
Normal distribution
Some technical remarks

◮ Standard normal: Z ∼ N (0, 1).
◮ Interesting properties of the log of the pdf of the normal

(not to be confused with the ‘lognormal’ !):
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⇒ Useful ‘tricks’ to evaluate mean and variance of distributions
“assumed to be almost normal”.

◮ Beware when they become rules! (Or prescriptions, or even
‘principles’. . . )
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(Quite academic) example of the ‘Gaussian tricks’
In the case of a Poisson distribution, we can calculate ϕ(x),
making x continuous and using Stirling’s approximation:

ϕ(x) = − ln
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phi(x)=−log(f(x)) for Poisson with lambda=100.00

 [ Stirling approximation for log(x!) ]
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Exact (Stirling)

Parabolic

A numerical example (λ = 100),
using E[X ] = σ2 = λ,
and comparing with a parabolic
function
around the minimum.
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Exercise on the ‘Gaussian trick’
applied to the Poisson distribution
Evaluation of E[X ] and σ2(X ), for large λ and treating x as continuous
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λ = 100:

1. ‘estimate’ E[X ] mimizing (1);

2. ‘estimate’ E[X ] from the root of (2), i.e. from dϕ/dx = 0;

3. then ‘estimate’ σ2(X ) from (3), after having ‘got’ E[X ] from
the previous items.

4. Finally ‘estimate’ σ(X ) using the ‘Δϕ trick’.
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