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Many statistical problems, including some of the most important for physical ap-

plications, have long been regarded as underdetermined from the standpoint of a

strict frequency de�nition of probability; yet they may appear well posed or even

overdetermined by the principles of maximum entropy and transformation groups.

Furthermore, the distributions found by these methods turn out to have a de�nite

frequency correspondence; the distribution obtained by invariance under a transfor-

mation group is by far the most likely to be observed experimentally, in the sense

that it requires by far the least \skill." These properties are illustrated by analyzing

the famous Bertrand paradox. On the viewpoint advocated here, Bertrand's prob-

lem turns out to be well posed after all, and the unique solution has been veri�ed

experimentally. We conclude that probability theory has a wider range of useful

applications than would be supposed from the standpoint of the usual frequency

de�nitions.

1. Background

In a previous article (Jaynes 1968) we discussed two formal principles|maximum entropy and

transformation groups|that are available for setting up probability distributions in the absence

of frequency data. The resulting distributions may be used as prior distributions in Bayesian

inference; or they may be used directly for certain physical predictions. The exact sense in which

distributions found by maximum entropy correspond to observable frequencies was given in the

previous article; here we demonstrate a similar correspondence property for distributions obtained

from transformation groups, using as our main example the famous paradox of Bertrand.

Bertrand's problem (Bertrand, 1889) was stated originally in terms of drawing a straight line

\at random" intersecting a circle. It will be helpful to think of this in a more concrete way;

presumably, we do no violence to the problem (i.e., it is still just as \random") if we suppose

that we are tossing straws onto the circle, without specifying how they are tossed. We therefore

formulate the problem as follows.

A long straw is tossed at random onto a circle; given that it falls so that it intersects the circle,

what is the probability that the chord thus de�ned is longer than a side of the inscribed equilateral

triangle? Since Bertrand proposed it in 1889 this problem has been cited to generations of students

to demonstrate that Laplace's \principle of indi�erence" contains logical inconsistencies. For, there

appear to be many ways of de�ning \equally possible" situations, and they lead to di�erent results.

Three of these are: Assign uniform probability density to (A) the linear distance between centers

of chord and circle, (B) angles of intersections of the chord on the circumference, (C) the center

of the chord over the interior area of the circle. These assignments lead to the results pA = 1=2,

pB = 1=3, and pC = 1=4, respectively.

Which solution is correct? Of the ten authors cited (Bertrand 1889, Borel 1909, Poincar�e 1912,

Uspensky 1937, Nortrup 1944, Gnedenko 1962, Kendell and Moran 1963, von Mises 1957 and 1964,



THE WELL-POSED PROBLEM 2

and Mosteller 1965) with short quotations, in the appendix only Borel is willing to express a de�nite

preference, although he does not support it by any proof. Von Mises takes the opposite extreme,

declaring that such problems (including the similar Bu�on needle problem) do not belong to the

�eld of probability theory at all. The others including Bertrand, take the intermediate position

of saying simply that the problem has no de�nite solution because it is ill posed, the phrase \at

random" being unde�ned.

In works on probability theory this state of a�airs has been interpreted, almost universally,

as showing that the principle of indi�erence must be totally rejected. Usually, there is the further

conclusion that the only valid basis for assigning probabilities is frequency in some random experi-

ment. It would appear, then, that the only way of answering Bertrand's question is to perform the

experiment.

But do we really believe that it is beyond our power to predict by \pure thought" the result

of such a simple experiment? The point at issue is far more important than merely resolving

a geometric puzzle; for, as discussed further in Section 7, applications of probability theory to

physical experiments usually lead to problems of just this type; i.e., they appear at �rst to be

undetermined, allowing may di�erent solutions with nothing to choose among them. For example,

given the average particle density and total energy of a gas, predict its viscosity. The answer,

evidently, depends on the exact spatial and velocity distributions of the molecules (in fact, it

depends critically on position-velocity correlations), and nothing in the given data seems to tell us

which distribution to assume. Yet physicists have made de�nite choices, guided by the principle of

indi�erence, and they have led us to correct and nontrivial predictions of viscosity and many other

physical phenomena.

Thus, while in some problems the principle of indi�erence has led us to paradoxes, in others

it has produced some of the most important and successful applications of probability theory. To

reject the principle without having anything better to put in its place would lead to consequences

so unacceptable that for many years even those who profess the most faithful adherence to the

strict frequency de�nition of probability have managed to overlook these logical di�culties in order

to preserve some very useful solutions.

Evidently, we ought to examine the apparent paradoxes such as Bertrand's more closely; there

is an important point to be learned about the application of probability theory to real physical

situations.

It is evident that if the circle becomes su�ciently large, and the tosser su�ciently skilled,

various results could be obtained at will. However, in the limit where the skill of the tosser must

be described by a \region of uncertainty" large compared to the circle, the distribution of chord

lengths must surely go into one unique function obtainable by \pure thought." A viewpoint toward

probability theory which cannot show us how to calculate this function from �rst principles, or even

denies the possibility of doing this, would imply severe|and, to a physicist, intolerable|restrictions

on the range of useful applications of probability theory.

An invariance argument was applied to problems of this type by Poincar�e (1912), and cited

more recently by Kendall and Moran (1963). In this treatment we consider straight lines drawn

\at random" in the xy plane. Each line is located by specifying two parameters (u; v) such that the

equation of the line is ux + uy = 1, and one can ask: Which probability density p(u; v) du dv has

the property that it is invariant in form under the group of Euclidean transformations (rotations

and translations) of the plane? This is a readily solvable problem (Kendall and Moran 1963), with

the answer p(u; v) = (u2 + v
2)�3=2.

Yet evidently this has not seemed convincing; for later authors have ignored Poincar�e's in-

variance argument, and adhered to Bertrand's original judgment that the problem has no de�nite

solution. This is understandable, for the statement of the problem does not specify that the dis-

tribution of straight lines is to have this invariance property, and we do not see any compelling
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reason to expect that a rain of straws produced in a real experiment would have it. To assume

this would seem to be an intuitive judgment resting on no stronger grounds than the one which

led to the three di�erent solutions above. All of these amount to trying to guess what properties a

\random" rain of straws should have, by specifying the intuitively \equally possible" events; and

the fact remains that di�erent intuitive judgments lead to di�erent results.

The viewpoint just expressed, which is by far the most common in the literature, clearly

represents one valid way of interpreting the problem. If we can �nd another viewpoint according

to which such problems do have de�nite solutions, and de�ne the conditions under which these

solutions are experimentally veri�able, then while it would perhaps be overstating the case to say

that this new viewpoint is more \correct" in principle than the conventional one, it will surely be

more useful in practice.

We now suggest such a viewpoint, and we understand from the start that we are not concerned

at this stage with frequencies of various events. We ask rather: Which probability distribution

describes our state of knowledge when the only information available is that given in the above

statement of the problem? Such a distribution must conform to the desideratum of consistency

formulated previously (Jaynes 1968): In two problems where we have the same state of knowledge

we must assign the same subjective probabilities. The essential point is this: If we start with

the assumption that Bertrand's problem has a de�nite solution in spite of the many things left

unspeci�ed, then the statement of the problem automatically implies certain invariance properties,

which in no way depend on our intuitive judgments. After the subjective solution is found, it may

be used as a prior for Bayesian inference whether or not it has any correspondence with frequencies;

any frequency connections that may emerge will be regarded as an additional bonus, which justify

its use also for direct physical prediction.

Bertrand's problem has an obvious element of rotational symmetry, recognized in all the pro-

posed solutions; however, this symmetry is irrelevant to the distribution of chord lengths. There

are two other \symmetries" which are highly relevant: Neither Bertrand's original statement nor

our restatement in terms of straws speci�ed the exact size of the circle, or its exact location. If,

therefore, the problem is to have any de�nite solution at all, it must be \indi�erent" to these cir-

cumstances; i.e., it must be unchanged by a small change in the size or position of the circle. This

seemingly trivial statement, as we will see, fully determines the solution.

It would be possible to consider all these invariance requirements simultaneously by de�ning

a four-parameter transformation group, whereupon the complete solution would appear suddenly,

as if by magic. However, it will be more instructive to analyze the e�ects of these invariances

separately, and see how each places its own restrictions on the form of the solution.

2. Rotational Invariance

Let the circle have radius R. The position of the chord is determined by giving the polar coor-

dinates (r; �) of its center. We seek to answer a more detailed question than Bertrand's: What

probability density f(r; �)dA = f(r; �) r dr d� should we assign over the interior area of the circle?

The dependence on � is actually irrelevant to Bertrand's question, since the distribution of chord

lengths depends only on the radial distribution

g(r) =

Z
2�

0

f(r; �)d�:

However, intuition suggests that f(r; �) should be independent of �, and the formal transformation

group argument deals with the rotational symmetry as follows.

The starting point is the observation that the statement of the problem does not specify

whether the observer is facing north or east; therefore if there is a de�nite solution, it must not
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depend on the direction of the observer's line of sight. Suppose, therefore, that two di�erent

observers, Mr. X and Mr. Y , are watching this experiment. They view the experiment from

di�erent directions, their lines of sight making an angle �. Each uses a coordinate system oriented

along his line of sight. Mr. X assigns the probability density f(r; �) in his coordinate system S;

and Mr. Y assigns g(r; �) in his system S�. Evidently, if they are describing the same situation,

then it must be true that

f(r; �) = g(r; �� �) (1)

which expresses a simple change of variables, transforming a �xed distribution f to a new coordinate

system; this relation will hold whether or not the problem has rotational symmetry.

But now we recognize that, because of the rotational symmetry, the problem appears exactly

the same to Mr. X in his coordinate system as it does to Mr. Y in his. Since they are in the same

state of knowledge, our desideratum of consistency demands that they assign the same probability

distribution; and so f and g must be the same function:

f(r; �) = g(r; �): (2)

These relations must hold for all � in 0 � � � 2�; and so the only possibility is f(r; �) = f(r).

This formal argument may appear cumbersome when compared to our obvious ash of intu-

ition; and of course it is, when applied to such a trivial problem. However, as Wigner (1931) and

Weyl (1946) have shown in other physical problems, it is this cumbersome argument that general-

izes at once to nontrivial cases where our intuition fails us. It always consists of two steps: We �rst

�nd a transformation equation like (1) which shows how two problems are related to each other, ir-

respective of symmetry; then a symmetry relation like (2) which sates that we have formulated two

equivalent problems. Combining them leads in most cases to a functional equation which imposes

some restriction on the form of the distribution.

3. Scale Invariance

The problem is reduced, by rotational symmetry, to determining a function f(r), normalized ac-

cording to Z
2�

0

Z R

0

f(r) r dr d� = 1: (3)

Again, we consider two di�erent problems; concentric with a circle of radius R, there is a circle of

radius aR, 0 < a � 1. Within the smaller circle there is a probability h(r) r dr d� which answers the

question: Given that a straw intersects the smaller circle, what is the probability that the center

of its chord lies in the area dA = r dr d�?

Any straw that intersects the small circle will also de�ne a chord on the larger one; and so,

within the small circle f(r) must be proportional to h(r). This proportionality is, of course, given

by the standard formula for a conditional probability, which in this case takes the form

f(r) = 2�h(r)

Z �R

0

f(r) r dr; 0 < a � 1; 0 � r � aR: (4)

This transformation equation will hold whether or not the problem has scale invariance.

But we now invoke scale invariance; to two di�erent observers with di�erent size eyeballs, the

problems of the large and small circles would appear exactly the same. If there is any unique

solution independent of the size of the circle, there must be another relation between f(r) and

h(r), which expresses the fact that one problem is merely a scaled-down version of the other. Two

elements of area r dr d� and (ar)d(ar)d� are related to the large and small circles respectively in
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the same way; and so they must be assigned the same probabilities by the distributions f(r) and

h(r), respectively:

h(ar) (ar) d(ar)d� = f(r) r dr d�

or

a
2
h(ar) = f(r) (5)

which is the symmetry equation. Combining (4) and (5), we see that invariance under change of

scale requires that the probability density satisfy the functional equation

a
2
f(ar) = 2�f(r)

Z aR

0

f(u) u du; 0 < a � 1; 0 � r � R: (6)

Di�erentiating with respect to a, setting a = 1, and solving the resulting di�erential equation, we

�nd that the most general solution of (6) satisfying the normalization condition (3) is

f(r) =
qr
q�2

2�Rq
(7)

where q is a constant in the range 0 < q <1, not further determined by scale invariance.

We note that the proposed solution B in the introduction has now been eliminated, for it

corresponds to the choice f(r) � (R2
� r

2)�1=2, which is not of the form (7). This means that if

the intersections of chords on the circumference were distributed in angle uniformly and indepen-

dently on one circle, this would not be true for a smaller circle inscribed in it; i.e., the probability

assignment of B could be true for, at most, only one size of circle. However, solutions A and C are

still compatible with scale invariance, corresponding to the choices q = 1 and q = 2 respectively.

4. Translational Invariance

We now investigate the consequences of the fact that a given straw S can intersect two circles C,

C
0 of the same radius R, but with a relative displacement b. Referring to Fig. 1, the midpoint of

the chord with respect to circle C is the point P , with coordinates (r; �); while the same straw

de�nes a midpoint of the chord with respect to C0 at the point P 0 whose coordinates are (r0; �0).

From Fig. 1 the coordinate transformation (r; �)! (r0; �0) is given by

r
0 = jr � b cos �j (8)

�
0 =

�
�; r > b cos �

� + �; r < b cos �
(9)

As P varies over the region �, P 0 varies over �0, and vice versa; thus the straws de�ne a 1:1 mapping

of � onto �0.

Now we note the translational symmetry; since the statement of the problem gave no infor-

mation about the location of the circle, the problems of C and C
0 appear exactly the same to two

slightly displaced observers O and O
0. Our desideratum of consistency then demands that they

assign probability density C and C0 respectively which have the same form (7) with the same value

of q.

It is further necessary that these two observers assign equal probabilities to the regions � and

�0, respectively, since (a) they are probabilities of the same event, and (b) the probability that a
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Fig. 1 A Straw S intersects two slightly displaced circles C and C0.

straw which intersects one circle will also intersect the other, thus setting up this correspondence,

is also the same in the two problems. Let us see whether these two requirements are compatible.

The probability that a chord intersecting C will have its midpoint in � is

Z
�

f(r) r dr d� =
q

2�Rq

Z
�

r
q�1

dr d�: (10)

The probability that a chord intersecting C0 will have its midpoint in �0 is

q

2�Rq

Z
�0

(r0)q�1 dr0 d�0 =
q

2�Rq

Z
�

jr � b cos �j
q�1

dr d� (11)

where we have transformed the integral back to the variables (r; �) by use of (8) and (9), noting

that the Jacobian is unity. Evidently, (10) and (11) will be equal for arbitrary � if and only if

q = 1; and so our distribution f(r) is now uniquely determined.

The proposed solution C in the introduction is thus eliminated for lack of translational invari-

ance; a rain of straws which had the property assumed with respect to one circle, could not have

the same property with respect to a slightly displaced one.

5. Final Results

We have found the invariance requirements determine the probability density

f(r; �) =
1

2�Rr
; 0 � r � R; 0 � � � 2� (12)

corresponding to solution A in the introduction. It is interesting that this has a singularity at the

center, the need for which can be understood as follows. The condition that the midpoint (r; �)

falls within a small region � imposes restrictions on the possible directions of the chord. But as �

moves inward, as soon as it includes the center of the circle all angles are suddenly allowed. Thus

there is an in�nitely rapid change in the \manifold of possibilities."

Further analysis (almost obvious from contemplation of Fig. 1) shows that the requirement

of translational invariance is so stringent that it already determines the result (12) uniquely; thus
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the proposed solution B is incompatible with either scale or translational invariance, and in order

to �nd (12), it was not really necessary to consider scale invariance. However, the solution (12)

would in any event have to be tested for scale invariance, and if it failed to pass that test, we

would conclude that the problem as stated has no solution; i.e., although at �rst glance it appears

underdetermined, it would have to be regarded, from the standpoint of transformation groups, as

overdetermined. As luck would have it, these requirements are compatible; and so the problem has

one unique solution.

The distribution of chord lengths follows at once from (12). A chord whose midpoint is at

(r; �) has a length L = 2(R2
� r

2)1=2. In terms of the reduced chord lengths, x � L=2R, we obtain

the universal distribution law

p(x)dx =
xdx

(1� x2)1=2
; 0 � x � 1 (13)

in agreement with Borel's conjecture (1909).

6. Frequency Correspondence

From the manner of its derivation, the distribution (13) would appear to have only a subjective

meaning; while it describes the only possible state of knowledge corresponding to a unique solution

in view of the many things left unspeci�ed in the statement of Bertrand's problem, we have as yet

given no reason to suppose that it has any relation to frequencies observed in the actual experiment.

In general, of course, no such claim can be made; the mere fact that my state of knowledge gives

me no reason to prefer one event over another is not enough to make them occur equally often!

Indeed, it is clear that no \pure thought" argument, whether based on transformation groups or

any other principle, can predict with certainty what must happen in a real experiment. And we

can easily imagine a very precise machine which tosses straws in such a way as to produce any

distribution of chord lengths we please on a given circle.

Nevertheless, we are entitled to claim a de�nite frequency correspondence for the result (13).

For there is one \objective fact" which has been proved by the above derivation: Any rain of

straws which does not produce a frequency distribution agreeing with (13) will necessarily produce

di�erent distributions on di�erent circles.

But this is all we need in order to predict with con�dence that the distribution (13) will be

observed in any experiment where the \region of uncertainty" is large compared to the circle. For,

if we lack the skill to toss straws so that, with certainty, they intersect a given circle, then surely

we lack a fortiori the skill consistently to produce di�erent distributions on di�erent circles within

this region of uncertainty!

It is for this reason that distributions predicted by the method of transformation groups turn

out to have a frequency correspondence after all. Strictly speaking, this result holds only in the

limiting case of \zero skill," but as a moment's thought will show, the skill required to produce

any appreciable deviation from (13) is so great that in practice it would be di�cult to achieve even

with a machine.

Of course, the above arguments have demonstrated this frequency correspondence in only one

case. In the following section we adduce arguments indicating that it is a general property of the

transformation group method.

These conclusions seem to be in direct contradiction to those of von Mises (1957, 1964), who

denied that such problems belong to the �eld of probability theory at all. It appears to us that if

we were to adopt von Mises' philosophy of probability theory strictly and consistently, the range

of legitimate physical applications of probability theory would be reduced almost to the vanishing

point. Since we have made a de�nite, unequivocal prediction, this issue has now been removed from
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the realm of philosophy into that of veri�able fact. The predictive power of the transformation

group method can be put to the test quite easily in this and other problems by performing the

experiments.

The Bertrand experiment has, in fact, been performed by the writer and Dr. Charles E. Tyler,

tossing broom straws from a standing position onto a 5-in.-diameter circle drawn on the oor.

Grouping the range of chord lengths into ten categories, 128 successful tosses con�rmed Eq. (13)

with an embarrassingly low value of chi-squared. However, experimental results will no doubt be

more convincing if reported by others.

7. Discussion

Bertrand's paradox has a greater importance than appears at �rst glance, because it is a simple

crystallization of a deeper paradox which has permeated much of probability theory from its begin-

nings. In \real" physical applications when we try to formulate the problem of interest in probability

terms we �nd almost always that a statement emerges which, like Bertrand's, appears too vague

to determine any de�nite solution, because apparently essential things are left unspeci�ed.

We elaborate the example noted in the introduction: Given a gas of N molecules in a volume

V , with known intermolecular forces, total energy E, predict from this its molecular velocity distri-

bution, pressure, distribution of pressure uctuations, viscosity, thermal conductivity, and di�usion

constant. Here again the viewpoint expressed by most writers on probability theory would lead one

to conclude that the problem has no de�nite solution because it is ill posed; the things speci�ed

are grossly inadequate to determine any unique probability distribution over microstates. If we

reject the principle of indi�erence, and insist that the only valid basis for assigning probabilities

is frequency in some random experiment, it would again appear that the only way of determining

these quantities is to perform the experiment.

It is, however, a matter of record that over a century ago, without bene�t of any frequency

data on positions and velocity of molecules, James Clark Maxwell was able to predict all these

quantities correctly by a \pure thought" probability analysis which amounted to recognizing the

\equally possible" cases. In the case of viscosity the predicted dependence on density appeared at

�rst to contradict common sense, casting doubt on Maxwell's analysis. But when the experiments

were performed they con�rmed Maxwell's prediction, leading to the �rst great triumph of kinetic

theory. These are solid, positive accomplishments; and they cannot be made to appear otherwise

merely be deploring his use of the principle of indi�erence.

Likewise, we calculate the probability of obtaining various hands at poker; and we are so

con�dent of the results that we are willing to risk money on bets which the calculations indicate are

favorable to us. But underlying these calculations is the intuitive judgment that all distributions

of cards are equally likely; and with a di�erent judgment our calculations would give di�erent

results. Once again we are predicting de�nite, veri�able facts by \pure thought" arguments based

ultimately on recognizing the \equally possible" cases; and yet present statistical doctrine, both

orthodox and personalistic, denies that this is a valid basis for assigning probabilities!

The dilemma is thus apparent; on the one hand, one cannot deny the force of arguments which,

by pointing to such things as Bertrand's paradox, demonstrate the ambiguities and dangers in the

principle of indi�erence. But on the other hand, it is equally undeniable that use of this principle

has, over and over again, led to correct, nontrivial, and useful predictions. Thus it appears that

while we cannot wholly accept the principle of indi�erence, we cannot wholly reject it either; to

do so would be to cast out some of the most important and successful applications of probability

theory.

The transformation group method grew out of the writer's conviction, based on pondering this

situation, that the principle of indi�erence has been unjustly maligned in the past; what it has
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needed was not blanket condemnation, but recognition of the proper way to apply it. We agree

with most other writers on probability theory that it is dangerous to apply this principle at the

level of indi�erence between events, because our intuition is a very unreliable guide in such matters,

as Bertrand's paradox illustrates.

However, the principle of indi�erence may, in our view, be applied legitimately at the more

abstract level of indi�erence between problems; because that is a matter that is de�nitely determined

by the statement of a problem, independently of our intuition. Every circumstance left unspeci�ed

in the statement of a problem de�nes an invariance property which the solution must have if there

is to be any de�nite solution at all. The transformation group, which expresses these invariances

mathematically, imposes de�nite restrictions on the form of the solution, and in many cases fully

determines it.

Of course, not all invariances are useful. For example, the statement of Bertrand's problem

does not specify the time of day at which the straws are tossed, the color of the circle, the luminosity

of Betelgeuse, or the number of oysters in Chesapeake Bay; from which we infer, correctly, that if

the problem as stated is to have a unique solution, it must not depend on these circumstances. But

this would not help us unless we had previously thought that these things might be germane.

Study of a number of cases makes it appear that the aforementioned dilemma can now be

resolved as follows. We suggest that the cases in which the principle of indi�erence has been

applied successfully in the past are just the ones in which the solution can be \reverbalized" so

that the actual calculations used are seen as an application of indi�erence between problems, rather

than events.

For example, in the case of poker hands the statement of the problem does not specify the order

of cards in the deck before shu�ing; therefore if the problem is to have any de�nite solution, it must

not depend on this circumstance; i.e., it must be invariant under the group of 52! permutations

of cards, each of which transforms the problem into an equivalent one. Whether we verbalize the

solution by asserting that all distributions of cards in the �nal hands are \equally likely," or by

saying that the solution shall have this invariance property, we shall evidently do just the same

calculation and obtain the same �nal result.

There remains, however, a di�erence in the logical situation. After having applied the trans-

formation group argument in this way we are not entitled to assert that the predicted distribution

of poker hands must be observed in practice. The only thing that can be proved by transformation

groups is that if this distribution is not forthcoming then the probability of obtaining a given hand

will necessarily be di�erent for di�erent initial orders of cards; or, as we would state it colloquially,

the cards are not being \properly" shu�ed. This is, of course, just the conclusion we do draw in

practice, whatever our philosophy about the \meaning of probability."

Once again it is clear that the invariant solution is overwhelmingly the most likely one to be

produced by a person of ordinary skill; to shu�e cards in such a way that one particular aspect of

the initial order is retained consistently in the �nal order requires a \microscopic" degree of control

over the exact details of shu�ing (in this case, however, the possession of such skill is generally

regarded as dishonest, rather than impossible).

We have not found any general proof that the method of transformation groups will always

lead to solutions which this frequency correspondence property; however, analysis of some dozen

problems like the above has failed to produce any counterexample, and its general validity is

rendered plausible as follows.

In the �rst place, we recognize that every circumstance which our common sense tells us may

exert some inuence on the result of an experiment ought to be given explicitly in the statement

of a problem. If we fail to do that, then of course we have no right to expect agreement between

prediction and observation; but this is not a failure of probability theory, but rather a failure
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on our part to state the full problem. If the statement of a problem does properly include all

such information, then it would appear that any circumstances that are still left unspeci�ed must

correspond to some lack of control over the conditions of the experiment, which makes it impossible

for us to state them. But invariance under the corresponding transformation group is just the formal

expression of this lack of control, or lack of skill.

One has the feeling that this situation can be formalized more completely; perhaps one can

de�ne some \space" corresponding to all possible degrees of skill and de�ne a measure in this space,

which proves to be concentrated overwhelmingly on those regions leading to the invariant solution.

Up to the present, however, we have not seen how to carry out such a program; perhaps others

will.

8. Conjectures

There remains the interesting, and still unanswered, question of how to de�ne precisely the class

of problems which can be solved by the method illustrated here. There are many problems in

which we do not see how to apply it unambiguously; von Mises' water-and-wine problem is a good

example. Here we are told that a mixture of water and wine contains at least half wine, and are

asked: What is the probability that it contains at least three-quarters wine? On the usual viewpoint

this problem is underdetermined; nothing tells us which quantity should be regarded as uniformly

distributed. However, from the standpoint of the invariance group, it may be more useful to regard

such problems as overdetermined; so many things are left unspeci�ed that the invariance group is

too large, and no solution can conform to it.

It thus appears that the \higher-level problem" of how to formulate statistical problems in

such a way that they are neither underdetermined nor overdetermined may itself be capable of

mathematical analysis. In the writer's opinion it is one of the major weaknesses of present statistical

practice that we do not seem to know how to formulate statistical problems in this way, or even how

to judge whether a given problem is well posed. Again, the Bertrand paradox is a good illustration

of this di�culty, for it was long thought that not enough was speci�ed to determine any unique

solution, but from the viewpoint which recognizes the full invariance group implied by the above

statement of the problem, it now appears that it was well posed after all.

In many cases, evidently, the di�culty has been simply that we have not been reading out all

that is implied by the statement of a problem; the things left unspeci�ed must be taken into account

just as carefully as the ones that are speci�ed. Presumably, a person would not seriously propose a

problem unless he supposed that it had a de�nite solution. Therefore, as a matter of courtesy and

in keeping with a worthy principle of law, we might take the view that a problem shall be presumed

to have a de�nite solution until the contrary has been proved. If we accept this as a reasonable

attitude, then we must recognize that we are not in a position to judge whether a problem is well

posed until we have carried out a transformation group analysis of all the invariances implied by

its statement.

The question whether a problem is well posed is thus more subtle in probability theory than in

other branches of mathematics, and any results which could be obtained by study of the \higher-

level problem" might be of immediate use in applied statistics.

Appendix: Comments on Bertrand's Problem

Bertrand (1889, pp. 4-5); \Aucune de trois n'est fausse, aucune n'est exacte, la question est mal

pos�ee."

Borel (1909, pp. 110-113): \: : : il est ais�e de voir que la plupart des proc�ed�es naturels que l'on peut

imaginer conduiser �a la premi�ere."

Poincar�e (1912, pp. 118-130): \: : : nous avons de�nie la probabilit�e de deux mani�eres di��erentes."
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Uspensky (1937, p. 251): \: : : we are really dealing with two di�erent problems."

Northrup (1944, pp. 181-183): \One guess is as good as another."

Gnedenko (1962, pp. 40-41): The three results \would be appropriate" in three di�erent experi-

ments.

Kendall and Moran (1963, p. 10): \All three solutions are correct, but they really refer to di�erent

problems."

Weaver (1963, pp. 356-357): \: : : you have to watch your step."

Von Mises (1964, pp. 160-166): \Which one of these or many other assumptions should be made is a

question of fact and depends on how the needles are thrown. It is not a problem of probability

calculus to decide which distribution prevails : : :" Von Mises, in the preface to (1957), also

charges that, \Neither Laplace nor any of his followers, including Poincar�e, ever reveals how,

starting with a priori premises concerning equally possible cases, the sudden transition to the

description of real statistical events is to be made." It appears to us that this had already

been accomplished in large part by James Bernoulli (1703) in his demonstration of the weak

law of large numbers, the �rst theorem establishing a connection between probability and

frequency, Jaynes (1968), and the present article may be regarded as further contributions

toward answering von Mises' objections.

Mosteller (1965, p. 40): \Until the expression `at random' is made more speci�c, the question does

not have a de�nite answer : : :. We cannot guarantee that any of these results would agree with

those obtained from some physical process : : :."
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