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Abstract

This note is mainly to point out, if needed, that uncertainty about models
and their parameters has little to do with a ‘paradox’. The proposed ‘solu-
tion’ is to formulate practical questions instead of seeking refuge into abstract
principles. (And, in order to be concrete, some details on how to calculate the
probability density functions of the chord lengths are provided, together with
some comments on simulations and an appendix on the inferential aspects of
the problem.)

“On trace au hasard une corde dans un cercle.
Quelle est la probabilité pour qu’elle soit plus petite

que le côté du triangle équilatéral inscrit?
. . .

Entre ces trois réponses, quelle est la véritable?
Aucune des trois n’est fausse, aucune n’est exacte,

la question est mal posée.”
(Joseph Bertrand)

“Probability is either referred to real cases
or it is nothing”

(Bruno de Finetti)

“As far as the laws of mathematics refer to reality,
they are not certain,

and as far as they are certain,
they do not refer to reality.”

(Albert Einstein)

∗Note based on lectures to PhD students in Rome. More on the subject, including the Android
app mentioned in the text, at http://www.roma1.infn.it/~dagos/Bertrand.html.
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1 Introduction

The question asked by Joseph Bertrand in his 1889 book Calcul des probabilités [1] is
about the probability that a chord drawn ‘at random’ is smaller that the side of the
equilateral triangle inscribed in the same circle (see e.g. [2]). Obviously the question
can be restated asking about the probability that the chord will be larger or smaller
than the radius, or whatever segment you like, upper to the diameter (for which the
solution is trivially 100%). The reason of the original choice of the side of such a
triangle is that the calculation is particularly easy, under the hypotheses Bertrand
originally considered, as we shall.

The question can be restated in more general terms, i.e. that of finding the
probability distribution of length l of a chord. Indeed, as well known, our uncertainty
about the value a continuous variable can assume can be described by a probability
density function, hereafter ‘pdf’, f(l), which should be written, more precisely, as
f(l | Is(t)), where I is the Information available to the subject s at the time t. In fact,

“Since the knowledge may be different with different persons or with the

same person at different times, they may anticipate the same event with

more or less confidence, and thus different numerical probabilities may be

attached to the same event.” [3]

And, hence, probability is always conditional probability, as again well stated by
Schrödinger [3],

“Thus whenever we speak loosely of ‘the probability of an event,’ it is

always to be understood: probability with regard to a certain given state

of knowledge.”

These quotes, which are 100% in tune with common sense, definitely rule out to use
the appellative of ‘paradox’ for the problem of the chords. In other words, Bertrand’s
‘paradox’ belongs to a completely different class than e.g. Bertrand Russell’s barber
paradox. Absurd is instead the positions of those who maintain that the problem
should have a unique solution once it is “well posed”‘[4] or that they have found the
“conclusive answer” [5].

In my point of view the question proposed by Bertrand can be only answered if
framed in a given contest and ‘asked’ somehow, either to human beings, or – and
hence the quote marks – to Nature by performing suitable experiments (but making
a particular simulation, of the kind of that proposed in Ref. [5], is the same as asking
human beings – and even making an experiment the result will depend on the set
up!).

For example we can ask suddenly students, without any apparent reason (for
them), to draw a chord in a circle printed on a sheet of paper. And to give more sense
(and fun) to the ‘experiment’ we can make a bet among us on the resulting length,
in units of the radius of the circle (the bet could be even more detailed, concerning
for example the orientation of the chord – it never happened to me that a student
drawn a vertical one, but perhaps Japanese students might have higher tendency to
draw segments top down!). Or we can ask students to write, with the their preferred
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programming language and plotting package, a ‘random chord generator’. In this
case our bet will be about the length that will result from a certain extraction, e.g.
the first, or the 100th (if we were not informed about all or some of the previous 99
results, because this information might change our odds about the outcome of the
following ones).

Indeed I have done experiments of these kinds since many years, and I have
formed my opinion on how students react, depending on the class they attend and
how they are skilled in mathematics, and . . . even in games (yes! in the answer there
is even a flavor of game theory, because smart students unavoidable try to guess the
reason of the question and try to surprise you!) For example unsophisticated students
draw ‘typical’ chords, of the kind you can get searching for the keywords “chord
geometry” in Google Images.1 Hence, for example, a real ‘well posed’ question could
be the following: “what is the length of the chord (in units of the radius) that will
appear in e.g. the 27-th (from left to right, top to bottom) image returned by search
engine?” When instead I propose the the question to students of advanced years I
have quite some expectation that one or more of them will draw a diameter (just a
maximum chord) or even a tiny one almost tangent to the circumference.

Essentially this is all what I have to say about this so called ‘paradox’. The rest
of the note has been written for didactic purposes, in order to show how to evaluate
the probability distributions of interest and how to make the simulations.

2 Basic ‘geometric’ solutions

Let us now start going through the ‘classical’ solutions of the problem, i.e. those
analyzed by Bertrand and which typically appear in the literature and on the web,
plus another two “ruler and compass” methods. The adjective geometric is to dis-
tinguish then from a more ‘physical’ one, based on a kind of realistic game that we
shall discuss in section 5.

2.1 Endpoints uniformly chosen on the circumference

A way to draw ‘at random’ a chord is to choose two points on the circumference and
to join them with a segment. If we indicate the first point with A, corresponding to
a vertex of the equilateral triangle, as shown in Fig. 1, the chords smaller that the
side of the triangle are those with the other end is either in the arc between A and
B or in that between A and C. The resulting probability is thus simply 2/3.

A more complete information about our beliefs that the length falls in any given
interval is provided by the pdf f(l |M1), where M1 stands for ’Model 1’. Since there
is a correspondence between a point on the circle and the angle between the radius
to that point and the x-axis (according to usual trigonometry convention), we can
turn our condition into two angles, θ1 and θ2, uniformly distributed between 0 and
2π. If we are only interested in the length of the chords and not in their position

1https://www.google.it/search?q=chord+geometry&source=lnms&tbm=isch
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Figure 1: Left: circle with inscribed equilateral triangle and chords with one end in A and the
other distributed uniformly around the circumference. Right: geometric construction to show
how to evaluate the length l from θ2, with 0 ≤ θ2π (see text for details).

inside the circle we can fix θ1 at π and consider θ2 in the interval between 0 and π.
The corresponding chord will have a length of (see right plot in Fig. 1)

l =
√

(R +R cos θ2)2 +R2 sin2 θ2

= R
√

(1 + cos θ2)2 + sin2 θ2

= R
√

2 + 2 cos θ2 , (1)

or, more conveniently, the normalized length λ will be

λ =
l

R
=

√

2 + 2 cos θ2 . (2)

The problem is thus how to calculate the pdf 2 f(λ |M1) from

f(θ2 |M1) =
1

π
(0 ≤ θ2 ≤ π) . (3)

We shall use the general rule 3

f(y) =
∫

+∞

−∞

δ (y − g(x)) · f(x) dx , (4)

2Obviously, the pdf’s f(θ2 |M1) and f(λ |M1) are usually expressed by different mathematical
functions, a point very clear among physicists. Mathematics oriented guys like to clarify it, thus
writing e.g. fΛ(λ |M1), fΘ2

(θ2 |M1), and so on. I will add a proper subscript only if it is not clear
from the context what is what.

3An alternative way is to use the ‘text book’ transformation rule, valid for a monotonic function
y = g(x) that relates the generic variable X to the variable Y :

fY (y) = fX(g−1(y))

∣

∣

∣

∣

d

dy
g−1(y)

∣

∣

∣

∣

, (A)

which can be derived in the following way for the general variables X and Y [capital letters indicates
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in which Y is related to the X by Y = g(X), with g() a generic function and δ() the
Dirac delta. In our case we have then

f(λ |M1) =
∫ π

0

δ
(

λ−
√

2 + 2 cos θ2

)

· f(θ2 |M1) dθ2 , (5)

Eq. (5) has the very simple interpretation of ‘summing up’ all elements ‘f(θ2 |M1) dθ2’
that contribute to the ‘same value’ of λ (the quote marks are due to the fact that
we are dealing with continuous quantities and hence we have use the rules of calcu-
lus). This interpretation is very useful to estimate f(λ |M1) by simulation: extract
values of θ2 according to f(θ2 |M1); for each value of θ2 calculate the corresponding
λ; summarize the result by suitable statistical indicators and visualize it with an
histogram.

Making use of the properties of the Dirac delta and taking into account that λ(θ2)
decreases monotonically we get 4

f(λ |M1) =
∫ π

0

δ
(

λ−
√

2 + 2 cos θ2

)

· 1
π
dθ2 (6)

the variable, small letters the possible values – now it becomes important to make clear the different
pdf’s and we shall then use the notation fX() and fY ()]:

g′(x) ≥ 0 If g() is non-decreasing in the range of X we have

FY (y) ≡ P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) ≡ FX(g−1(y)) .

Making use of the rules of calculus we have then

fY (y) =
d

dy
FY (y) =

d

dy
FX(g−1(y)) = fX((g−1(y)) · d

dy
g−1(y)

g′(x) ≤ 0 If, instead, g() is non-increasing we have

FY (y) ≡ P (Y ≤ y) = P (g(X) ≤ y) = P (X ≥ g−1(y)) ≡ 1− FX(g−1(y)) ,

and then

fY (y) =
d

dy
FY (y) = − d

dy
FX(g−1(y)) = −fX((g−1(y))· d

dy
g−1(y) = fX((g−1(y))·

[

− d

dy
g−1(y)

]

where the factorization in the last step is due to the fact that fX() cannot be negative, and
for this reason the absolute value in (A) is only on the second factor.

Equation (A) takes then into account the two possibilities and, let us stress once more, it is valid
for monotonic transformations. We shall use it, to double check our results in footnotes 5, 6 and 7.

4In the step from Eq. (6) to Eq. (7) we are making use of the famous property (at least among
physicists) of the Dirac delta

δ(g(x)) =
∑

i

δ(x− xi)

|g′(xi)|
,

where xi are the real roots of g(x). In our case we have a single root, which we write as x∗, and
hence we get

δ(g(x)) =
δ(x− x∗)

|g′(x∗)| .
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=
∫ π

0

δ(θ2 − θ∗2)
∣

∣

∣

∣

(

d
dθ2

(λ−
√
2 + 2 cos θ2)

)∣

∣

∣

θ2=θ∗
2

∣

∣

∣

∣

· 1
π
dθ2 , (7)

where θ∗2 is the solution of the equation

λ−
√

2 + 2 cos θ2 = 0 , (8)

that is

θ∗2 = arccos

(

λ2

2
− 1

)

. (9)

Being the derivative in Eq. (7)
(

d

dθ2
(λ−

√

2 + 2 cos θ2)

)∣

∣

∣

∣

∣

θ2=θ∗
2

=
sin θ2√

2 + 2 cos θ2

∣

∣

∣

∣

∣

θ2=θ∗
2

(10)

= 1−
(

λ

2

)2

(11)

the pdf of interest is 5

f(λ |M1) =
1

π
· 1
√

1− (λ/2)2
(0 ≤ λ ≤ 2) , (12)

If we apply it to the general transformation rule (4) we obtain

fY (y) =

∫

∞

−∞

δ(y − g(x)) · fX(x) dx

=

∫

∞

−∞

δ(x− x∗)

|g′(x∗)| · fX(x) dx

=
1

|g′(x∗)| · fX(x∗) ,

in which we recognize Eq. (A) of footnote 3, if we note that fX(x∗) is fX(g−1(y)) and the derivative
of g(x) w.r.t. x calculated in x∗ is the inverse of the derivative of the inverse function g−1 (w.r.t.
y!) calculated in y = g(x∗) [for the latter observation just think at the Leibniz notation dy/dx =
1/(dx/dy)].
Anyway, in order to avoid confusion the denominator in Eq. (7) has been written in the most

unambiguous way.
5As an exercise, we can check the result with that obtainable using the ‘text book’ transformation

rule described in footnote 3. In our case, using the general symbol g() introduced there, we have
λ = g(θ2) =

√
2 + 2 cos θ2 and θ2 = g−1(λ) = arccos

(

λ2/2− 1
)

. Applying Eq. (A) of footnote 3 we
have

fΛ(λ) = fΘ2
(g−1 (λ)) ·

∣

∣

∣

∣

d

dλ
g−1(λ)

∣

∣

∣

∣

=
1

π
·
∣

∣

∣

∣

d

dλ
arccos

(

λ2/2− 1
)

)

∣

∣

∣

∣

=
1

π
·
∣

∣

∣

∣

∣

− λ
√

1− (λ2/2− 1)2

∣

∣

∣

∣

∣

,

also yielding Eq. (12). (The minus sign resulting from the derivation is because λ decreases as θ2
increases, as clear from Fig 1.)
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from which we can also calculate the cumulative function

F (λ |M1) ≡
∫ λ

0

f(λ′ |M1) dλ
′ =

2

π
· arcsin

(

λ

2

)

, (13)

both shown in Fig. 2.
We can finally check the probability of interest, and also calculate the probability

of a chord to be smaller than the radius of the circle:

P (λ ≤
√
3 |M1) = F (

√
3 |M1) =

2

π
· arcsin

(√
3

2

)

=
2

π
· π
3
=

2

3

P (λ ≤ 1 |M1) = F (1 |M1) =
2

π
· arcsin

(

1

2

)

=
2

π
· π
6
=

1

3

Simulations of chords with this methods are reported in the top left plot of Figures
19-22 at the end of the paper. Figure 19 shows a sample of random chords. Figure 21
shows the position of the center of the chords and, finally, Fig. 20 is the histogram of
the normalized lengths. Figure 22 plot shows, as an extra curiosity, the distribution
of the distance of the chords from the center of the circle, about which we shall say
more in Appendix A.

2.2 Chords orthogonal to a radius, with center uniformly
distributed along it

The second ‘classical’ algorithm consists in choosing chords orthogonal to a radius
with its center uniformly distributed along it. As we easily see from Fig. 3, the
condition for a chord to be smaller than the side of the triangle (lT ) is that its
distance from the center of the circle, indicated by r in the figure, is above R/2.
That is

P (l ≤ lT |M2) = P (r ≥ R/2 |M2) =
1

2
. (14)

Let us repeat the exercise of evaluating the probability distribution of the lengths
of the chords obtained with this method. Using ρ to indicate r/R, in analogy to
λ = l/R, we have (see figure)

λ = 2
√

1− ρ2 , (15)

with

f(ρ |M2) = 1 (0 ≤ ρ ≤ 1) . (16)

Then, the pdf of interest will be given by

f(λ |M2) =
∫

1

0

δ
(

λ− 2
√

1− ρ2
)

· 1 dρ (17)

=
∫

1

0

δ(ρ− ρ∗)
∣

∣

∣

∣

(

d
dρ
(λ− 2

√
1− ρ2)

)∣

∣

∣

ρ=ρ∗

∣

∣

∣

∣

dρ , (18)

=
1

2ρ∗/
√

1− ρ∗2
(19)
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Figure 2: Probability distribution of λ = l/R of the chords generated with Method 1. The
dashed vertical line indicates λ =

√
3.
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l/2

A
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C

Figure 3: Construction of a chord orthogonal to a radius and distant r from the center of the
circle.

with

ρ∗ =
√

1− (λ/2)2 . (20)

The pdf and the cumulative distribution of interest are then 6

f(λ |M2) =
λ

4
√

1− (λ/2)2
(0 ≤ λ ≤ 2) (21)

F (λ |M2) = 1−
√

1− (λ/2)2 , (22)

plotted in Fig. 4 and from which we can calculate the probabilities of interest:

F (
√
3 |M2) =

1

2
(23)

F (1 |M2) = 1−
√
3/2 ≈ 13.4%. (24)

6Let us repeat the exercise of using Eq. (A) of footnote 3 also in this case, starting now from

λ = 2
√

1− ρ2 ≡ g(ρ), ρ =
√

1− (λ/2)2 ≡ g−1(λ) and fP (ρ) = 1:

fΛ(λ) = fP (g
−1(λ)) ·

∣

∣

∣

∣

d

dλ

√

1− (λ/2)2
∣

∣

∣

∣

= 1 · λ

4
√

1− (λ/2)2
,

that is precisely Eq. (21).

9



[M2 ]

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

λ

f(λ
)

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ

F
(λ

)

Figure 4: Probability distribution of λ = l/R of the chords generated with Method 2. The
dashed vertical line indicates λ =

√
3.
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rA

B

C

Figure 5: As Fig. 3, but with the annulus of infinitesimal width dr drawn at r to show that in
Model 3 the infinitesimal probability dP that the distance of a chord from the center is between
r and r+dr is given by dP ≡ dF (r) = 2πrdr/(πR2) = (2r/R2) dr, and hence dF (ρ) = 2ρ dρ,
or, in our notation, f(ρ |M3) = 2ρ, with ρ = r/R.

2.3 Center of chords uniformly chosen inside the circle, with
chords orthogonal to radius

The third method is a variant of the second, in which the center of the chord, instead
of being generated uniformly along a radius, are generated uniformly inside the circle.
The centers of the chords fall inside the circle of radius R/2 with probability 1/4,
and than (see again Fig. 3)

P (l ≤ lT |M3) = P (r ≥ R

2
|M3) =

3

4
. (25)

Let us repeat once more the exercise of calculating the probability distribution of λ.
The difference with respect to the previous case is that now the pdf of the center of
the chords is proportional to r, since dP ∝ (2πr)dr (see Fig. 5). The pdf of ρ is then,
after proper normalization,

f(ρ |M3) = 2ρ (0 ≤ ρ ≤ 1) . (26)

and the equivalent of Eqs. (17)-(18) and sequel are now

f(λ |M3) =
∫

1

0

δ
(

λ− 2
√

1− ρ2
)

· 2ρ dρ (27)

=
∫

1

0

δ(ρ− ρ∗) · 2ρ
∣

∣

∣

∣

(

d
dρ
(λ− 2

√
1− ρ2)

)∣

∣

∣

ρ=ρ∗

∣

∣

∣

∣

dρ , (28)

=
2 ρ∗

2ρ∗/
√

1− ρ∗2
=
√

1− ρ∗2 (29)

11



with the same ρ∗ of Eq. (20), thus leading to 7

f(λ |M3) =
√

1− (1− (λ/2)2) =
λ

2
. (30)

The result can be then summarized as

f(λ |M3) =
λ

2
(0 ≤ λ ≤ 2) (31)

F (λ |M3) =
λ2

4
, (32)

from which we obtain

F (
√
3 |M3) =

3

4
(33)

F (1 |M3) =
1

4
. (34)

2.4 Chords with length uniformly distributed between 0 and

2R

It is curious that the method of simply taking chords with length uniformly dis-
tributed up to the length of the diameter is usually not taken into account, although
the idea is not bizarre at all. Indeed this could even be the natural procedure to
someone used to operate in classical geometry with ruler and compass: place the
needle of the compass in a point of the circumference (e.g. A in Fig. 7) to define one
endpoint of the chord; then place the pencil lead along the diameter impinging the
circumference in A; finally rotate the compass in either direction (anticlockwise in
the figure) and find the second endpoint of the chord.

The probability distribution of λ (see Fig. 8) as well as the probabilities of interests
are in this case really trivial:

f(λ |M4) =
1

2
(0 ≤ λ ≤ 2) (35)

F (λ |M4) =
λ

2
(36)

F (
√
3 |M4) =

√
3

2
(37)

F (1 |M4) =
1

2
. (38)

7Let us repeat once more the exercise done in footnotes 5 and 6, since in this case the starting
pdf is not a constant, being fP (ρ) = 2ρ. All the rest is like in footnote 6. Here it is:

fΛ(λ) = fP (g
−1(λ)) ·

∣

∣

∣

∣

d

dλ

√

1− (λ/2)2
∣

∣

∣

∣

= 2
√

1− (λ/2)2 · λ

4
√

1− (λ/2)2
=

λ

2
.
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Figure 6: Probability distribution of λ = l/R of the chords generated with Method 3. The
dashed vertical line indicates λ =

√
3.
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A

B

C

l

l

Figure 7: A way to draw chords with lengths uniformly distribute between 0 and 2R.

Nevertheless, although the results from this extraction model are very easy, if we
ask someone to make a computer program to draw cords ‘at random’, I would not
bet 8.7 to 1.3 (that is ≈

√
3/2 to 1 −

√
3/2) that a chord will be smaller than the

side of the triangle! This will be the subject of section 4.

2.5 A variant of Method 4

Using ruler and compass it is almost automatic that, after have drown an arc in one
direction to intercept a circumference, one rotates the tool the other direction, thus
identifying the two points E andD of Fig. 9, which then become the natural endpoints
of a chord (the reader understands that at this point the use of the adjective ‘natural’
is at limit of being sarcastic). The length l′ of this chord is related to the segment l

defined8 by the opening of the compass by l′ = 2 l
√

1− (l/2R)2, or, in units of the
radius,

λ′ = 2λ
√

1− (λ/2)2. (39)

This relation is shown in the right plot of Fig. 9, from which we can calculate the
usual probability that λ′ is smaller that

√
3. This is equal to the probability that l

is smaller than 1, that is 1/2, plus the probability that it is larger that
√
3, that is

(2−
√
3)/2. The result is then (3−

√
3)/2 ≈ 63.4%, that do not correspond to none

8The points ADF define a rectangular triangle. The length of the segment AG is then equal to
l2/2R, while the square of the length of DG is equal to the product of the lengths of AG and of
GF . It follows then

l′ = 2× l
√

l2/2R · (2R− l2/2R) .
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Figure 8: Probability distribution of λ = l/R of the chords generated with Method 4. The
dashed vertical line indicates λ =

√
3.
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Figure 9: An alternative way to drawn chords with ruler and compass. Left: construction of
the chord. Right: relation between the l and l′ (both in units of the radius).

of the previous methods. Similarly, the probability that the chord is smaller than the

radius, or that λ′ < 1, is equal to the probability that λ is smaller than
√

2−
√
3,

plus the probability that it is larger than
√

2 +
√
3, that is 9

√

2−
√
3

2
+

2−
√

2 +
√
3

2
= 1− 1√

2
≈ 29.3% . (40)

(This second calculation is important in order to double check the result that we shall
get later, being the resulting formulae not very ‘nice’.)

Also in this case it is possible to arrive to a closed expression of the pdf. We
do here the exercise mainly to show a case in which the property of the Dirac delta
needed to make the transformation involves more than one root, as evident from the
non-monotonic relation shown in Fig. 9. Here are the details:

f(λ′ |M5) =
∫

2

0

δ
(

λ′ − 2λ
√

1− (λ/2)2
)

· 1
2
dλ

=
∫

2

0





δ(λ− λ∗

1)

| d
dλ
(−2λ

√

1− (λ/2)2)|λ=λ∗

1

+
δ(λ− λ∗

2)

| d
dλ
(−2λ

√

1− (λ/2)2)|λ=λ∗

2



 · 1
2
dλ

with

λ∗

1 =
√

2−
√
4− λ′2 (41)

9It is remarkable that
√

2 +
√
3−
√

2−
√
3 =

√
2, an identity used to rewrite Eq. (40) in a more

compact form.

16



λ∗

2 =
√

2 +
√
4− λ′2 . (42)

The result is, continuing to indicate in this subsection the chord of interest with λ′,

f(λ′ |M5) =

√

2 +
√
4− λ′2 +

√

2−
√
4− λ′2

4
√
4− λ′2

. (43)

The cumulative distribution can be obtained making the usual integral, although the
integrand is in this case particularly nasty.10. In reality the cumulative distribution
can be calculated extending the reasoning followed above to calculate the probability
that the chord is smaller than the side of the triangle and than the radius. In fact,
remembering the transformation from λ to λ′ plotted in Fig. 9 and using capital
letters to distinguish the variables from their values, we have

P (Λ′ ≤ λ′) = P
(

Λ ≤
√

2−
√
4− λ′2

)

+ P
(√

2 +
√
4− λ′2 ≤ Λ ≤ 2

)

(44)

=

√

2−
√
4− λ′2

2
+

2−
√

2 +
√
4− λ′2

2
, (45)

from which it follows

F (λ′ |M5) =
1

2

(

2 +
√

2−
√
4− λ′2 −

√

2 +
√
4− λ′2

)

, (46)

that, derivated, reproduces Eq. (43). Pdf and cumulative functions are shown in
Fig. 10. The two probabilities of interest are then

P (λ′ ≤
√
3 |M5) =

3−
√
3

2
≈ 0.634 (47)

P (λ′ ≤ 1 |M5) = 1− 1√
2
≈ 0.293 . (48)

Results based on simulations are shown in Figs. 19-22.

2.6 Summary of the results obtained by the various methods

The results obtained by the ‘geometric’ methods M1-M5 are summarized in Tab. 1
and in Fig. 11, together with the more physical one M6, that will be discussed in
section 5. In the table we have also added, for completeness, the expected values and
the standard deviations of the probability distributions. More details, obtained by
simulations, are shown in Figs. 19-22.

10Wolfram Mathematica provides the following result:

F (λ′ |M5) =
1

2λ′

(

2λ′ − 2

√

2−
√

4− λ′2 −
√

(4− λ′2) · (2 −
√

4− λ′2)

+2

√

2 +
√

4− λ′2 −
√

(4− λ′2) · (2 +
√

4− λ′2)

)

,

that, although apparently quite different from Eq. (46), can be checked to be numerically equivalent
to it.
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Figure 10: Probability distribution of λ = l/R of the chords generated with Method 5. The
dashed vertical line indicates λ =

√
3.
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Model f(λ) F (λ) E(λ) σ(λ) P(λ ≤
√
3) P (λ ≤ 1)

M1
1

π
√

1−(λ/2)2
2
π · arcsin λ

2 4/π
√

2− 16/π2 2/3 1/3

(≈ 1.27) (≈ 0.62) (≈ 0.67) (≈ 0.33)

M2
λ

4
√

1−(λ/2)2
1−

√

1− (λ/2)2 π/2
√

8/3− π2/4 1/2 1−
√
3/2

(≈ 1.57) (≈ 0.45) (= 0.5) (≈ 0.13)

M3 λ/2 λ2/4 4/3
√
2/3 3/4 1/4

(≈ 1.33) (≈ 0.47) (= 0.75) (= 0.25)

M4 1/2 λ/2 1 1/
√
3

√
3/2 1/2

(≈ 0.58) (≈ 0.87) (= 0.5)

M5 [∗] [∗∗] 4/3 4/(3
√
5) (3−

√
3)/2 1− 1/

√
2

(≈ 1.33) (≈ 0.60) (≈ 0.63) (≈ 0.29)

M6
2
π

(λ/2)2√
1−(λ/2)2

[∗ ∗ ∗] 16/3 π
√

3− 256/9π2 2/3−
√
3/2 π 1/3−

√
3/2 π

(≈ 1.70) (≈ 0.34) (≈ 0.39) (≈ 0.058)

[*] f(λ |M5) =
(
√

2 +
√
4− λ2 +

√

2−
√
4− λ2

)

/(4
√
4− λ2)

[**] F (λ |M5) =
1
2

(

2 +
√

2−
√
4− λ2 −

√

2 +
√
4− λ2

)

[***] F (λ |M6) =
2
π arcsin (λ/2)− λ

π

√

1− (λ/2)2

T
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Figure 11: Probability density functions and cumulative function of the lengths of the chords
in units of the radius of the circle for the extraction models considered in the text (the order
of the models in the legend corresponds to the decreasing order of F (1 |Mi) and f(0.1 |Mi)).
The dashed lines correspond to the ‘averages’, on which we shall back in Appendix C.
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3 A chord length generator (and its implementa-

tion in R)

In reality, if we are just interested in making a programs with generates the length of
the chords ‘at random’, using one of the five methods we have seen, there is no need
to go through all the steps of the operational descriptions of the algorithms. We can
just use the probability distributions, summarized in table 1. In order to do that we
need a premise, highlighted in the following subsection.

3.1 A curious transformation and its practical importance

Imagine to have a generic continuous variable X whose uncertainty is described by
the pdf fX(x) and the cumulative distribution FX(x) (in this subsection we shall
use the more precise notation introduced in footnote 3). We might think at a new
variable Y , related to X by Y = FX(X), that is

y = g(x) = FX(x) , (49)

written in a way to stress that in this case FX() plays now the role of the generic
mathematical function g(), independently of its probabilistic meaning.

Making use of Eq. 4 we have

fY (y) =
∫

+∞

−∞

δ (y − FX(x)) · fX(x) dx . (50)

Being FX() monotonic and not-decreasing with derivative equal to fx(), we have then

fY (y) =
∫

+∞

−∞

δ(x− x∗)

F ′

x(x
∗)

· fX(x) dx =
fX(x

∗)

fX(x∗)
= 1 . (51)

This is a great result, that we double check following the same reasoning used in
footnote 3:

FY (y) ≡ P (Y ≤ y) = P (Y ≤ FX(x)) = P (X ≤ F−1

X (y)) ≡ FX

(

F−1

X (y)
)

= y

fY (y) ≡
d

dy
FY (y) =

d

dy
y = 1 .

Independently of the pdf fX(), the variable Y defined in this way is uniformly dis-
tributed between 0 and 1. It follows that the pdf of a variable defined as X = F−1

X (Y )
will be fx(x).

This observation suggests a simple algorithm, very useful in those cases in which
the cumulative function is easy to invert, to make a (pseudo) random number gen-
erator to produce numbers such that our confidence on the occurrence of X = x is
proportional to f(x):

x = F−1

X (u) , (52)

where u stands for the occurrence of a uniform (pseudo) random generator that gives
numbers (apparently) ‘at random’ between 0 and 1 (random number generators of
this kind are available in all computational environments.)
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3.2 Application to the chord problem

Fortunately we can apply this trick to all probability distributions of the chords found
in the previous sections. The generic rule (52) gets then implemented as follows.

M1: λ = 2 sin (πu/2) .

M2: λ = 2
√
2u− u2 .

M3: λ = 2
√
u .

M4: λ = 2u .

M5: λ = 2
√
1− 2u2 + u4 .

And this is then, for example, the resulting function written in the R language [6]:

rlchords <- function(n, meth) {

u <- runif(n)

switch(meth,

2*sin(pi*u/2),

2*sqrt(2*u-u^2),

2*sqrt(u),

2*u,

2*sqrt(1-2*u^2+u^4))

}

Issuing then the following instruction from an R console (’>’ stands for the prompt)
you can finally get an histogram similar to the left top one of Fig. 20:
> lambda=rlchords(100000,1); hist(lambda, nc=200, col=’red’)

Or you can evaluate mean, standard deviation and fraction of occurrences with λ
smaller than

√
3:

> mean(lambda)

> sd(lambda)

> length(lambda[lambda<sqrt(3)])/length(lambda)

4 What should one expect from a computer draw-

ing program?

“Mater artium necessitas”

The original Bertrand problem is about drawing chords and not just telling
numbers between 0 and 2 (taking a unitary radius). Therefore the question we have
to ask is really to draw the chord, by hand of by a computer program.11 In the

11Nevertheless, the lengths provided by the ‘chord generator’ presented in the previous section
do provide valid answers, since the pdf’s have been derived using some geometric rules to produce
chords and not with an abstract algorithm to produce numbers between 0 and 2, like those you
would get e.g. with the following R command
> n=10; lambda = 2*sin(runif(n, 0, pi))^2

22



introduction I have told what I more or less expect when I ask the practical question,
providing a sheet of paper with a pre-designed circle, and I must say that in the last
years I had no surprises that induced me to change the model I formed in my mind.
You may form yours with practice.

More recently I have also asked PhD students to write “chords generators” with
their preferred computer language. As it easy to guess, the choice goes to the al-
gorithm easier to implement, which for physics students is Method 1, since they
are familiar with circular motion and with transformations from polar to Cartesian
coordinates.

The other methods are somehow tedious because, if taken literally, they require
several steps with formulae not used everyday, that one needs to derive. For example
Method 2, requires literally: 1) to choose a radius at random; 2) to chose a point on
the radius; 3) find the equation of the line orthogonal to the radius in that point; 4)
find the interceptions of the line with the circle. Indeed – I have confess with some
shame – the first time I was playing with the Bertrand problem, I was implementing in
R these detailed procedures. When during this year course I tried to make an Android
app to draw ‘random’ chords on a circle, using App Inventor [7], I was horrified by
the formulae I had to ‘write’ with that tool. So I initially implemented only Method
1. After a while I also implemented Method 2, but not following the procedures
described above. The trick was to extract a point along the horizontal diameter, thus
coinciding with the abscissa and operate then a random rotation. In that way It was
possible to reuse somehow the ‘blocks’ (the graphical programming elements shown
e.g. in Fig. 12) developed for Method 1.

The rest of this section is devoted to simulation issues, showing how to avoid
pedantic procedures and without pretending that the suggested algorithms are the
‘best’ in some sense that should be better defined. (My suggestion to students is that
the for everyday use the ’fastest’ algorithm is the one that they write more rapidly
and understand better – unless you need it for special purposes, it is a waste of time
to spend several hours of your life to write a piece of program that provides the result
in microseconds instead then in tens, hundreds or even thousands of milliseconds).

4.1 Model 1 (M1)

As stated above, this is the one that appears the simplest (to implement in a program)
to physics students, to most colleagues and to myself. Here is how it appears in R (n
is the number of chords).
> ph1 <- runif(n, 0, 2*pi)

> ph2 <- runif(n, 0, 2*pi)

> p1 <- cbind(cos(ph1), sin(ph1)) # [1]

> p2 <- cbind(cos(ph2), sin(ph2)

> l <- sqrt( (p2[,1]-p1[,1])^ 2 + (p2[,2]-p1[,2])^ 2)

The result is a ‘vector’ l of n lengths of chords (in units of the radius). Plus we have
the matrices of interception points (each raw is a point).
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4.2 Model 2 (M2)

In this case we start extracting x1 = x2 between −1 and 1 and evaluate the corre-
sponding ordinates on the circumference, i.e.
> p1 <- p2 <- runif(n, -1, 1)

> p1 <- cbind(p1, sqrt(1-p1^ 2)) # [2]

> p2 <- cbind(p2, -sqrt(1-p2^ 2))

Then we define a random rotation angle and add it to the polar angles calculated
from the points:
> phr <- runif(n, 0, pi)

> ph1 <- phr + atan2(p1[,2], p1[,1])

> ph2 <- phr + atan2(p2[,2], p2[,1])

At this point we have reuse exactly the last three lines of code of the previous method,
i.e. starting from the line tagged by “# [1]”. The resulting App Inventor blocks are
shown in Fig. 12.

4.3 Model 3 (M3)

To chose a point uniformly inside the circle we could extract uniformly x and y
between −1 and 1 and discard the points which are outside the circle of radius 1.
But we can use of the previous code (or App Inventor blocks) if we extract a point
along the radius with pdf f(ρ) = 2ρ, as we have learned in subsection 2.3, making
use of the technique learned in subsection 3.1.
> rho <- sqrt(runif(n))

But, in order to reuse the previous code, we have to invert at random (with probability
1/2) the sign of this numbers. Technically this can be done in R creating a vector of
random −1’s and 1’s obtained by a binomial generator and multiplying element by
element. Thus our starting abscissas will be
> p1 <- p2 <- rho * ( rbinom(n, 1, 0.5)*2 - 1 )

After this, we continue exactly as in the second line of R code of the previous method,
tagged by “# [2]”. The implementation of this variation in App Inventor is shown
in Fig. 13.

4.4 Model 4 (M4)

Also in the case of the fourth method, we can reuse the code written for Method 2,
without having to calculate the intersections of two circles. In fact the first endpoint
is (−R, 0), while the second can be easy found using elementary geometry. With the
help of Fig. 14 we can recognize a useful rectangular triangle and then make use of a
famous theorem of geometry. The projection p is then l2/2R and then the abscissa
x2 of the intersection is equal to x2 = p − R = l2/2R − R, and the corresponding

ordinate is y2 =
√

R2 − x2
2. Then we can rotate ‘at random’ the points as done above

describing Method 2. These are the two lines of R code that replace the first line of
code above
> p1 <- rep(-1, n)
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Figure 12: App Inventor blocks for the core of Method 2. (The minus sign of the y argument of
atan2 is due to the fact that in App Inventor the y coordinate inside a ‘canvas’ is upside down,
being the origin in the top left corner, while the ‘heading’ angle follows the usual convention.
Note also how, contrary to other scientific libraries, the trigonometric functions use degrees.)
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Figure 13: App Inventor blocks to turn Method 2 into Method 3 (see text).

A

l

p

x

Figure 14: A sketch which show how to calculate the abscissa of the the interception (x) by
simple geometry (see text).
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> p2 <- runif(n, 0, 2)^ 2/2 - 1

and from the second line, tagged by “# [2]”, it will be all the same.

4.5 Model 5 (M5)

The difference with the previous model is that now the abscissa of the two points
(before rotation!) are the same, while the ordinates are one the opposite opposite of
the other, as in Model 2. We have then
> p2 <- p1 <- runif(n, 0, 2)^ 2/2 - 1

and then we continue from the second line of the code of Model 2, tagged by “# [2]”.

Figure 15: Mikado sticks thrown at random on a pattern of circles.

5 A physical model: throwing mikado sticks on a

pattern of circles

The authors of Ref. [5] claim to have found a ‘conclusive physical solution’ to the
Bertrand problem, but I have strong doubts that they have ever tried to implement
their model in a real experiment. Something which seems to me more realistic is the
kind of game sketched in Fig. 15: a pattern of circles 12 on a table, or on the floor,

12In Fig. 15 all circles have the same size, but this is not a necessary requirement, as it will be
clear in a while.
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r0

r

β
α

Figure 16: Sketch of the mikado experiment to show how to evaluate the distance of the chord
from the center from the position of the center of the stick and its orientation (see text).

on which we throw mikado sticks, or toothpicks, needles or something similar. The
only, obvious, conditions is on the minimum length of the sticks, that has to be at
least the double of the maximum diameter of the circles.13

If we throw ‘ad random’ the sticks, somehow towards the center of the pattern
in order to avoid complications with boundary conditions, we expect their centers
and their orientations ‘uniformly’ distributed (the former in the plane, the latter
in angle w.r.t. a given direction). We consider only sticks whose reference point,
marked somehow, is inside one circle and consider the resulting chords defined by the
intersection of the stick with the circumference of that circle. As we can see from
the figure, the efficiency is rather high (and, as a byproduct, we can try to estimate
empirically the area of the regions between circles, but this is another story. . . ).

Evaluating the pdf of the expected chords length might be complicated, but for-
tunately we can make use of some of our previous results. Let us indicate now with
r0 the distance from the center of the stick to the center of the circle and with r
the distance of the chord from the center of the circle (see Fig. 16). The respective
quantities in units of R are then ρ0 = r0/R and ρ = r/R.

By the hypothesis inherent to the throwing mechanism the center of the stick
is uniformly distributed in the circle. This implies, as we already know, that high
values of ρ0 are more probable than small ones, namely f(ρ0 |M6) = 2ρ0. The
fractional distance r is related to r0 by r = r0 sinα, where the angle α, defined in the
construction in Fig. 16, is uniformly distributed between 0 and π/2. These are then

13Also this condition is not necessary, if we think to prolong the stick in either end by a ruler
to draw the chords. And, finally, it is not even required that the reference point, needed to decide
inside which circle the chord has to be drawn, has to coincide with the center of the stick. The
formulation in the text is, or at least so seems to me, the easiest to be implemented in a real ‘game’,
similar to the famous “Buffon’s needle”.
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our starting conditions 14

ρ = ρ0 sinα (53)

f(ρ0 |M6) = 2ρ0 (0 ≤ ρ0 ≤ 1) (54)

f(α |M6) =
1

π/2
=

2

π
(0 ≤ α ≤ π

2
) . (55)

We can then calculate the probability distribution of ρ and make then use of the
reasoning applied in Method 3 to evaluate the probability distribution of λ. Indeed,
for a given ρ0, the pdf of ρ, conditioned by the value of ρ0, will be given by

f(ρ |M6, ρ0) =
∫ π/2

0

δ(ρ− ρ0 sinα) · f(α) dα (56)

=
∫ π/2

0

δ(α− α∗)

ρ0 cosα∗
· 2
π
dα , (57)

with α∗ = arcsin(ρ/ρ0), from which it follows

f(ρ |M6, ρ0) =
2

π ρ0
√

1− (ρ/ρ0)2
(58)

=
2

π
√

ρ20 − ρ2
. (59)

Having f(ρ |M6, ρ0) and f(ρ0 |M6) we can then evaluate f(ρ |M6) as

f(ρ |M6) =
∫

1

ρ
f(ρ |M6, ρ0) · f(ρ0 |M6) dρ0 , (60)

in which we have to pay attention to the condition ρ ≤ ρ0. The result is

f(ρ |M6) =
∫

1

ρ

2

π
√
ρ0 − ρ2

· 2ρ0 dρ0 (61)

=
∫

1

ρ

4 ρ0

π
√

ρ20 − ρ2
dρ0 (62)

=
4

π

√

1− ρ2 . (63)

Having calculated the pdf of the distances of the chords from the center of the circle,
we continue as in Eq. (27), thus obtaining

f(λ |M6) =
∫

1

0

δ
(

λ− 2
√

1− ρ2
)

· 4
π

√

1− ρ2 dρ (64)

14An alternative way would be to use the angle β defined in Fig. 16, ranging between 0 to π, with
f(β |M6) = 1/π. The angle α inside the rectangular triangle will be equal to β if β is smaller than
π/2, and π−β elsewhere. The relation (53) would then be replaced by ρ = ρ0 sinβ and the integral
(56) replaced on the equivalent one in dβ between 0 and π, with the factor 2/π in the integrand
replaced by 1/π, apparently leading to results differing by a factor of 2. This apparent contradiction
is resolved noted that transformation rule of the Dirac delta has now two roots, β∗

1 = arcsin(ρ/ρ0)
and β∗

2 = π− arcsin(ρ/ρ0). But, since | cosβ∗

1 | = | cosβ∗

2 |, we have two identical contributions, thus
exactly compensating the missing factor 2.
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=
∫

1

0

δ (ρ− ρ∗)

2ρ2/
√
1− ρ2

∣

∣

∣

ρ=ρ∗

· 4
π

√

1− ρ2 dρ (65)

=
4/π

√

1− ρ∗2

2ρ∗/
√

1− ρ∗2
=

2

π

1− ρ∗2

ρ∗
, (66)

with the usual ρ∗ =
√

1− (λ/2)2. We get finally

f(λ |M6) =
2

π

(λ/2)2
√

1− (λ/2)2
(67)

F (λ |M6) =
2

π
arcsin (λ/2)− λ

π

√

1− (λ/2)2 , (68)

shown in Fig. 17 and from which we can calculate the usual indicators

E(λ |M6) =
16

3 π
≈ 1.70 (69)

σ(λ |M6) =

√

3− 256

9 π2
≈ 0.34 (70)

P (λ ≤
√
3 |M6) =

2

3
−

√
3

2 π
≈ 0.39 (71)

P (λ ≤ 1 |M6) =
1

3
−

√
3

2 π
≈ 0.058 . (72)

5.1 Remarks on simulation

We have seen in section 3 how to write chord length generators for the different
methods without having to go through the steps of drawing the chords, while we have
learned in section 4 how to reuse the code to draw the chords. Here the situation
seems a bit more complicate, but there are fortunately some ways out.

5.1.1 Random chord length generator

The generators were based on the trick of inverting the cumulative distribution for a
random value uniform between 0 and 1. However Eq. (68) is not easily invertible and
we cannot use that trick.15 We could then go one step behind, and try to generate
the values of ρ, distance of the chords from the center, and from each ρ calculate the
corresponding λ. But also in this case the cumulative distribution of interests is not
invertible, being equal to

F (ρ, |M6) =
2

π

(

ρ
√

1− ρ2 + arcsin ρ
)

. (73)

But we could make use of the hit/miss method, simply described with the help of
Fig. 18. The left plot shows (black curve) the pdf f(ρ) inside a rectangular defined

15One might think to use the hit/miss method, described in the text. But this is also not possible
to be used since f(λ) is divergent for λ → 2, although its integral is finite.
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Figure 17: Probability distribution of λ = l/R of the chords generated with Method 6
(‘mikado’). The dashed vertical line indicates λ =

√
3.
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Figure 18: Extracting ρ according to its pdf using the hit/miss Monte Carlo technique. (But
we shall make direct extractions inside the quarter of circle! See text.)

by the range of ρ and the range of its function. We the throw ‘at random’ points
uniformly inside the rectangle and draw in green those which are between f(ρ) and
the abscissa, in red those which are ’outside’. We draw then some vertical lines to
identify ‘slides’ in ρ. We see that the number of the green point in each slice is
proportional to f(ρ) calculated in the middle of the slide. We can imagine then the
slides very thin, with the usual procedures done in calculus, to convince ourselves
that the probability that a green point is falls inside an slides is proportional to f(ρ).
This is a well known technique to make extractions according to a given pdf, at the
expenses of some inefficiency, which in our case is tolerable (just the fraction of red
points). It becomes instead not tolerable if the pdf is very peaked somewhere and
assumes very small values in the rest of the range of the variable. Or it become
impossible when the pdf diverges and the rectangle become infinite high, as it would
be with λ in this method.

To conclude, in our case the hit/miss technique would be appropriate, but we can
do even better, if we observe that the factor 4/π is irrelevant for the reasoning. If
we drop it, we are left with

√
1− ρ2, which describe a circle in the first quadrant, as

shown in the right plot of the figure, with the ordinate indicated now by h(ρ). But we
already know how to extract points uniformly inside a circle without having to throw
points in the square circumscribed! What we need is just to limit the extraction in a
quarter of the circle, and this can be easily achieved limiting the polar angle between
0 and π/2. Here is directly the R command to generate a single value of ρ, followed
by the corresponding value of λ
> rho=sqrt(runif(1))*cos(runif(1,0,pi/2))

> lambda <- 2 * sqrt(2 - rho^ 2)

and finally in a single step, with n values:
> lambda <- 2 * sqrt(2 - runif(n)*cos( runif(n,0,pi/2)^ 2 )
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Here is then the new version of our generator with all six models implemented:

rlchords <- function(n, meth) {

u <- runif(n)

switch(meth,

2*sin(pi*u/2),

2*sqrt(2*u-u^2),

2*sqrt(u),

2*u,

2*sqrt(1-2*u^2+u^4),

2*sqrt(1-u*cos(runif(n, 0, pi/2))^2))

}

5.1.2 Random chord drawer

Sampling ρ is the key to simulate chords inside the circle selected by the reference
point, reusing the code written for other methods. We can then easily extend what
we have done in section 4. All what we have to do is to replace in the the code for
Model 3 (subsection 4.3) the line
> rho <- sqrt(runif(n))

with
> rho <- sqrt(runif(n, 0, 1))*cos(runif(n, 0, pi/2))

and the game is over. Results from simulations are shown in Figs. 19-22.

6 Conclusions

Arguing, in abstract terms, about the solution of the Bertrand problem – not a para-
dox! – is as scientific as the Byzantine debates about the sex of angels. Nevertheless,
the question can still have a sense if framed in a practical contest, asking people to
draw, by hand or with the help of computer graphics a chord and betting on the
result.

Several random drawing methods have been analyzed in great detail, in order
to show several issues related to the evaluation of the probability distributions of
functions of variables whose pdf was assumed and to the Monte Carlo simulation.

Of the six methods analyzed, five can be classified as ‘geometrical’, although they
are not abstruse, in my opinion. In particular the two “with ruler and compass” seem
to me even more ‘natural’ (or at least suited to a class of people) that the ‘classical’
Method 3.

Finally, the only sound experiment I could think about (but perhaps I miss of
fantasy) leads to a solution different than the claimed ‘conclusive’ physical solutions
of the ‘paradox’.[4, 5]
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Figure 19: Samples of chords generated the various methods.
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Figure 21: Sample of centers of the chords generated with the various methods
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Figure 22: Distribution of the distance of the chords from center of the circle in samples
produced with the various methods.
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Figure 23: Samples of chords generated the various methods with respect to a preferred axis
(“without rotation” – see text).
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Appendix A: Distributions of chord distances from

the center of the circle

Out of the six methods analyzed above, one (M2) is defined in terms of the distance
between chord and center of the circle, while in two others ((M3) and (M6)) we have
learned that this is a useful quantity to simplify the solution of the problem. The
three pdf’s of the normalized distances related to these three cases are

f(ρ |M2) = 1 (74)

f(ρ |M3) = 2 ρ (75)

f(ρ |M6) =
4

π

√

1− ρ2 , (76)

while we have shown in Fig. 22 the results of the simulation for all six methods.
For completeness, let us do the exercise to calculate the pdf also for the other three
methods. This is in fact easy, at least in principle, because there a simple geometric
relation between the length of a chord and its distance from the center, since the chord
identifies and equilateral triangle. The only technical problem is that of getting a
closed expression for the pdf. Let us remind here the relations between length λ of
the chord and distance ρ from the center, both in units of the radius.

ρ =
√

1− (λ/2)2 (77)

λ = 2
√

1− ρ2 , (78)

which we shall use in the following subsections. In fact, using our transformation rule
with the Dirac delta, f(ρ) is given by

f(ρ |Mi) =
∫

2

0

δ
(

ρ−
√

1− (λ/2)2
)

· f(λ |Mi) dλ (79)

=
∫

2

0

δ
(

ρ−
√

1− (λ/2)2
)

δ(λ− λ∗)
∣

∣

∣

d
dλ

√

1− (λ/2)2
∣

∣

∣

λ=λ∗

· f(λ |Mi) dλ

=
4
√

1− (λ∗/2)2

λ∗
· f(λ∗ |Mi)

=
2 ρ√
1− ρ2

· f(λ∗ |Mi) (80)

being λ∗ = 2
√
1− ρ2.

Here are the result for the three models of interest:

f(ρ |M1) =
2 ρ√
1− ρ2

· 1

π
√

1− (λ∗/2)2)
(81)

=
2 ρ√
1− ρ2

· 1

π ρ

=
2

π

1√
1− ρ2

(82)
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f(ρ |M4) =
2 ρ√
1− ρ2

· 1
2

(83)

=
ρ√

1− ρ2
(84)

f(ρ |M5) =
2 ρ√
1− ρ2

·

√

2 + 2
√

1− (λ∗/2)2 +

√

2− 2
√

1− (λ∗/2)2

4× 2
√

1− (λ∗/2)2
(85)

=
2 ρ√
1− ρ2

·
√
2 + 2ρ+

√
2− 2ρ

8 ρ
(86)

=

√
2 + 2ρ+

√
2− 2ρ

4
√
1− ρ2

, (87)

where the form
√

4− λ∗2 have been written as 2
√

1− (λ∗/2)2, in which we easily
recognize 2ρ.

The results are summarized in Fig. 24. As it happened for the pdf’s of λ, some
of them are divergent for ρ → 1, but it has been checked that all integrals from 0 to
1 are finite and indeed yield 1, as it must be.
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Appendix B: A chord length generator based on the

Beta distribution

If it makes no sense to talk about the ‘correct’, or even the ‘best’, solution in abstract
terms, it has also little sense to make an inventory of all possible solutions. The
reason on the six ones shown here, let us repeat it again, was the following:

• modelsM1, M2 andM3 are the ‘classical’ ones, i.e. those proposed by Bertram
himself;

• model M4 is as simple as the other three (and certainly, in my opinion, much
more natural to think about than M3), justified by the custom of a ruler and
compass geometer;

• model M5 is a variation of M4, in which the endpoints of the chord are defined
by the two intersections of the pencil lead when the compass is rotated clockwise
and anticlockwise;

• finally, model M6 was an attempt to think about of a chord drawing game, in
analogy to Buffon’s needle.

In all cases (even in the sixth one, that could be indeed played in practice), in order
refer to real cases, the question has been turned into the result of a generator that
a ‘student’ (or anyone else who can write a computer program) might write. And,
although at very beginning one would think about mainly to M1, and perhaps M2,
once the student start think about the problem, and reuse of programming code, we
have to be afraid (always think to bets!) that more sophisticated extraction methods
could be implemented.

Finally, once the student realizes that what matters is the distribution of the
normalized distance, shown in the previous appendix, the number of methods the
students can easily implement easily diverges. One only needs an easy generator of
possible different shapes of pdf’s of a quantity in the range between 0 and 1. The
easiest possibility is provided by the Beta distribution, defined as

f(x |Beta(r, s)) = 1

β(r, s)
xr−1(1− x)s−1

{

r, s > 0
0 ≤ x ≤ 1 .

, (88)

in which the denominator, equal to

β(r, s) =
∫

1

0

xr−1(1− x)s−1 dx ,

defines the beta function. Examples of the beta distributions are shown in Fig. 25
(I refrain from shown the resulting chord distributions. . . ). Here is just how a chord
length generator could be implemented in R:
> rlchordsBeta <- function(n, r, s) 2*sqrt(1-rbeta(n, r, s)^ 2)

And here it is how to recover very easily the simulations with Methods 2 and 3:
> n=100000; hist(rlchordsBeta(n, 1, 1), nc=200, col=’blue’)

> hist(rlchordsBeta(n, 2, 1), nc=200, col=’green’)

Other fancy distributions are left to the fantasy of the reader.
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Figure 25: Examples of Beta distributions for some values of r and s. The parameters in
bold refer to continuous curves.
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Appendix C: Turning the Bertrand problem into an

inferential-predictive game

“I play at écarté with a gentleman whom I know to be perfectly honest.
What is the chance that he turns up the king?

It is 1/8. This is a problem of the probability of effects.
. . .

I play with a gentleman whom I do not know.
He has dealt ten times, and he has turned the king up six times.

What is the chance that he is a sharper?
This is a problem in the probability of causes.

It may be said that it is the essential problem of the experimental method”
(Henry Poincaré)

The Bertrand problem can be rephrased in the terms of causes and effects of the above
quote. If we assume a cause (a precise random drawing model) we are uncertain about
the effects (the chord length). But we might also be uncertain about the model. And
usually we do not consider all possible models equally likely, where “all model” only
means “all models of which we can think about”. Usually there will be models to
which we believe more and models to which we believe less, and then we rank the
possibility with a degree of belief, or probability.

As a consequence, the uncertainty about the occurrence of each possible effect
(the length of a chord, rounded somehow) has to take into account the probability
of each value of the length, given the model, and the probability of the model itself.
This is done using the following rule of probability theory:

f(λ | I) =
∑

i

f(λ |Mi, I) · P (Mi | I) , (89)

where the background information I has been made here explicit to remind that
probability is always conditional probability. The same is true for the probability
that the length of the chord is smaller than any given value, that is

F (λ | I) =
∑

i

F (λ |Mi, I) · P (Mi | I) . (90)

In both cases we have a weighted average, with weights equal to the probabilities
of the models. The case of equal initial probabilities of all six models taken in
consideration (we shall see in a while how they change) they are both plotted with
dashed lines in figure 11. In particular, for the original Bertrand question we have,
in units of the radius,

P (λ ≤
√
3 | I) =

∑

i

P (λ ≤
√
3 |Mi, I) · P (Mi | I) . (91)

But now, let us assume that we know a chord length, generated from one of the
possible models. Our problem is not any longer about the length of that chord,
assuming we are happy with the precision provided, but rather what model was
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used. A problem that Poincaré would have classified as the essential problem of the
experimental method is then to guess, in quantitative terms, which model was used.
Let us imagine, for exampled, that the extracted chord has a length, in our customary
units of the radius, of 0.1, that is λ1 = 0.1. Analyzing Fig. 11 we tend to exclude with
great certainty models 2, 3 and 6, attributing it instead, most likely, to M4. But we
would not believe this model much more than M1 or M5. If instead we have (very)
good reasons, as we have learned, to exclude M4 and M5, we are practically sure
that λ1 = 0.1 came from M1. As a consequence, our expectation about the length
of a second chord will be that resulting from the model preferred by the data.

Imagine instead the ‘curious’ (but not unlikely) situation in which: model 6 was
for some reasons excluded; we considered the other five models equally likely; the
result was λ2 = 1.4. In this case the experimental information would practically
irrelevant, and this data will not update our opinion concerning the drawing model
(see Fig. 11 to figure out the reason).

If we continue the extractions (always using the same generator!) we keep up-
dating the probability of the different models and the probability density function of
the length of the next chord extracted, or, to make the game simpler, the probability
that the next λ will be equal or smaller than

√
3, that we recalculate each time from

Eq. (91). Put in this terms the problem is similar to that discussed in Ref. [8], with
six boxes with different contents of black and white balls. Indeed we have even the
same number of ‘causes’. The main difference is that, instead of having only two
outcomes (black and white), we have now all possible values between 0 and 2, al-
though discretized. This discretization yields to another important difference. While
in the six box problem some of the causes could be eventually ‘falsified’, i.e. their
probability could become exactly zero (a black ball cannot come from a box contain-
ing only white balls, and the other way around), in the chord problem falsification
is impossible.16 Given the similarity of the inferential and predictive games I refer
then to [8] for a mini introduction to probabilistic inference needed to analyze our
problem.

Probability theory teaches us how to update the odds, i.e. the ratio of probabili-
ties, with a rule that it is convenient to rewrite in our case as

P (Mi | λn, I)

P (Mj | λn, I)
=

P (λn |Mi, I)

P (λn |Mj, I)
× P (Mi | λn−1, I)

P (Mj | λn−1, I)
, (92)

where λn is the length at the n-th extraction, starting from n = 0, that is ‘no
extraction’ and then P (Mi | λ0, I) stand for the priors. As we see in (92), the posterior
from the n-th inference becomes the prior of the (n + 1)-th. Moreover, we are not
considering the pdf of lambda, but the probability to obtaining a number from our
chord generator, rounded somehow. For example, if we round at two significant digits

16Some of the pdf’s go to zero for λ → 0. However the probability in a finite interval around zero
is different from zero because the pdf are larger than zero for lambda > 0.
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and we get λ1 = 1.23, the probabilities of interest will be17

P (λ1 |Mi, I) =
∫

1.235

1.225
f(λ |Mi, I) dλ (93)

= F (1.235 |Mi, I)− F (1.225 |Mi, I) . (94)

In this case we shall make the problem more realistic and avoid the singularities of
some of the pdf’ (and also be more precise in the calculation of the probability, in
the region in which the pdf’s are not enough linear).

This is the R code we need to calculate the cumulative distributions for the
different models

F.lambda <- function(l, mod) {

if(l<= 0) 0

else if (l>=2) 1

else switch(mod,

2/pi*asin(l/2),

1 - sqrt(1-l^2/4),

l^2/4,

l/2,

(2+sqrt(2-sqrt(4-l^2))-sqrt(2+sqrt(4-l^2)))/2,

2/pi*asin(l/2) - l/pi*sqrt(1-l^2/4) )

}

(Note how the functions reports 0 for arguments smaller than 0, and 1 for arguments
larger than 2).

Then we need a function to calculate the odds between the different hypotheses.
We can calculated them with respect to a reference one, and then all others can be
calculated. Here it is (the default reference model was chosen the one producing a
flat distribution of λ, but, as we shall see, the precise default value is irrelevant):

chordsModelsBF <- function (l, last.digit=0.01, ref.mod=4) {

bf <- rep(1,6)

hld <- last.digit/2

for (mod in c(1:6)) {

bf[mod] = (F.lambda(l+hld, mod) - F.lambda(l-hld, mod)) /

(F.lambda(l+hld, ref.mod) - F.lambda(l-hld, ref.mod))

}

return(bf)

}

As we see from the list of the arguments, we have to pass also the last digits. The
functions return a vector of values. For example
> chordsModelsBF(1.23)

17This rule can be applied also at the edges, since the pdf is null outside the range of the variable,
as we shall see in the R code, in we shall pay attention that the cumulative function is 0 for λ below
0 and 1 for λ above 2.
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[1] 0.8073569 0.7799414 1.2300000 1.0000000 0.8058272 0.6107326

in which we see that this value provides a slight evidence in favor of M3, as clear
from Fig. 11, while 1.95 would favor, in the order, M6 and M5, while M4 is the less
favored:
> chordsModelsBF(1.95)

[1] 2.868580 4.393492 1.950000 1.000000 3.166248 5.454361

Let also try to extreme values, leaving the evaluation of the results to the reader
(they are rounded to facilitate the reading).
> round(chordsModelsBF(0), 7)

[1] 0.6366204 0.0012500 0.0025000 1.0000000 0.5003129 0.0000027

> round(chordsModelsBF(2), 1)

[1] 18.0 28.3 2.0 1.0 20.0 36.0

At this point we have are ready to make the simulations. This is the the rest of
the code to make the extractions and update accordingly the various probabilities:

rmod <- sample(1:6)[1]

odds <- matrix(rep(1, 6), c(1,6))

probs <- matrix(rep(1/6, 6), c(1,6))

bf <- matrix(rep(NA, 6), c(1,6))

pLEsqrt3.Mi <- c(2/3, 1/2, 3/4, sqrt(3)/2, (3-sqrt(3))/2, 2/3-sqrt(3)/(2*pi) )

pLEsqrt3 <- sum(probs[1,]*pLEsqrt3.Mi)

fLEsqrt3 <- NA

n <- 200

decimal.digits <- 2

last.digit <- 10^-decimal.digits

l <- NA

for (i in 2:n) {

l[i] <- round(rlchords(1, rmod), decimal.digits)

#print(ref.mod)

bf <- rbind(bf, chordsModelsBF(l[i], last.digit, ref.mod) )

odds <- rbind(odds, odds[i-1,]*bf[i,])

ref.mod <- which(odds[i,]==max(odds[i,]))[1]

odds[i,] = odds[i,] / odds[i,ref.mod]

probs <- rbind(probs, odds[i, ]/sum(odds[i,]))

pLEsqrt3[i] <- sum(probs[i,]*pLEsqrt3.Mi)

fLEsqrt3[i] <- length(l[l<=sqrt(3)])/i

}

Then this is how to plot the histories of the probabilities of the models:

plot(probs[,1], ylim=c(10^-6,1), xlab=’’, ylab=expression(P(M[i])),

log=’y’, col=’red’, cex=0.9)

points(probs[,2], col=’blue’, cex=0.9)

points(probs[,3], col=’green’, cex=0.9)
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points(probs[,4], col=’magenta’, cex=0.9)

points(probs[,5], col=’orange’, cex=0.9)

points(probs[,6], col=’cyan’, cex=0.9)

Another interesting plot concerns the probability that the next chord will have λ ≤√
3, which was stored, step by step, in the vector pLEsqrt3, compared to the relative

frequency of occurrence of such a condition in the previous steps:

plot(pLEsqrt3, ylim=c(0,1), col=’black’,

xlab=’n’, ylab=expression(P(l<TrS)), cex=0.7)

points(fLEsqrt3, ylim=c(0,1), pch=4, cex=0.7, col=’gray’)

The results are shown in Fig. 26-31, with the same color code to identify the models
used in the previous plots. In particular we see that there are model easy to be
identified and other more difficult, as it can be understood from the plot in Fig. 11.
As far as the comparison between the probability of the next effect calculated from
probability theory (black circles) and that evaluated from the past frequency (gray),
we see that the former is more stable and rapidly converging to the correct one, the
one corresponding to the model of which we become practically sure.
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Figure 26: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M1]
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Figure 27: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M2]
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Figure 28: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M3]
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Figure 29: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M4]
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Figure 30: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M5]
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Figure 31: Probability of ‘causes’ (above) and probability of an ’effect’ (below), the last
compared with the relative frequency of occurrence (see text). [True model: M6]
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