Normal distribution
Some technical remarks
» Standard normal: Z ~ N(0,1).
» Interesting properties of the log of the pdf of the normal
(not to be confused with the ‘lognormal’!):
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= Useful ‘tricks’ to evaluate mean and variance of distributions
“assumed to be almost normal’ .
» Beware when they become rules! (Or prescriptions, or even

‘principles’. . .)
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(Quite academic) example of the ‘Gaussian tricks’

In the case of a Poisson distribution, we can calculate ¢(x),
making x continuous and using Stirling’s approximation:
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phi(x)=-log(f(x)) for Poisson with lambda=100.00
[ Stirling approximation for log(x!) ]
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Exercise on the ‘Gaussian trick’
applied to the Poisson distribution

Evaluation of E[X] and o*(X), for large A\ and treating x as continuous
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A = 100:
1. ‘estimate’ E[X] mimizing (1);
2. ‘estimate’ E[X] from the root of (2), i.e. from dyp/dx = 0;

3. then ‘estimate’ o2(X) from (3), after having ‘got’ E[X] from
the previous items.

4. Finally ‘estimate’ o(X) using the ‘A trick’.

© GdA, RM23-05 20/01/23  36/88




