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the media the 94.5% vaccine efficacy by Moderna.
(To make it clear, we had never done it if we had
just heard of the 95% result of Pfizer.)

◮ Because of education and profession, for us a result not
accompanied by an uncertainty is not a scientific result.

◮ In absence of detailed information, we are used to get an idea
of the uncertainty by the rounding of the result.
◮ providing the third decimal digit implies an uncertainty of that

order of magnitude (±0.1%, . . . , ±0.3%, . . . , ±0.5%, . . . )
◮ a simple exercise showed that such a high accuracy would

imply a number of infected in the vaccine group
ranging from hundreds to thousands. ???

◮ Then, when we read that they were only 5, a rough
calculation based on physicists

√
n rule of thumb

gave us a standard uncertainty of ≈ 2%.
◮ At the beginning we thought we could not do better, due to

the limited data, but indeed we succeded. . .c© GdA 26/11/2020 2/32
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◮ Measurements and related uncertainty.

◮ Importance of the models:
◮ measuring is nothing but inferring parameters of models;
◮ at the end of the game, there will be values of parameters

we believe more and values we believe less

“It is scientific only to say what is more likely
and what is less likely” (R. Feynman)

◮ Bayesian networks and MCMC machinery to handle them
(details beyond the purpose of our work).

◮ Simple examples.

◮ Simplified model to treat the limited information in our hand
(but nevertheless we are confident that it is ok, at least for
the main result of interest → vaccine efficacy).

◮ Results and comparisons with Moderna and Pfizer claims.
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What is measurement?

Higgs → γγ (2012)

Two-photon invariant mass
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What is measurement?

ATLAS Experiment at LHC (CERN, Geneva)
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What is measurement?

ATLAS Experiment at LHC [ length: 46m; � 25m ]

≈ 3000 km cables

≈ 7000 tonnes ≈ 100millions electronic channels
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
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What is measurement?

Two flashes of ‘light’ (2 γ’s) in a ‘noisy’ environment.
Higgs → γγ? Probably not. . .
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
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What is measurement?

Higgs → γγ

⇒
{

Mass value
Production rate
(with uncertainties)

Quite indirect measurements of something we do not “see”!
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Can we “see” physics quantities?

But, can we see our mass?
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Can we “see” physics quantities?

. . . or a voltage?
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Can we “see” physics quantities?
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Can we “see” physics quantities?
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Can we “see” physics quantities?

Certainly not!

. . . although for some quantities we can have

a ‘vivid impression’ (in the David Hume’s sense)
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Measuring a mass on a scale

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)
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Measuring a mass on a scale

Equilibrium:

mg − k∆x = 0

∆x → θ → scale reading

(with ‘g ’ gravitational acceleration; ‘k’ spring constant.)

From the reading to the value of the mass:

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m
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Measuring a mass on a balance
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m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁
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given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

c© GdA 26/11/2020 7/32



Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight

c© GdA 26/11/2020 7/32



Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘g ’: g
?
=

GM♁

R2
♁

◮ Position is usually not at “R♁” from the Earth center;

◮ Earth not spherical. . .

◮ . . . not even ellipsoidal. . .

◮ . . . and not even homogeneous.

◮ Moreover we have to consider centrifugal effects

◮ . . . and even the effect from the Moon

Certainly not to watch our weight
But think about it!
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .
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◮ variability of all quantities of influence (in the ISO-GUM
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Measuring a mass on a balance

scale reading −−−−−−−−−−−−−−−−→
given g, k, “etc.”. . .

m

Dependence on ‘k’:

◮ temperature

◮ non linearity

◮ . . .

∆x→ θ → scale reading:

◮ left to your imagination. . .

+ randomic effects:

◮ stopping position of damped oscillation;

◮ variability of all quantities of influence (in the ISO-GUM
sense);

◮ reading of analog scale.
⇒ m ??
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Mass −→ Reading

mass

reading
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Reading −→ ‘true’ mass

mass

reading
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Reading −→ ‘true’ mass

mass

reading

M
o
d
e
l

?

Data uncertainty? ??? Are the data corrupted?
In that case the data are . . . the corrupted data!
What is uncertain is m, or whatever we are interested in.
→ Model parameter(s) c© GdA 26/11/2020 11/32
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What is measurement

◮ Measurement is not only related to the use of instruments.

◮ It can be also based in ‘counting objects’

◮ What is important is to build up a model
that ‘relates’ (often in a complicate, probabilistic way)

model parameter(s)↔ empirical observations

(Reading a value on a device is the simplest direct measurement,
although ‘getting the value’ of the quantity of interest, including
the uncertainty to associate to it, might be not that trivial.)
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Simple cases based on binomial distribution
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Simple cases based on binomial distribution

Model connecting the variables of interest:

p n

x
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Graphical models of the typical problems

p n

x

√√

→ f (x | n, p)
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x

√
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Extending the model
Uncertain n

p n

x √

√

→ f (n | p, x)
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But in this case we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the proportion of white balls!)

p n

x

n0

x0 √

√

√ → f (p, n | n0, x0, x)
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Extending the model
Uncertain n

p n

x √

√

→ f (n | p, x)
But in this case we need some (usually indirect) knowledge about p
(Usually we do not calculate p from the proportion of white balls!)

p n

x

n0

x0 √

√

√ → f (p, n | n0, x0, x)
→ f (p | n0, x0, x)

But what is n?
c© GdA 26/11/2020 15/32



Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those to which we assign a ‘physical meaning’.
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that we are uncertain on the numbers we ‘see’ in our detector,
but to ‘other numbers’.

◮ Typically n ←→ λ.
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Extending the model
In Physics we are usually not interested in the numbers we do see,
but in those to which we assign a ‘physical meaning’.
◮ When we say “we are uncertain on numbers”, we do not mean

that we are uncertain on the numbers we ‘see’ in our detector,
but to ‘other numbers’.

◮ Typically n ←→ λ.

Assuming for a while p well known and focusing on ‘n’:

p n

x

λ

√

√

But λ is not really physical. What is physical is the intensity of the
Poisson process (r) −→ λ = r · T c© GdA 26/11/2020 16/32



Extending the model

λ = r · T :

p n

x

λ

Tr

√

√

√
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Extending the model

λ = r · T :

p n

x

λ

Tr

√

√

√

(Dashed arrows used in literature for deterministic links)
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Extending the model

Remembering that p was got from a measurement:

n0

x0

p n

x

λ

Tr

√√

√

√
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Extending the model

The rate r gets contributions from signal and background

n0

x0

p n

x

λ

Tr

rSrB

√√

√

√
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Extending the model
But we need some independent knowledge of the background
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Extending the model
But we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√
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Extending the model
But we need some independent knowledge of the background

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(T0 and T assumed to be measured with sufficient accuracy)
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A more realistic model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

√√

√

√

√

√

(*) Assuming unity efficiency
(*) Assuming unity efficiency
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A more realistic model

n0

x0

p n

x

λ

Tr

rSrBT0

λ0

xB

(∗)

√√

√

√

√

√

(*) Assuming unity efficiency
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1. write down the joint probability function of all variables:
f (rB , rS , λ0, r , . . . , x0, x) ≡ f (· · · )

2. condition on what is known/assumed:

f (rB , rS , λ0, r , . . . |T0,T , . . . , x0, x) =
f (··· )

f (n0,x0,x ,...)

3. marginalize: → f (rB , rS , p |T0,T , . . . , x0, x)

But in practice?
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1. f (· · · ) can be ‘usually’ be written using the ‘chain rule’,
e.g. f (x , y , z) = f (x | y , z) · f (y | z) · f (z)

2. f (n0, x0, x , . . .) is simply a constant (indeed usually very
difficult to evaluate‘, but just a numeric constant):
f̃ (rB , rS , λ0, r , . . . |T0,T , . . . , x0, x) ∝ f (· · · · · ·)

3. let the ‘dirty work’ be done by MCMC tools.
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Model for random sampling (arXiv:2009.04843 [q-bio.PE])

π1

nI

nPI

π2

nNI

nPNI

nP

nsp

r1 s1 r2 s2

√

√ √ √ √

√

‘f0(p)’

π1 ∼ dbeta(r1, s1) π2 ∼ dbeta(r2, s2)

nI ∼ dbin(p, ns) nNI <- ns − nI

nPI
∼ dbin(π1, nI) nPNI

∼ dbin(π2, nNI)

nP ∼ sum(nPI
, nPNI

)
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nPI
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∼ dbin(π2, nNI)
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)

⇒ f (p | ns , nP , . . .) : How?
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⇒ f (p | ns , nP , . . .): How?
◮ In principle ‘easy’:

1. write down the joint pdf (prob. density function)
using a convenient chain rule (bottom-up);

2. evaluate the pdf of ‘unobserved’ nodes conditioned
on the observed nodes (those with ‘

√
’) in the above

Bayesian Network;
3. marginalize.

◮ In practice we do it by Markov Chain Monte Carlo sampling:
◮ we use the JAGS program interfaced to R via rjags.

(Details, including scripts, in the paper)

(But in the case of the random sampling showed above we did the effort

of getting an exact result).

Note: from the probabilistic point of view no real distinction
between inference and predictions:

observed nodes → unobserved nodes

→ Probability Theory not sensitive to their meaning!
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Vaccine efficacy: a simplified model
Some initial difficulties, due to uncertainy in the models,
having acccess only to a couple of numbers.
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Vaccine efficacy: a simplified model
Some initial difficulties, due to uncertainy in the models,
having acccess only to a couple of numbers.
Solved introducing a catch-all term embedding
the many real life variables, apart being vaccinated or not.

⇒ ‘assault probability’ pA.

pA

nV nP

nVA
nPA

nVI
nPI

1−ǫ

ǫ: efficacy c© GdA 26/11/2020 29/32



Vaccine efficacy
Jags model
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Vaccine efficacy
Jags model (like describing the terms of the chain rule!)

model {

nP.I ~ dbin(pA, nP) # 1.

nV.A ~ dbin(pA, nV) # 2.

pA ~ dbeta(1,1) # 3.

nV.I ~ dbin(ffe, nV.A) # 4. [ ffe = 1 - eff ]

ffe ~ dbeta(1,1) # 5.

eff <- 1 - ffe # 6.

}
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}

Sensitive data:

Moderna: nV.I = 5, nP.I = 90;

Pfizer: nV.I = 8, nP.I = 162.
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Vaccine efficacy
Jags model (like describing the terms of the chain rule!)

model {

nP.I ~ dbin(pA, nP) # 1.

nV.A ~ dbin(pA, nV) # 2.

pA ~ dbeta(1,1) # 3.

nV.I ~ dbin(ffe, nV.A) # 4. [ ffe = 1 - eff ]

ffe ~ dbeta(1,1) # 5.

eff <- 1 - ffe # 6.

}

Sensitive data:

Moderna: nV.I = 5, nP.I = 90;

Pfizer: nV.I = 8, nP.I = 162.

Less sensitive data (even factors 1/10 or 1/100 are irrelevant!):

Moderna: nV = nP = 15000;

Pfizer: nV = nP = 20000.
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Results
1. Real time run of JAGS
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3. Summaries:
mean ± stand. unc. centr. 95% cred. int. P(ǫ ≥ 0.9)

Moderna 0.933± 0.029 [0.866, 0.976] 0.872
Pfizer 0.944± 0.019 [0.900, 0.975] 0.976
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Conclusions
◮ The recent announcements by Moderna and Pfizer

give some hope of coping effectively with the pandemic.
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Paper available on
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—————————————————————————-
Bottom line: learn model thinking and MCMC (based tools)
and you will have an extra gear! c© GdA 26/11/2020 32/32
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