asis currentlydonein modernbooksof statistics(seee.g. [45]). It is recognizedby statisticiansthat
P-valuesalsotendto be misunderstoodfl8,46], but atleastthey have a moreprecisemeaning47] than
ourubiquitousC.L!s.

Thenext stepis whatto dowhen,nomatterhow, onehasstrongdoubtsaboutsomeanomaly Good
experimentalist&now their job well: checkeverythingpossible calibratethe componentsnakespecial
runsandMonte Carlostudies,or evenrepeatthe experiment,if possible.lt is alsowell understoodhat
it is not easyto decidewhento stopmakingstudiesandapplyingcorrections.Therisk to influencinga
resultis alwayspresent.l don't think thereis ary generaladvicethatthatcanbe given. Goodresults
comefrom well-trained(prior knowledge!) honestphysicistsandwho arenot particularlyunlucky. . .).

A differentproblemis whatto dowhenwe have to usesomeonelsesresults aboutwhichwe do
not have insideknowledge for examplewhenwe makeglobalfits. Also in thiscase mistrustautomatic
prescriptiong4]. In my opinion, whenthe datapoints appearsomevhatinconsistenwith eachother
(no matterhow one hasformedthis opinion) one hasto try to modelone’s scepticism. Also in this
casethe Bayesiarapproactoffersvalid help[48,49). In fact, sinceonecanassignprobabilityto every
piece of informationwhich is not considerectertain, it is possibleto build a so-calledprobabilistic
network[38], or Bayesiametwork,to modelthe problemandfind the mostlikely solution,givenwell-
statedassumptionsA first applicationof this reasoningn particlephysicsdata(thoughthe problemwas
tootrivial to build up a probabilisticnetworkrepresentatioriy givenin Ref. [b(], basecn animproved
versionof Ref. [4d].

9 CONCLUSION

So, whatis the problem? In my opinionthe root of the problemis the frequentisticintrusioninto the

naturalapproachnitially followedby ‘classical physicistsandmathematician@_aplace Gaussetc.)to

solve inferentialproblems.As a consequencaye have beentaughtto makeinferencesusingstatistical
methodswhich werenot conceved for that purposeasinsightfully illustratedby a professionaktatis-
tician at the workshop[b1]. It is a matterof fact thatthe resultsof thesemethodsare never intuitive

(thoughwe force the ‘correct’ interpretatiorusingout intuition [15]), andfail ary time the problemis

nottrivial. The problemof the limits in ‘difficult cases’is particularlyevident, becausehesemethods
fail [62]. But| would like to remembethatalsoin simplerroutineproblemsJike uncertaintypropaga-
tion andtreatmentf systematiceffects, corventionalstatisticsdo not provide consistentethods but

only a prescriptiorwhich we aresupposedo obey.

Whatis the solution? As well expressedn Ref. [63], sometimeswve cannotsolve a problem
becauseve arenot ableto makea real change andwe aretrappedin akind of logical mazemadeby
mary solutionswhich arenot the solution. Ref. [53] talksexplicitly of non-solutionforming akind of
groupstructure.We rotateinside the group, but we cannotsolve the problemuntil we breakout of the
group.l considerthe mary attemptgo solve the problemof the confidencdimit insidethefrequentistic
framavork asjust someof the possiblegrouprotations. Thereforethe only possiblesolution| seeis to
getrid of frequentisticintrusionin the naturalphysicists probabilisticreasoning.This way out, which
takesus backthe‘classicals’,is offeredby the statisticaltheorycalled Bayesiana badnamethatgives
the impressionof a religioussectto which we have to becomecorverted(but physicistswill never be
Bayesianasthey arenot Fermianor Einsteiniar{d5] — why shouldthey be Neymanianor Fisherian?)]
considetthe nameBayesiarto betemporaryandjustin contrasto ‘conventional’.

| imagine,andhave experiencedmuchresistanceo this changedueto educationalpsychological
and cultural reasongnot forgetting the sociologicalones, usually the hardestonesto remove). For
example,agoodculturalreasoris thatwe considerin goodfaith, a statisticatheoryonthe samefooting
asa physicaltheory We areusedto a well-establisheghysicaltheorybeingbetterthanthe previous
one. This is not the caseof the so-calledclassicalstatisticaltheory and this is the reasonwhy an
increasingnumberof statisticiansandscientists [iL8] have restartedrom the basicideasof 200 years
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ago,complementesvith modernideasandcomputingcapability[21, 26,81, 85,41,54]. Alsoin physics
thingsaremaoving, andtherearemary now who oscillatebetweerthe two approachessayingthatboth
have goodandbadfeatures.Thereason amratherradicalis because do notthink we, asphysicists,
shouldcareonly aboutnumbershut alsoabouttheir meaning:25 is not approximatvely equalto 26, if
25is amassn kilogrammesand26 alengthin metres.In the Bayesiarapproach amconfidentof what
numberameanat every step,andhow to gofurther.

| alsounderstandhatsometimeshingsarenot soobviousor sohighly intersubjectve, asananti-
Bayesianjoke says: “there is one obvious possibleway to do things,it’s just that they cant agreeon
it.” | don't considerthis a problem. In general,it is just dueto our humanconditionwhenfacedwith
the unknavn andto the fact that (fortunately!) we do not have anidenticalstatusof information. But
sometimeshereasoris moretrivial, thatis we have notworkedtogetherenoughon commonproblems.
Anyway, given the choicebetweena setof prescriptionswhich givesan exact (‘objective’) value of
somethingvhich hasno meaninganda frameavork which givesaroughvalueof somethingvhich hasa
precisemeaning] have no doubtwhichto choose.

Coming,finally, to the specifictopic of the workshop,thingsbecomequite easy oncewe have
understoodvhy anobjectiveinferencecannotxist, but an‘objective’ (i.e. logical) inferentialframevork
does.

¢ In the caseof openlikelihood, priors becomecrucial. Thelikelihood (or the R-function) should
alwaysbe reported,anda non-probabilisticsensitvity boundshouldbe givento summarizethe
negative searchwith justa number A corventionalprobabilisticresultcanbe provided usinga
uniform prior in the mostnaturalquantity Reportingthe resultswith the R-functionsatisfieghe
desiderataxpressedn this paper

¢ Inthecaseof closedikelihood,auniformpriorin thenaturalquantityprovidesprobabilisticresults
which canbe easilysharedy the expertsof thefield.

As afinal remark,l would like to recommendtalling thingsby their name,if this namehasa precise
meaning.In particular:sensitvity boundif it is justa sensitvity bound,without probabilisticmeaning;
andsuchandsuchpercentprobabilisticlimit, if it really expresseshe confidenceof the person(sywho
assessets. As a consequencd,would proposenot to talk arny longerabout‘confidenceinterval’ and
‘confidencelevel’, andto abandorthe abbreviation ‘C.L.". So, althoughit might look paradoxical|
think thatthe solutionto the problemof confidencdimits beginswith remoring theexpressioritself.
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