Normal distribution

Some technical remarks

- Standard normal: $Z \sim \mathcal{N}(0, 1)$.
- Interesting properties of the log of the pdf of the normal (not to be confused with the 'lognormal'!):

$$\varphi(x) \equiv -\ln f(x) = \frac{(x-\mu)^2}{2\sigma^2} + k$$

$$\varphi_{min} = k$$

$$\Delta \varphi^{\left(\frac{1}{2}\right)} = \varphi(\mu \pm \sigma) - \varphi_{min} = \frac{1}{2}$$

$$\frac{d\varphi}{dx} = \frac{x-\mu}{\sigma^2} \xrightarrow[==0]{} x_m = \mu$$

$$\frac{d^2\varphi}{d^2x} = \frac{1}{\sigma^2}$$

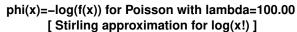
- ⇒ Useful 'tricks' to evaluate mean and variance of distributions "assumed to be almost normal".
- Beware when they become rules! (Or prescriptions, or even 'principles'...)

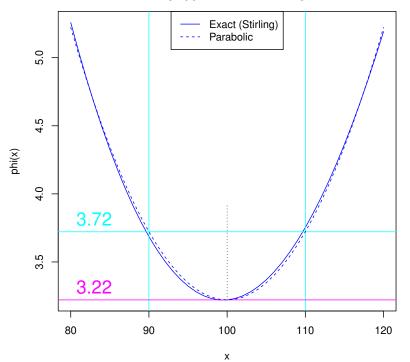
(Quite academic) example of the 'Gaussian tricks'

In the case of a Poisson distribution, we can calculate $\varphi(x)$, making x continuous and using Stirling's approximation:

$$\varphi(x) = -\ln\left(\frac{e^{-\lambda}\lambda^{x}}{x!}\right)$$

= $+\lambda - x\ln\lambda + \ln(x!)$
 $\approx \lambda - x\ln\lambda + x\ln x - x + \frac{1}{2}\ln x + \frac{1}{2}\ln 2\pi$





A numerical example ($\lambda = 100$), using E[X] = $\sigma^2 = \lambda$, and comparing with a parabolic function around the minimum.

Exercise on the 'Gaussian trick' applied to the Poisson distribution Evaluation of E[X] and $\sigma^2(X)$, for large λ and treating x as continuous

$$\varphi(x) = \lambda - x \ln \lambda + x \ln x - x + \frac{1}{2} \ln x + \frac{1}{2} \ln 2\pi \qquad (1)$$

$$\frac{d\varphi}{dx} = \qquad (2)$$

$$\frac{d^2 \varphi}{d^2 x} = \qquad (3)$$

 $\lambda = 100$:

- 1. 'estimate' E[X] mimizing (1);
- 2. 'estimate' E[X] from the root of (2), i.e. from $d\varphi/dx = 0$;
- 3. then 'estimate' $\sigma^2(X)$ from (3), after having 'got' E[X] from the previous items.
- 4. Finally 'estimate' $\sigma(X)$ using the ' $\Delta \varphi$ trick'.