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On the use of the covariance matrix to fit correlated data
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Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves
lower than expected if the covariance matrix of the data points is used in the definition of the X2 . This paper shows that the effect
is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the
usual error propagation relies . The bias can become unacceptable if the normalization error is large, or a large number of data
points are fitted .

1. Introduction

It is frequently the case that one has to fit a theoret-
ical curve through experimental data affected by over-
all systematic errors, often just a common uncertainty
on the normalization factor . If the error matrix V of
the data points is known, one can solve the problem by
minimizing the X 2, defined as

X2 -aTV
1A,

where A is the vector of the differences between the
theoretical and the experimental values .

In performing this kind of fit it is not uncommon to
obtain results that contradict expectations. To give a
numerical example, let us consider the results of two
measurements, 8.0 ± 2% and 8.5 ± 2%, having a 10%
common normalization error (see Fig. 1) . Assuming
that the two measurements refer to the same physical
quantity, the best estimate of its true value can be
obtained by fitting the points to a constant . Minimizing
X2 as defined in Eq . (1), with V estimated empirically
by the data, one obtains a value of 7.87 ± 0.81, which is
at least surprising, since the most probable result is
outside the interval determined by the two measured
values .
A real example of this strange effect happened

during the global analysis of the R ratio in e+ e-
performed by the CELLO collaboration [1], shown in
Fig. 2. The data points represent the averages, in
energy bins, of the results of the PETRA and PEP
experiments . They are all correlated and the error bars
show the total error (see ref. [1] for details) . In particu-
lar, at the intermediate stage of the analysis shown in
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the figure, an overall 1% systematic error due to theo-
retical uncertainties was included in the covariance
matrix. The R values above 36 GeV show the first hint
of the rise of the e+ e- cross section due to the Z°
pole. It was at that time very interesting to prove that
the observation was not just a statistical fluctuation . In
order to test this, the data were fitted with a theoreti-
cal function having no Z° contributions and using only
the data below a certain energy . The expectation was
to observe a fast increase of X Z/v, where v is the
number of degrees of freedom, above 36 GeV, indicat-
ing that a theoretical prediction without Z° would be
inadequate to describe the high energy data. The sur-
prising result was a "repulsion" (see Fig. 2) between
the experimental data and the fit : including the high
energy points with larger R, a lower curve was ob-
tained, while X21v remained almost constant .

It will be shown in this paper that such an effect,
which appears if a sizeable normalization uncertainty is
common to a data sample, originates from the standard
way of performing the error propagation, where only
first derivatives are considered . In order to get analyti-
cal results, the simple case of only two data points will
be considered. Since the conclusions are based on the
empirical covariance matrix of the experimental points,
it will first be shown how to build it in the most general
case, since this problem is usually not discussed in
books of statistics '.

#t Apart from ref . [1], the only text book known to the
author, where the construction of the covariance matrix
from experimental data related by common errors is dis-
cussed, is the recent one by Barlow [2] . A more complete
treatment is given in the DIN norms [3].
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Fig . 1 . Best estimate of the true value from two correlated
data points, using in the X 2 the empirical covariance matrix of
the meaurements. The error bars show individual and total

errors .

2. Covariance matrix of correlated data
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In physics applications, it is rarely the case that the
covariance between the best estimates of two physical
quantities #2, each given by the arithmetic average of
direct measurements (x, =X, = IInY-k- IX k), can be
evaluated from the sample covariance of the two aver-
ages

1 n _ _
COV(x� x,) =

n(n
-

1)
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#2

More frequent is the well understood case in which
the physical quantities are obtained as a result of a X2
minimization, and the terms of the inverse of the error
matrix are related to the curvature of X2 at its mini-
mum

In most cases one determines independent values of
physical quantities with the same detector, and the
correlation between them originates from the detector
calibration errors . Conceptually, the use of Eq . (2) in
this case would correspond to having a "sample of
detectors", with each of which a measurement of all
the physical quantities is to be performed.
A way to build the covariance matrix from the

direct measurements is to consider the original mea-
surements and the calibration constants as a common
set of independent and uncorrelated measurements,
and then to calculate corrected values that take into

Hereafter the symbol X, will indicate the variable associ-
ated to the ith physical quantity and Xk its kth direct
measurement; x, the best estimate of its value, obtained
by an average over many direct measurements or indirect
measurements, Q, the standard deviation, and y, the value
corrected for the calibration constants . The weighted aver-
age of several values x, will be denoted by x.

account the calibration constants. The error propaga-
tion will provide automatically the full covariance ma-
trix of the set of results . Let us derive it for two cases
that happen frequently, and then proceed to the gen-
eral case .

2.1 . Offset error

Let x, ± o-, be the i = 1, 2, . . ., n results of indepen-
dent measurements and VX the (diagonal) error matrix .
Let assume that they are all affected by the same
calibration constant c, having an error or . The cor-
rected results are then y, = x, + c. We can assume, for
simplicity, that the most probable value of c is 0, i.e .
the detector is well calibrated . One has to consider the
calibration constant as the physical quantity Xn+t> the
best estimate of which is xn+t = 0. A term VXn+ , + _
O,c2 must be added to the error covariance .

The covariance matrix of the corrected results is
given by the transformation

VY= MVXMT,

where M� = aY/aX, I x, . The elements of VY are given
by

ay, ay,
VY.

	

ax, [, VX�
.

In this case we get
o-2(Y) =Q 2

+QC
2

,

Cov(Y� Y) =Q2
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The total error on the single measurement is given by
the combination in quadrature of the individual and
the common error, and all the covariances are equal to
ore. To verify, in a simple case, that the result is
reasonable, let us consider only two independent quan-
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Fig. 2 . R measurements from PETRA and PEP experiments
with the best fits of QED+QCD to all the data (full line) and
only below 36 GeV (dashed line) . All data points are corre-

lated (see text) .
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tities Xl and X2, and a calibration constant X3 = c,
having an expected value equal to zero . From these we
can calculate the correlated quantities Yl and Y2 and
finally their sum (S = Zl ) and difference (D =Z2 ) . The
results are

-

	

0,1 +

	

2 +4Qc2
Vz -

0"~ +U2
1 .

It follows that

o- 2(S) =vi +Q12 + (2Q,)2,

012(D) =0, +Q2,

as intuitively expected .

2.2 . Normalization error

Let us consider now the case where the calibration
constant is the scale factor f, known with an error of .
Also in this case, for simplicity and without losing
generality, let us suppose that the most probable value
of f is 1 . Then Xn+ , =f, i .e . x� + , = 1, and VX

+I n+1 =
of . Then

01 2(Y)
=0,,2 +QfX,,

COV(Y,, Y) =o-fX,x ,

To verify the results let us consider two independent
measurements Xl and X2, let us calculate the corre-
lated quantities Y and Y2, and finally their product
(P = Z1) and their ratio (R --- Z2):

V=

VZ=

0-1 + 0,C

	

0.c2

QZ
+0'2

o-1 +o-fx 1 Qf X1X2

Qfxlx2

	

v2 +Qfx 2 1'

It follows that

01 2 (P)=0-x2+o-2x~+(2Qfxlx2) 2 ,

2

	

2
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Just as a common offset error cancels in differences
and is enhanced in sums, a normalization error has a
similar effect on the ratio and the product. It is also
interesting to calculate the error on a difference in
case of a normalization error:

z
Qf(X1 _x2) .

The contribution from the normalization error van-
ishes if the two values are equal.

2.3. General case

Let us assume there are n independent measured
values x, and m calibration constants c, with their
covariance matrix V, The latter can also be theoretical
parameters influencing the data, and moreover they
may be correlated, as usually happens if they are
parameters of a calibration fit . We can then include
the c, in the vector that contains the measurements
and Vc in the error matrix VX :

X=

The correlated quantities are obtained from the most
general function

Y =Y(X� c)

	

(i = 1, n),

and the covariance matrix VY from the error propaga-
tion VY= MVXMT.

As a frequently encountered example, we can think
of several normalization constants, each affecting a
subsample of the data - as is the case where each of
several detectors each measures a set of physical quan-
tities . For simplicity we can consider only three quanti-
ties (X,) and three uncorrelated normalization errors
(of ), the first one common to Xl and X2, the second
to X2 and X3 and the third to all three. We get the
following covariance matrix:

3. Best estimate of the true value from two correlated
values

Once the covariance matrix is built, one can make
use of Eq . (1) to estimate the parameters of interest .
Let us consider the simple case in which two results of
the same physical quantity are available, and the indi-
vidual and the common errors are known. The best
estimate of the true value of the physical quantity is
then obtained by fitting the constant Y= k through the
data points . In this simple case the X 2 minimization
can be performed easily . We will consider the two
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cases of offset and normalization error. As before, we
assume that the detector is well calibrated, i .e . the
most probable value of the calibration constant is,
respectively for the two cases, 0 and 1, and hence

Y, =x, .

3.1 . Offset error

Let x l ± vl and z2 ± az be the two measured val-
ues, and o-, the common error . The X 2 is

X2=
D

[(x,-k)2( 0,2+QZ)+(x2-k)2(v

_2(zl _ k)(x2 _ k)o,21 ,

X Iv2 +x20-1
k

	

0, +0,2

	

(=x),

2 2
2 Q10-2 2(k) = a2 +0-2 +OIC .

1 z

3.2. Normalization error

Xz=
D [(x, -k)z

(n-2 -i-x20'f )

+(x2-k)z
(
QI +xl0f)

-2(xl - k)(xz - k ) x lxz o-f ] ,

x 1v2 +x20-1
k
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0,C2 )

where D = o,012 + (0-i + 0,2)0. z is the determinant of
the covariance matrix .

Minimizing X 2 and using the second derivative cal-
culated at the minimum we obtain the best value of k
and its error :

The most probable value of the physical quantity is
exactly what one obtains from the average x weighted
with the inverse of the individual variances . Its error is
the quadratic sum of the error of the weighted average
and the common one . The result coincides with the
simple expectation .

Let x l ± o-1 and x2 ± 0- 2 be the two measured val-
ues, and of the common error on the scale . The X 2 is

where D = o-10- + (x2Q2 +X 20'i )o-t. We obtain in this
case the following result :

With respect to the previous case, k has a new term
(x l -x2) 20-f in the denominator . As long as this is
negligible with respect to the individual variances we
still get the the weighted average x, otherwise a smaller
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value is obtained . Calling r the ratio between k and x,
we obtain

1
r=k/x=

(XI _zz
2

) z1+ U2 + 0,2 0f
1 z

Written in this way, one can see that the deviation
from the simple average value depends on the compati-
bility of the two values and on the normalization error .
This can be understood in the following way : as soon
as the two values are in some disagreement, the fit
starts to vary - in a hidden way - the normalization
factor and to squeeze the scale, by an amount allowed
by of , in order to minimize the X2 . The advantage for
the fit to prefer, under these conditions, normalization
factors smaller than 1 finds its deep reason in the
standard formalism of the error propagation, where
only first derivatives are considered . This implies that
the individual errors are not resealed by lowering the
normalization factor, while the points get closer .

To see the source of this effect more explicitly, let
us consider an alternative way often used to take into
account the normalization uncertainty . A scale factor
f, by which all data points are multiplied, is introduced
in the expression of X2 :

z (.ÎX, - k)2 (.ÎX2-k)2
(f_ l)2

XA (fQl)2 + (fo 2)2 + Qf

Let us consider also the same expression when the
individual errors are not resealed :

X2 =
(fxt

z
k)2 + (fx2 a k)2 +

(f _2j)2
.

	

(4)
0, 1 0`2 of

The use of Xn always gives the result k = x, because
the term (f - 1) 2/Qf is harmless #s as far as the value
of the minimum X 2 and the determination on k are
concerned . Its only influence is on o-(k), which turns
out to be equal to quadratic combination of the
weighted average error with of x, the normalization
uncertainty on the average . This result corresponds to
the usual one, when the normalization factor in the
definition of X2 is not included, and the overall uncer-
tainty is added at the end.

The use of Xs instead is equivalent to the covari-
ance matrix : the same values of the minimum X 2 , of k
and of 0-(k) are obtained, and f at the minimum turns

#3 A simple way to see it is to rewrite Eq . (3) as :

(xl - k/f)2 (zz - k/f)z (Î - 1) 2

Q2 +
Qz

+ 0,21

	

2

	

f
For any f, the first two terms determine the value of k,
and the third one constrains f to 1 .
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out to be exactly the r ratio defined above . This
demonstrates that the effect happens when the data
values are resealed independently of their errors . The
effect can become huge in the case where the data
show mutual disagreement . The equality of the results
obtained with Xs with those obtained with the covari-
ance matrix allows us to study, in a simpler way, the
behaviour of r (=f) when an arbitrary amount of data
points are analysed . The fitted value of the normaliza-
tion factor is

(x, -x)
1 +

	

- 2

	

Qf
r= t

In the case where the values of x, are consistent with
coming from a common true value, it can be shown
directly that the expected value of f is

There is, hence, a bias on the result when, for a
non-vanishing of , a large number of data points are
fitted . In particularly, the fit produces on average a
bias larger than the normalization error itself if of >
1/(n - 1) . One can also see that o- 2(k) and the mini-
mum of XZ obtained with the covariance matrix, or
with Xé, are smaller by the same factor r than those
obtained with XÁ .

One can think of a different approach [4] which in
principle would offer an alternative to Eq . (3) for
solving the problem. In the hypothesis that the mea-
surements come from the same physical value, the best
estimate of the covariance matrix is

01'(~;) -~IZ +ufkZ ,

Cov(Y, Y) =Ql
zk z

	

(i ="-j),
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where k is the result of the fit . One obtains then a
covariance matrix equal to that of a common offset
error with Q, = ofk . Since we have shown that, in this
case, the best value of k does not depend on the
normalization uncertainty and that its error is the
quadratic combination of the weighted average error
and of the normalization one, we reach exactly the
same results obtained using Xn . One may be tempted
to conclude that this is the best obtained solution, in
the sense that one can still work with the covariance
matrix leading to unbiased results. In reality it is clear
that (apart from the simple case of the fit to a con-
stant) the definition of a covariance matrix having in
the elements functions of the fitted parameters instead
of numbers leads to many complications, and one has
to use iterative methods to evaluate the covariance
matrix . The attempt to solve a non-linear problem with
linear methods offered by this approach clearly yields a

more complicated situation than that previously dis-
cussed .

4. Conclusions

The knowledge of the best estimate of the covari-
ance matrix of the data points is recognized as a
powerful tool in treating complex problems with corre-
lations between the data . In general, for the case of
measurements related by a common uncertainty in
calibration constants or in theoretical corrections, the
covariance matrix is derived from standard error prop-
agation. It has been shown in simple cases that, if one
considers a new physical quantity as a function of the
measured ones, the use of the appropriately built co-
variance matrix gives the correct error on the new
quantity .

In the case that one has only an overall systematic
error and the covariance matrix is used to define XZ ,
the behaviour of the best fit is different depending on
whether the uncertainty is on the offset or on the scale .
In the first case the best estimates of the function
parameters are exactly those obtained without system-
atic errors, and only the parameters' errors are af-
fected . In the case of normalization errors, biased
results can be obtained instead. The size of the bias
depends on the fitted function, on the magnitude of
the overall error and on the number of data points . It
has been shown that, in the case of a fit to a constant -
the result can be qualitatively extended to other func-
tions - a negative bias is obtained, the absolute size of
which is proportional to the number of degrees of
freedom and to the square of the normalization error.
It has also been shown that this bias comes from the
linearization performed in the usual error propagation .
This means that, even though the use of the covariance
matrix can be very useful in analysing the data in a
compact way using available computer algorithms, at-
tention is required if there is one large normalization
uncertainty which affects all the data . In this case it is
preferable #° not to include the overall error in the
covariance matrix for several reasons. Firstly, one
avoids the problem just discussed. Moreover - and this
argument holds also in case of an offset global error -
it is generally preferred to give separately the system-

f - z

#4 This is the way how CELLO [1] finally presented the result
of the analysis (see ref . [5] for details) . A check was also
done using a XZ definition similar to Eq . (3), where the
individual normalization factors of the experiments were
fitted . The fitted f values were distributed around 1 with
a standard deviation compatible with the normalization
error declared by each of the experiments . Moreover, the
size of a possible bias that an overall systematic error
would have produced on the results was also estimated .
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atic errors . In particular, if also the variation of the
result for a given variation of the normalization factor
around unity is provided, one can correct the results
when a better knowledge of the systematics is avail-
able .
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