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= ‘Forward to past’
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But benefitting of
* Theoretical progresses in probability theory

* Advance in computation (both symbolic and numeric)

— many frequentistic ideas had their raison d’étre in the
computational barrier (and many simplified — often
simplistic — methods were ingeniously worked out)

— no longer an excuse!
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Probabilistic reasoning

What to do?

= ‘Forward to past’
But benefitting of

* Theoretical progresses in probability theory

* Advance in computation (both symbolic and numeric)

— many frequentistic ideas had their raison d’étre in the
computational barrier (and many simplified — often
simplistic — methods were ingeniously worked out)

— no longer an excuse!

= Use consistently probability theory
° “It's easy If you try”

© But first you have to recover the intuitive concept of
probability.
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Probability

What Is probability?




Standard textbook definitions

+# favorable cases
# possible equiprobable cases

# times the event has occurred
# Independent trials under same conditions
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity

+# favorable cases
# possible equally possible cases

# times the event has occurred
# independent trials under same conditions

Laplace: “lorsque rien ne porte a croire que I'un de ces cas doit
arriver plutot que les autres”

Pretending that replacing ‘equi-probable’ by ‘equi-possible’
IS just cheating students (as | did in my first lecture on the
subject. . .).
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Standard textbook definitions

It is easy to check that ‘scientific’ definitions suffer of circularity,
plus other problems

+# favorable cases

p&# possible}uiprobable cases

, # times the event has occurred
p. = limy, o0

S~—__ 7/'ndependent trialsundey condition

Future < Past (believed so)

n — 00. — “‘usque tandem?”
— “In the long run we are all dead”
— It limits the range of applications
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Definitions — evaluation rules

Very useful evaluation rules

# favorable cases
# possible equiprobable cases

# times the event has occurred
#independent trials under same condition

If the implicit beliefs are well suited for each case of application.
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Very useful evaluation rules
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# possible equiprobable cases

# times the event has occurred
#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

B UT they cannot define the concept of probability!
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Definitions — evaluation rules

Very useful evaluation rules

# favorable cases
# possible equiprobable cases

# times the event has occurred
#independent trials under same condition

If the implicit beliefs are well suited for each case of application.

In the probabilistic approach we are going to see

* Rule A will be recovered immediately (under the
assumption of equiprobability, when it applies).

* Rule B will result from a theorem (under well defined
assumptions).
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Probability

What Is probability?

It Is what everybody knows what it Is
before going at school

—~ how mt
someth

— how mu

ich we are confident that
ng Is true

ch we believe something

—. “A measure of the degree of belief

that an

event will occur”

[Remark: ‘will does not imply future, but only uncertainty.|
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true'. . .,
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true'. .., the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”
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Or perhaps you prefer this way. . .

“Given the state of our knowledge about everything that could
possible have any bearing on the coming true'. .., the numerical
probability p of this event is to be a real number by the indication
of which we try in some cases to setup a quantitative measure
of the strength of our conjecture or anticipation, founded on the
said knowledge, that the event comes true”

(E. Schrodinger, The foundation of the theory of probability - |,
Proc. R. Irish Acad. 51A (1947) 51)

LWhile in ordinary speech “to come true” usually refers to an event that
IS envisaged before it has happened, we use it here in the general
sense, that the verbal description turns out to agree with actual facts.
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False, True and probable

( EventE ) @

logical point of view FALSE @ @ TRUE
cognitive point of view FALSE@ UNCERTAIN @ TRUE
NN
/ NN\ \
[if certain 227 //// RN
FALSE@ 2277 [\ NN @TRU
psychological /???/// / || \ \ \\\s\\s\
(Subjective) 4 it \ncertain, e // /| || \ \\ AR ARRRRY
point of view with T 1 17 T ] |/ |/ — T \I T |\|\| |
| probability 0O 0,20 0,20 0,30 0,40 0,50 0,60 0,70 0,800,90 1
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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability

Bayesmn Inference-'
; for NASA Probabilistic
Rlsk and Rellablllty Analysns
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Apn helnfill diaoram

o

logcal pomt of view FALSE @

COgnItve point of view FALSE @ LHI_'I:_R% ) TRUE
o
/ f,,-{.-;" d L%‘”\ﬁx

f : Z279 NN

Weermam  parsp =z7 47 ;J A "\H' N TRUE
Prohability @ ,..-:f’f‘ﬁf*’rf’,ff ‘\\f{‘q‘&.x .

P rAs !y 1 VAT ONN

Theory | ¢ uncortain. ,f.r*f’r'f;,f,—f /| .!H \{\::.xxm.ﬁx
as Logec with ]"if"—f—fj. — et L 1"'*;;""-.. —r |

| probabiliry 0 010 020 030 040 050 060 070 080 090 |

e — — = Probability — — — — — — —d

» Figure 2-1. Graphical abstraction of probability as a measure of information (adapted from
“Probability and Measurement Uncertainty in Physics” by ['Agostini, [1995]).

(...but NASA guys are afraid of ‘subjective’, or ‘psychological’)
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments

“If we were not ignorant there would be no probabillity, there
could only be certainty. But our ignorance cannot be
absolute, for then there would be no longer any probability
at all. Thus the problems of probability may be classed
according to the greater or less depth of our ignorance.”
(Poincaré)
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

= Intrinsic subjective nature.

* No negative meaning: only an acknowledgment that several
persons might have different information and, therefore,
necessarily different opinions.
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The state of information can be
different from subject to subject

= Intrinsic subjective nature.

* No negative meaning: only an acknowledgment that several
persons might have different information and, therefore,
necessarily different opinions.

* “Since the knowledge may be different with different
persons or with the same person at different times, they
may anticipate the same event with more or less
confidence, and thus different numerical probabilities may
be attached to the same event” (Schrodinger)
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Uncertainty — probability
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not (only) to the results of repeated
experiments

Probability is always conditional
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments

Probabillity is always conditional
probability
‘P(E) — PE|I) — PE{}))

* “Thus whenever we speak loosely of ‘the probability of an
event, It Is always to be understood: probability with regard
to a certain given state of knowledge” (Schrédinger)
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Probability

What Is probability?




Probability

What is probability?

“How much we believe something”

Versione velocizzata per MAPSES 2011
— slide mancanti sulla pagina web dedicata
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A reminder

Forse vale la pena di ricordare la famosa citazione di Einstein

La geometria, quando e certa, non dice
nulla del mondo reale,
e, guando dice qualcosa a proposito della

nostra esperienza, e incerta.

Chi vuole attenersi al regno del certo e meglio che si occupi di
matematica che di fisica.
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An helpful diagram

The previous diagram seems to help the understanding of the
concept of probability

Bayesmn Inference-'
; for NASA Probabilistic
Rlsk and Rellablllty Analysns

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) —p.



Apn helnfill diaoram

o

logcal pomt of view FALSE @

COgnItve point of view FALSE @ LHI_'I:_R% ) TRUE
o
/ f,,-{.-;" d L%‘”\ﬁx

f : Z279 NN

Weermam  parsp =z7 47 ;J A "\H' N TRUE
Prohability @ ,..-:f’f‘ﬁf*’rf’,ff ‘\\f{‘q‘&.x .

P rAs !y 1 VAT ONN

Theory | ¢ uncortain. ,f.r*f’r'f;,f,—f /| .!H \{\::.xxm.ﬁx
as Logec with ]"if"—f—fj. — et L 1"'*;;""-.. —r |

| probabiliry 0 010 020 030 040 050 060 070 080 090 |

e — — = Probability — — — — — — —d

» Figure 2-1. Graphical abstraction of probability as a measure of information (adapted from
“Probability and Measurement Uncertainty in Physics” by ['Agostini, [1995]).

(...but NASA guys are afraid of ‘subjective’, or ‘psychological’)
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments

The state of information can be
different from subject to subject

= Intrinsic subjective nature.

* No negative meaning: only an acknowledgment that several
persons might have different information and, therefore,
necessarily different opinions.
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Uncertainty — probability

Probabillity Is related to uncertainty and
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Uncertainty — probability

Probabillity Is related to uncertainty and
not (only) to the results of repeated
experiments

Probabillity is always conditional
probability
‘P(E) — PE|I) — PE{}))

* “Thus whenever we speak loosely of ‘the probability of an
event, It Is always to be understood: probability with regard
to a certain given state of knowledge” (Schrédinger)
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Inference

Inference

= How do we learn from data
In a probabilistic framework?
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From causes to effects and back

Our original problem:

Causes Cl

Ef f ects @

E2
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From causes to effects and back

Our original problem:

Causes Cl

Ef f ects @

E2

CONCY

=
SDRC

Our conditional view of probabilistic causation

P(E; | Cj)
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From causes to effects and back

Our original problem:

Causes Cl

Ef f ects @

E2

CONCY

=
= T

Our conditional view of probabilistic causation

P(E; | Cj)

Our conditional view of probabilistic inference

P(Cj | E;)
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From causes to effects and back

Our original problem:

SN ORORONC

Effects @ - £3 \e

Our conditional view of probabilistic causation
P(E; | Cj)
Our conditional view of probabilistic inference
P(C; | E;)
The fourth basic rule of probability:

P(Cj, E;) = P(E; | C;) P(Cj) = P(C; | E;) P(Ei)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses H; and
effects E;, and rewrite it this way:
P(H;|E;)  P(E;|Hj)

P(H;)  P(E)

“The condition on E; changes in percentage the probability of
H; as the probability of E; is changed in percentage by the
condition H;."
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses H; and
effects E;, and rewrite it this way:
P(H;|E;)  P(E;|Hj)

P(H;)  P(E)

“The condition on E; changes in percentage the probability of
H; as the probability of E; is changed in percentage by the
condition H;."

It follows
P(E; | Hj)
P(E;)

P(H;| E;) = P(Hj)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses H; and
effects E;, and rewrite it this way:
P(H;|E;)  P(E;|Hj)

P(H;)  P(E)

“The condition on E; changes in percentage the probability of
H; as the probability of E; is changed in percentage by the
condition H;."

It follows
P(E; | Hj)
P(E;)

Got ‘after’ Calculated ‘before’

P(H; | E;) = P(H;)

(where ‘before’ and ‘after’ refer to the knowledge that E; is true.)
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Symmetric conditioning

Let us take basic rule 4, written in terms of hypotheses H; and
effects E;, and rewrite it this way:
P(H;|E;)  P(E;|Hj)

P(H;)  P(E)

“The condition on E; changes in percentage the probability of
H; as the probability of E; is changed in percentage by the
condition H;."

It follows
(Hj | E;) P(E) (H;)
"post illa observationes”  “ante illa observationes”

(Gauss)
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Application to the six box problem

00000 00000 00000 00000 00O OLOILOLOOOO

Ho Hq H» Hs Hy Hg
Remind:
* Fiy = White
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Collecting the pieces of information we need

Our tool:

P(H; | E;, 1) = 2ELH.D pg; | 1)
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Collecting the pieces of information we need

Our tool:

P(By|Hj, 1) = (5-4)/5
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Collecting the pieces of information we need

Our tool:

oP(H;|I)=1/6

o P(E;|T)=1/2

o P(E;|H;, I) :
P(Ey|Hj, I) = j/5
P(By|Hj, 1) = (5-4)/5

Our prior belief about H;
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Collecting the pieces of information we need

Our tool:

P(H; | Ei, 1) = Sty POH; | 1)

° P(H;|I)=1/6

o P(E;|I)=1/2

- P(E;| H;, I) :
P(Ey|Hj, I) = j/5
P(E;|Hj, 1) = (5-4)/5

Probability of E; under a well defined hypothesis H;
It corresponds to the ‘response of the apparatus in
measurements.

— likelihood (traditional, rather confusing name!)

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) —p. -



Collecting the pieces of information we need

Our tool:

° P(H;|I)=1/6

- P(E; | T) = 1/2

o P(E;|H;, I) :
P(Ey|Hj, I) = j/5
P(By|Hj, 1) = (5-4)/5

Probability of E; taking account all possible H;
— How much we are confident that £; will occur.
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Collecting the pieces of information we need

Our tool:

° P(H;|I)=1/6

- P(E; | T) = 1/2

o P(E;|H;, I) :
P(Ey|Hj, I) = j/5
P(By|Hj, 1) = (5-4)/5

Probability of E; taking account all possible H;

— How much we are confident that £; will occur.

Easy in this case, because of the symmetry of the problem.
But already after the first extraction of a ball our opinion
about the box content will change, and symmetry will break.
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Collecting the pieces of information we need

Our tool:

P(H; | Ei, 1) = Sty POH; | 1)

° P(H;|I)=1/6
*>P(FE;|I)=1/2
° P(E;|Hj, I) :
P(Ey | Hy, I) = 3/5
P(By|Hj, I) = (5-3)/5
But it easy to prove that P(E; | /) is related to the other

Ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely
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Collecting the pieces of information we need

Our tool:

P(E; |H;,1
) = Zprr P(H; | 1)

° P(H;|I)=1/6

- P(E; | T) = 1/2

o P(E;|H;, I) :
P(Ey|Hj, I) = j/5
P(E;|Hj, 1) = (5-4)/5

But it easy to prove that P(E; | /) is related to the other
Ingredients, usually easier to ‘measure’ or to assess
somehow, though vaguely

‘decomposition law’: P(E; | 1) = . P(E; | Hj, I)- P(H; | 1)
(— Easy to check that it gives P(FE; | [) = 1/2 in our case).
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Collecting the pieces of information we need

Our tool:

P(E;|H;,I)-P(H; |1
P(H; | E;,I) = >, (p<E|7; |Hj,)l)-(P(I}j I)I)

o P(H;|I)=1/6
* P(E;|I)=),P(E;|Hj, I)-P(Hj|I)

* P(EZ{H],]) :
P(EyH;, 1) = j/3
P(E;|H, I) = (5-j)/5

We are ready!
— Let’s play with our toy
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)

From now on it is only a question of

* experience and good sense to model the problem,;
* patience;

* math skill;

* computer skKill.
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Naming the method

Some ‘remarks’ on formalism and notation.

(But nothing deep!)

From now on it is only a question of

* experience and good sense to model the problem,;
* patience;
* math skill;
* computer skKill.
Moving to continuous guantities:
* transitions discrete—continuous rather simple;
* prob. functions — pdf

* |earn to summarize the result in ‘a couple of meaningful numbers’
(but remembering that the full answer is in the final pdf).
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Bayes theorem

The formulae used to infer H; and
to predict E]@ are related to the name of Bayes
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Bayes theorem

The formulae used to infer H; and
to predict EJ(?) are related to the name of Bayes

Neglecting the background state of information I
P(Hj|E;) _ P(Ei| Hj)
P(Hj) P(E;)
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Bayes theorem

The formulae used to infer H; and
to predict E](?) are related to the name of Bayes

Neglecting the background state of information I

P(H;|E;)  P(E;|Hj)
P(H;)  P(E)

P(E;)
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Bayes theorem

The formulae used to infer H; and
to predict E](.Q) are related to the name of Bayes

Neglecting the background state of information I:

P(H;|Ei) _  P(Ei|Hj)
P(H;)  P(E))
P(H; | E;) = P(PE(’ggj) P(H;)

P(E;| Hj) - P(H;)
>_; P(E; | Hj) - P(Hj)

P(H; | E;)
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Bayes theorem

The formulae used to infer H; and
to predict E](.Q) are related to the name of Bayes

Neglecting the background state of information I:

P(H;|Ei) _  P(Ei|Hj)
P(H;)  P(E))
P(H; | E;) = P(PE(’ggj) P(H;)

P(E;| H;) - P(H;)
>_; P(E; | Hj) - P(Hj)
P(H;|E;) o P(E;|Hy)- P(Hj)

P(H; | E;) =
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Bayes theorem

The formulae used to infer H; and
to predict E](.Q) are related to the name of Bayes

Neglecting the background state of information I:

P(H;|Ei) _  P(Ei|Hj)
P(H;)  P(E))
P(H; | E;) = P(PE(’ggj) P(H;)

P(E;| H;) - P(H;)
>_; P(E; | Hj) - P(Hj)
P(H;|E;) o P(E;|Hy)- P(Hj)

P(H; | E;) =

Different ways to write the

Bayes’ Theorem
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

PH;|EM E®) « PEP|H;,EV).PH;|EWY)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

PH;|EM E®) « PEP|H;,EV).PH;|EWY)
« P(EY|Hj)- P(H;| EY)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

&y
N
N
N—"

P(H;|EM,E®) o P H;, V). P(H; | EM)
x P(E@|H;) - P(H;|EW)
o« P(E®|Hy) - P(EW | Hy) - Po(Hj)

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) —p. -



Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

P(H;|EM,E®) « P(E®|H;,EY). P(H;| EB")
x P(E@|H;) - P(H;|EW)
« P(EY|H;)- P(EY | Hj) - Py(Hj)
o« P(EW,EW | H;)- Py(Hj)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

PH;|EM E®) « PEP|H;,EV).PH;|EWY)
x P(E@|H;) - P(H;|EW)
x P(E® Hj)- P(EW | Hy) - Py(Hy)
« P(EM,EV | H)) - Ry(Hj)
P(H;|data) o P(data\H) Po(H;)
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

PH;|EM E®) « PEP|H;,EV).PH;|EWY)
« P(EY|Hj)- P(H;| EY)
« P(E®|Hj)- P(E"|H;) - Py(Hj)
«x P(EW,EW|Hy) - Py(Hj)
P(H;|data) o P(data\H) Po(H;)

Bayesian inference
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Updating the knowledge by new observations

Let us repeat the experiment:

Sequential use of Bayes theorem

Old posterior becomes new prior, and so on

PH;|EM E®) « PEP|H;,EV).PH;|EWY)
x P(E@|H;) - P(H;|EW)
x P(E® Hj)- P(EW | Hy) - Py(Hy)
« P(EM,EV | H)) - Ry(Hj)
P(H;|data) o P(data\H) Po(H;)

Learning from data using probability theory
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Exercises and discussions

Continue with six box problem [— AJP 67 (1999) 1260]
— Slides

Home work 1: AIDS problem

P(Pos |HIV) = 100%
P(Pos |HIV) = 0.2%
P(Neg|HIV) = 99.8%

Home work 2: Particle identification:

A particle detector has a u identification efficiency of 95 %, and a
probability of identifying a 7 as a u of 2 %. If a particle is identified as a
W, then a trigger is fired. Knowing that the particle beam is a mixture of
90 % 7 and 10 % u, what is the probability that a trigger is really fired by
a u? What is the signal-to-noise (S/N) ratio?
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Odd ratios and Bayes factor

P(HIV|Pos)  P(Pos|HIV) P,(HIV)
P(HIV | Pos) P(Pos |HIV) P(HIV)
~1  0.1/60 11
= ooz * ~1 " %600 12

= P(HIV|Pos) = 45.5%.
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Odd ratios and Bayes factor

P(HIV|Pos)  P(Pos|HIV) P,(HIV)
P(HIV | Pos) P(Pos |HIV) P(HIV)
~1  0.1/60 11
= ooz * ~1 " %600 12

= P(HIV|Pos) = 45.5%.

There are some advantages in expressing Bayes theorem in
terms of odd ratios:

* There is no need to consider all possible hypotheses (how
can we be sure?)
We just make a comparison of any couple of hypotheses!
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Odd ratios and Bayes factor

P(HIV | Pos)
P(HIV | Pos)

Pos |HIV) P, (HIV)

P(
P(Pos |HIV) P(HIV)

~1  0.1/60 1 1
_ — 500 X — — —

0002 ~1 “ 600 1.2
— 45.5%.

There Are some advantages in expressing Bayes theorem in
termg of odd ratios:

There is no need to consider all possible hypotheses (how
can we be sure?)
We just make a comparison of any couple of hypotheses!

Bayes factor is usually much more inter-subjective, and it is

often considered an ‘objective’ way to report how much the
data favor each hypothesis.
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Further comments on first meeting
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The three models example

Choose among H,, H, and H3 having observed = = 3:

0.5;
f(xIH) T

In case of ‘likelihoods’ given by
pdf’'s, the same formulae apply:
“P(data| H;)" «—— “f(data| H;)".

__ f(z=3|Hj)
BEj ) = f(z=3] Hy)

BF>; =18, BF31 =25 and BF3 5 = 1.4 — data favor model H3
(as we can see from figure!), but if we want to state how much
we believe to each model we need to ‘filter’ them with priors.

Assuming the three models initially equally likely, we get final
probabillities of 2.3%, 41% and 57% for the three models.
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A last remark

A last remark on model comparisons
* for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed
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A last remark

A last remark on model comparisons
* for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

* p-values (e.g. ‘x” tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, | also use x? to get an idea of the “distance” between a
model and the experimental data — but not more than that].
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A last remark

A last remark on model comparisons
* for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

* p-values (e.g. ‘x” tests) have to be considered very useful
starting points to understand if further investigation is worth

[Yes, | also use x? to get an idea of the “distance” between a
model and the experimental data — but not more than that].

* But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
Impossible.
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A last remark

A last remark on model comparisons
* for a ‘serious’ probabilistic model comparisons,

at least two well defined models are
needed

* p-values (e.g. ‘x” tests) have to be considered very useful
starting points to understand if further investigation is worth
[Yes, | also use x? to get an idea of the “distance” between a
model and the experimental data — but not more than that].

* But until you don’t have an alternative and credible model to
explain the data, there is little to say about the “chance that
the data come from the model”, unless the data are really
Impossible.

* Why do frequentistic test often work? — Think about. . .
(Just by chance — no logical necessity)

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) —p. :



The hidden uniform

What was the mistake of people saying P(HIV | Pos) = 0.2?

Po(w) — 1
P.(HIV) ’
that, hopefully, does not apply for a randomly selected Italian.

* This is typical in arbitrary inversions, and often also in
frequentistic prescriptions that are used by the practitioners
to form their confidence on something:

We can easily check that this is due to have set

— “absence of priors” means in most times uniform priors over
the all possible hypotheses

* but they criticize the Bayesian approach because it takes
Into account priors explicitly !

Better methods based on ‘sand’ than methods based on nothing!
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Inferring a rate of a Poisson process

N ' N e N '
N e N 4 N e
N e N ' N '
N 4 N d N 4

N ' N Y N 7

N Ve N Ve N Ve
o N N
N s
N s
N s
N s
N s
N s
i
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Inferring a rate of a Poisson process

N e N 7 N '
N e N e N e
N e
N 4
'
7

N 7
N Ve
N 7
N 7
p . N
SPENED
N 7

>
/
/
//
A
\
\
\
\

f(rs,mo |z, 20, T,T0) o< f(z,20|7s,7b,T,T0) - fo(rs,7s)
o< f(z|(rs+mrp)-T)- f(zo|re-To) - folrs) - fo(r

f(rs|z,zo,T,Ty) o f(rs,ry |z, z0, T, Tp) dry
0
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Inferring a rate of a Poisson process

N e N 7 N 7
N e N e N e
N e
N 4
7
7

>
/
/
//
A
\
\
\
\

f(rs,mo |z, 20, T,T0) o< f(z,20|7s,7b,T,T0) - fo(rs,7s)
o< f(z|(rs+mrp)-T)- f(zo|re-To) - folrs) - fo(r

f(rs|z, @, T, Ty) o frs,m |z, 0, T, Tp) dry = JAGS
0
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BUGS (Jags) code to model the problem

nodel {
X ~ dpoi s(| anbda)
| anbda <- |Is + I B
ls <- r = T
r ~ dgamma(1, 0.00001) # gamm, na esattanente cone dexp(0.00001)
|IB <- rB* T

# info sperinentali sul background

| BO <- rB » TO

XB ~ dpoi s(| BO)

rB ~ dgamma(1, 0.00001) # anche sul backgrond nettiano prior vaga

prova prova prova pr ova
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Making the model more realistic
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Upper/lower limits

“Ogni limite ha una pazienza” (toto)
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Upper/lower limits

“Ogni limite ha una pazienza” (toto)

A very simple problem:
* counting experiment described by a binomial of unkown p;
® our aim is to ‘get’ p, in the sense of evaluating f(p | data);
* we make n trials and get x = 0 successes.
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Upper/lower limits

“Ogni limite ha una pazienza” (toto)

A very simple problem:
* counting experiment described by a binomial of unkown p;
® our aim is to ‘get’ p, in the sense of evaluating f(p | data);
* we make n trials and get x = 0 successes.

Bayes’ theorem:

flz =0]n,B) fo(p)

flp|n,z2=0,8) =
(p|n,z ) folf(a: = 01|n,B) fo(p) dp

with
flx=0[n,B) = (1-p)"
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Bernoulli trials = /N boxes — o0

Conceptually exactly equivalente to the 6-box problem:

* “success” « “white ball”
* p < “proportion of white balls”
* f(plz,n) < P(H;|z,n)
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Bernoulli trials = /N boxes — o0

Conceptually exactly equivalente to the 6-box problem:

* “success” < “white ball”
* p < “proportion of white balls”
°* f(plz,n) < P(H;|x,n)

* as log as we continue to extract only black boxes we get
more and more convinced (‘confident’) that Nature has
presented us Hy, although we cannot exclude H;, a bit less
Hs, etc.

= Rigorously speaking, only Hy gets falsified!
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Bernoulli trials = /N boxes — o0

Conceptually exactly equivalente to the 6-box problem:

* “success” < “white ball”
* p < “proportion of white balls”
°* f(plz,n) < P(H;|x,n)

* as log as we continue to extract only black boxes we get
more and more convinced (‘confident’) that Nature has
presented us Hy, although we cannot exclude H;, a bit less
Hs, etc.

= Rigorously speaking, only Hy gets falsified!

P(Hy|n,z=0)=0 <« f(p=1|n,z=0)=0
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Inference about p from O counts

Using flat prior, i.e. fo(p) =k

flpln,x=0,B) = (n+1)(1—p)"
Pmax = 0
1 1
E — > —
(p) T S

o(p)

PosnUur — 1 — n+\/1 0.05.

|
=
+ |~
BE
e
_|_v
DO
e
S [+
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Inference about p from O counts

Using flat prior, i.e. fo(p) =k

flpln,x=0,B) = (n+1)(1—p)"
Pmax = 0
1 1
E — > —
(p) T S

o(p)

(n+1) 1
(n+3)(n+2)? =n
PosnUur — 1 — n+\/1 0.05.

As n increases, we get more and more convinced that p has to
be very small
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Inference about p from O counts

7I7“7‘/4~/—1——rls——-._lm

f(p\n,x:(),B)

Pos%U L

0.6
&

(n+1)(1—=p)"

1 — "0.05.

0.8
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Inference about p from O counts

x — ()

nN=23

0.4 0.6 0.8 1
O

Seems not problematic at all, but we have to remember that it

relies on

f(CE =0 ‘ n, B)
fo(p)

(1-p)"
k
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When likelihoods are non ‘closed’

Where is the problem? (Flat priors are regulary used, and are
often assumed in other approaches, e.g. ML methods)

G. D’Agostini, Probabilistic Inference (MAPSES - Lecce 23-24/11/2011) —p. ¢



When likelihoods are non ‘closed’

The major problem is not in fy(p), but rather in the likelihood
f(x =0, |n,B) that does not go to zero on both sides!
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When likelihoods are non ‘closed’

The major problem is not in fy(p), but rather in the likelihood
f(x =0, |n,B) that does not go to zero on both sides!
A different representation of the likelihood (properly rescaled)

0.8

R(p)

04

0.2

0 L L | L L | L L |
le-06 le-05 0.0001 0.001

0.01 0.1 1
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A probabillistic lower bound for the Higgs®?

A similar think happens with the direct searches of the Higgs
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A probabillistic lower bound for the Higgs®?

Impossible to express our confidence in probabilistic terms,

1.2

1

0.3

0.6

0.4

0.2

unless we define an upper cut!
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A probabillistic lower bound for the Higgs®?

Confidence limit = Sensitivity bound
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Conclusions

Probabilistic reasoning helps ...
... at least to avoid conceptual errors.

Probabilistic statements can attributed, quantitaively and
consistently, to all ‘objects’ respect to which we are in
condition of uncertainty

... allowing us to make meaninful statements concerning
true values.

In particular uncertainties due to systematic errors can be
easily included

Several ‘standard’ methods (like Least Square, etc.) can be
easily recovered under well defined assumptions.

But if this is not the case, nowdays there are no longer
excuses to avoid the more general approach.

Bayesian networks are a powerful conceptual and
computational tool.
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