Linear combinations of uncertain numbers

A first exercise

Imagine we have measured the two sides of an A4 paper, obtaining

$$
\begin{aligned}
& a=29.73 \pm 0.03 \mathrm{~cm} \\
& b=21.45 \pm 0.04 \mathrm{~cm} .
\end{aligned}
$$

1. Evaluate (expected values, standard uncertainty and correlation)

- their difference $(d=a-b)$;
- their sum $(s=a+b)$;
assuming $\rho(a, b)=0$ or $\rho(a, b)=+0.8$.

2. Evaluate the same quantities by Monte Carlo simulation.
3. Repeat points 1 . and 2. changing $\sigma(a): 0.03,0.04,0.05 \mathrm{~cm}$.

Previous exercise reviewed

Exercise

- Repeat the exercise of the measurements on the A4 paper solving it in a compact form:
- write the covariance matrix (with the two values of ρ);
- write the transformation matrix C ;
- apply the formula $\mathrm{V}_{Y}=\mathrm{C} \mathrm{V}_{X} \mathrm{C}^{T}$.

Linearization

exercise: Extending the A4 paper example

Imagine we have measured the two sides of an A4 paper, obtaining

$$
\begin{aligned}
& a=29.73 \pm 0.03 \mathrm{~cm} \\
& b=21.45 \pm 0.04 \mathrm{~cm} .
\end{aligned}
$$

Evaluate (expected values, standard uncertainty and correlation)

- perimeter, $p=2 a+2 b$;
- Area, $A=a b$;
- diagonal, $d=\sqrt{a^{2}+b^{2}}$
assuming both $\rho(a, b)=0$ and $\rho(a, b)=+0.8$.
- Write directly C and then use the matrix formalism.

Linearization of monomial expressions of independent

 variablesExercise

Imagine we want to measure g with a pendulum:

$$
T=2 \pi \sqrt{\frac{l}{g}}
$$

from which it follows

$$
g=(2 \pi)^{2} / T^{-2}
$$

Q.: How precisely we have to measure I and T if we require they contribute equally to r_{g}, that we want to keep $\leq 1 \%$? Try...

Previous exercise reviewd

Exercise

- Repeat the exercise of the measurements on the A4 paper solving it in a compact form:
- write the covariance matrix (with the two values of ρ);
- write the transformation matrix C ;
- apply the formula $\mathrm{V}_{Y}=\mathrm{C} \mathrm{V}_{X} \mathrm{C}^{T}$.

Problems on multidimensional conditioning

Imagine the angles of a triangle have been measured, resulting in

$$
\begin{aligned}
\alpha & =24.2 \pm 0.5 \text { degrees } \\
\beta & =65.3 \pm 0.6 \text { degrees } \\
\gamma & =89.1 \pm 0.8 \text { degrees }
\end{aligned}
$$

\Rightarrow Condition on $\alpha+\beta+\gamma=180$ degrees.

Old problem:

$$
\begin{aligned}
\mu_{1} & =10.1 \pm 0.5 \mathrm{u} \\
\mu_{2} & =5.0 \pm 1.0 \mathrm{u} \\
\rho\left(\mu_{1}, \mu_{2}\right) & =-0.80 .
\end{aligned}
$$

1. recondition on $\mu_{1}+\mu_{2}=14.00 \mathrm{u}$;
2. recondition on $\mu_{1} / \mu_{2}=2.20$.

Inferring the "Bernoulli's p"

Approximate solution using the 'Gaussian trick'

Exercise

- Given $f(p) \propto p^{x}(1-p)^{n-x}$,
- define $\varphi(p)=-\ln f(p)$
- and evaluate
- $\frac{d \varphi}{d p}$
$-\frac{d^{2} \varphi}{d p^{2}}$
- Then estimate
- $\mathrm{E}(p) \approx p_{m}$ from minimum;
- $\sigma^{2}(p)$ from second derivative at the minimum.

